Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2097-2104.doi: 10.3724/SP.J.1006.2023.24184
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang()
[1] | 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166. |
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract) | |
[2] | 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213. |
Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H, Yu T Y. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract) | |
[3] |
郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
doi: 10.13287/j.1001-9332.201903.019 |
Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract) | |
[4] | Oldroyd G E, Downie J A. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol, 2004, 5: 566-576. |
[5] |
Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R. NSP1 of the GRAS protein family is essential for rhizobia Nod factor-induced transcription. Science, 2005, 308: 1789-1791.
doi: 10.1126/science.1111025 |
[6] |
Hirsch S, Kim J, Muñoz A, Heckmann A B, Downie J A, Oldroyd G E.GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 2009, 21: 545-557.
doi: 10.1105/tpc.108.064501 pmid: 19252081 |
[7] |
Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E, Gresshoff P M. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol, 2010, 52: 61-76.
doi: 10.1111/j.1744-7909.2010.00899.x |
[8] |
Oldroyd G E, Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol, 2008, 59: 519-546.
doi: 10.1146/annurev.arplant.59.032607.092839 pmid: 18444906 |
[9] |
Krusell L, Madsen L H, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420: 422-426.
doi: 10.1038/nature01207 |
[10] |
Searle I R, Men A E, Laniya T S, Buzas D M, Iturbe-Ormaetxe I, Carroll B J, Gresshoff P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299: 109-112.
doi: 10.1126/science.1077937 pmid: 12411574 |
[11] |
De Smet I. Lateral root initiation: one step at a time. New Phytol, 2012, 193: 867-873.
pmid: 22403823 |
[12] |
Wang T, Guo J, Peng Y, Lyu X, Liu B, Sun S, Wang X. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374: 65-71.
doi: 10.1126/science.abh2890 pmid: 34591638 |
[13] |
Kanchan K, Anindya K, Zaigam R A, Emeric D, Dany S, Pierre C, Fabienne C, Maitrayee D. Transcriptomic analysis with the progress of symbiosis in ‘crack-entry’ legume Arachis hypogaea highlights its contrast with ‘infection thread’ adapted legumes. Mol Plant Microbe Interact, 2019, 32: 271-285.
doi: 10.1094/MPMI-06-18-0174-R |
[14] |
Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibanez F, Wang J, Guo B, Sudini H K, Gopalakrishnan S, DasGupta M, Varshney R K, Pandey M K. Molecular basis of root nodule symbiosis between Bradyrhizobium and ‘crack-entry’ legume groundnut (Arachis hypogaea L.). Plants, 2020, 9: 276.
doi: 10.3390/plants9020276 |
[15] |
Kinkema M, Scott P T, Gresshoff P M. Legume nodulation: successful symbiosis through short and long-distance signaling. Funct Plant Biol, 2006, 33: 707-721.
doi: 10.1071/FP06056 pmid: 32689281 |
[16] |
Madsen L H, Tirichine L, Jurkiewicz A, Sullivan J T, Heckmann A B, Bek A S, Ronson C W, James E K, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun, 2010, 1: 10.
doi: 10.1038/ncomms1009 pmid: 20975672 |
[17] |
Nigam S N, Nambiar P T C, Dwivedi S L, Gibbons R W, Dart P J. Genetics of nonnodulation in groundnut (Arachis hypogaea L.) studies with single and mixed Rhizobium strains. Euphytica, 1982, 31: 691-693.
doi: 10.1007/BF00039207 |
[18] |
Essomba N B, Coffelt T A, Branch W D, Van Scoyoc S W. Inheritance of stem color and non-nodulation in peanut. Peanut Sci, 1991, 18: 126-131.
doi: 10.3146/i0095-3679-18-2-16 |
[19] |
Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.)nodulation. Sci Rep, 2017, 7: 40066.
doi: 10.1038/srep40066 pmid: 28059169 |
[20] |
Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X, Chen Y, Lei Y, Liao B, Jiang H. Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Mol Breed, 2019, 39: 23.
doi: 10.1007/s11032-019-0934-2 |
[21] |
Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci, 2016, 7: 1446.
pmid: 27746793 |
[22] | van Kammen A. Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol Biol Rep, 1984, 2: 43-45. |
[23] |
Nap J P, Bisseling T. Developmental biology of a plant prokaryote symbiosis, the legume root nodule. Science, 1990, 250: 948-954.
pmid: 17746918 |
[24] |
Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah B W, Oldroyd G E. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature, 2006, 441: 1149-1152.
doi: 10.1038/nature04812 |
[25] |
Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen A S, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J. Deregulation of a Ca2+/calmodulin- dependent kinase leads to spontaneous nodule development. Nature, 2006. 441: 1153-1156.
doi: 10.1038/nature04862 |
[26] |
Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H. Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot, 2007, 58:2033-2041.
pmid: 17452749 |
[27] |
Yan Z, Hossain M S, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers B C, Stacey G. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. New Phytol, 2015, 207: 748-759.
doi: 10.1111/nph.13365 pmid: 25783944 |
[28] |
Greene E A, Erard M, Dedieu A, Barker D G. MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins. Plant Mol Biol, 1998, 36: 775-783.
pmid: 9526510 |
[29] |
Vijn I, Yang W C, Pallisgård N, Ostergaard Jensen E, van Kammen A, Bisseling T. VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol Biol, 1995, 28: 1111-1119.
pmid: 7548828 |
[30] |
de Blank C, Mylona P, Yang W C, Katinakis P, Bisseling T, Franssen H.Characterization of the soybean early nodulin cDNA clone GmENOD55. Plant Mol Biol, 1993, 22: 1167-1171.
pmid: 8400132 |
[1] | HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504. |
[2] | WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461. |
[3] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[4] | LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170. |
[5] | TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230. |
[6] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[7] | JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876. |
[8] | LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471. |
[9] | ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248. |
[10] | DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238. |
[11] | ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904. |
[12] | BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079. |
[13] | XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099. |
[14] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[15] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
|