Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2105-2121.doi: 10.3724/SP.J.1006.2023.24194
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
DAI Shu-Tao1(), ZHU Can-Can1, MA Xiao-Qian2, QIN Na1, SONG Ying-Hui1, WEI Xin1, WANG Chun-Yi1, LI Jun-Xia1,*()
[1] |
Zörb C, Senbayram M, Peiter E. Potassium in agriculture: status and perspectives. J Plant Physiol, 2014, 171: 656-669.
doi: 10.1016/j.jplph.2013.08.008 |
[2] |
Lu Z, Pan Y, Hu W, Cong R, Ren T, Guo S, Lu J. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency. BMC Plant Biol, 2017, 17: 240.
doi: 10.1186/s12870-017-1201-5 |
[3] |
Hasanuzzaman M, Bhuyan M H M B, Nahar K, Hossain M S, Mahmud J A, Hossen M S, Masud A A C, Moumita, Fujita M. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 2018, 8: 31.
doi: 10.3390/agronomy8030031 |
[4] |
Wang Y, Wu W H. Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol, 2017, 39: 123-128.
doi: S1369-5266(17)30031-6 pmid: 28710919 |
[5] |
Mostofa M G, Rahman M M, Ghosh T K, Kabir A H, Abdelrahman M, Khan M A R, Mochida K, Tran L P. Potassium in plant physiological adaptation to abiotic stresses. Plant Physiol Biochem, 2022, 186: 279-289.
doi: 10.1016/j.plaphy.2022.07.011 |
[6] |
Johnson R, Vishwakarma K, Hossen M S, Kumar V, Shackira A M, Puthur J T, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: growth regulation, signaling, and environmental stress tolerance, Plant Physiol Biochem, 2022, 172: 56-69.
doi: 10.1016/j.plaphy.2022.01.001 |
[7] |
Hussain S, Hussain S, Ali B, Ren X, Chen X, Li Q, Saqib M, Ahmad N. Recent progress in understanding salinity tolerance in plants: story of Na+/K+ balance and beyond. Plant Physiol Biochem, 2021, 160: 239-256.
doi: 10.1016/j.plaphy.2021.01.029 |
[8] |
Gierth M, Mäser P. Potassium transporters in plants: involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett, 2007, 581: 2348-2356.
doi: 10.1016/j.febslet.2007.03.035 |
[9] |
Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: function and regulation. Semin Cell Dev Biol, 2018, 74: 133-141.
doi: 10.1016/j.semcdb.2017.07.009 |
[10] |
Ahn S J, Shin R, Schachtman D P. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol, 2004, 134: 1135-1145.
doi: 10.1104/pp.103.034660 |
[11] |
Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Mol Genet Genomics, 2008, 280: 437-452.
doi: 10.1007/s00438-008-0377-7 pmid: 18810495 |
[12] |
Li Y, Peng L, Xie C, Shi X, Dong C, Shen Q, Xu Y. Genome-wide identification, characterization, and expression analyses of the HAK/KUP/KT potassium transporter gene family reveals their involvement in K+ deficient and abiotic stress responses in pear rootstock seedlings. Plant Growth Regul, 2018, 85: 187-198.
doi: 10.1007/s10725-018-0382-8 |
[13] |
He C, Cui K, Duan A, Zeng Y, Zhang J. Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol, 2012, 2: 1996-2004.
doi: 10.1002/ece3.299 pmid: 22957200 |
[14] |
Cheng X, Liu X, Mao W, Zhang X, Chen S, Zhan K, Bi H, Xu H. Genome-wide identification and analysis of HAK/KUP/KT potassium transporters gene family in wheat (Triticum aestivum L.). Int J Mol Sci, 2018, 19: 3969.
doi: 10.3390/ijms19123969 |
[15] |
Zhou J, Zhou H J, Chen P, Zhang L L, Zhu J T, Li P F, Yang J, Ke Y Z, Zhou Y H, Li J N, Du H. Genome-wide survey and expression analysis of the KT/HAK/KUP family in Brassica napus and its potential roles in the response to K+ deficiency. Int J Mol Sci, 2020, 21: 9487.
doi: 10.3390/ijms21249487 |
[16] | 许赛赛, 张博, 仲阳, 段思凡, 杨慧芹, 马玲. 马铃薯HAK/ KUP/KT基因家族鉴定与表达分析. 分子植物育种, 2021, 19: 3878-3886. |
Xu S S, Zhang B, Zhong Y, Duan S F, Yang H Q, Ma L. Identification and expression analysis of HAK/KUP/KT gene family in potato. Mol Plant Breed, 2021, 19: 3878-3886. (in Chinese with English abstract) | |
[17] |
Rubio F, Santa-María G E, Rodríguez-Navarro A. Cloning of Arabidopsis and barley cDNA encoding HAK potassium transporters in root and shoot cells. Physiol Plant, 2001, 109: 34-43.
doi: 10.1034/j.1399-3054.2000.100106.x |
[18] |
Nieves-Cordones M, Ródenas R, Chavanieu A, Rivero R M, Martinez V, Gaillard I, Rubio F. Uneven HAK/KUP/KT protein diversity among angiosperms: species distribution and perspectives. Front Plant Sci, 2016, 7: 127.
doi: 10.3389/fpls.2016.00127 pmid: 26904084 |
[19] |
Santa-María G E, Rubio F, Dubcovsky J, Rodríguez-Navarro A. The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell, 1997, 9: 2281-2289.
doi: 10.1105/tpc.9.12.2281 pmid: 9437867 |
[20] |
Gierth M, Mäser P, Schroeder J I. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol, 2005, 137: 1105-1114.
doi: 10.1104/pp.104.057216 |
[21] |
Bañuelos M A, Garciadeblas B, Cubero B, Rodríguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol, 2002, 130: 784-795.
doi: 10.1104/pp.007781 pmid: 12376644 |
[22] |
Han M, Wu W, Wu W H, Wang Y. Potassium transporter KUP7 is involved in K+ Acquisition and translocation in Arabidopsis root under K+-limited conditions. Mol Plant, 2016, 9: 437-446.
doi: 10.1016/j.molp.2016.01.012 |
[23] |
Okada T, Nakayama H, Shinmyo A, Yoshida K. Expression of OsHAK genes encoding potassium ion transporters in rice. Plant Biotechnol, 2008, 25: 241-245.
doi: 10.5511/plantbiotechnology.25.241 |
[24] |
晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析. 作物学报, 2018, 44: 236-244.
doi: 10.3724/SP.J.1006.2018.00236 |
Chao M N, Wen Q Y, Zhang Z Y, Hu G H, Zhang J B, Wang G, Wang Q L. Sequence characteristics and expression analysis of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.). Acta Agron Sin, 2018, 44: 236-244. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00236 |
|
[25] |
Senn M E, Rubio F, Bañuelos M A, Rodríguez-Navarro A. Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J Biol Chem, 2001, 276: 44563-44569.
doi: 10.1074/jbc.M108129200 pmid: 11562376 |
[26] |
Garciadeblas B, Benito B, Rodríguez-Navarro A.Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2of the seagrass Cymodocea nodosa. Plant Mol Biol, 2002, 50: 623-633.
pmid: 12374296 |
[27] |
Wang X, Li J, Li F, Pan Y, Cai D, Mao D, Chen L, Luan S. Rice potassium transporter OsHAK8 mediates K+ uptake and translocation in response to low K+ stress. Front Plant Sci, 2021, 12: 730002.
doi: 10.3389/fpls.2021.730002 |
[28] |
Osakabe Y, Arinaga N, Umezawa T, Katsura S, Nagamachi K, Tanaka H, Ohiraki H, Yamada K, Seo S U, Abo M, Yoshimura E, Shinozaki K, Yamaguchi-Shinozaki K. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell, 2013, 25: 609-624.
doi: 10.1105/tpc.112.105700 |
[29] |
Chen G, Liu C, Gao Z, Zhang Y, Jiang H, Zhu L, Ren D, Yu L, Xu G, Qian Q. OsHAK1, a high-affinity potassium transporter, positively regulates responses to drought stress in rice. Front Plant Sci, 2017, 8: 1885.
doi: 10.3389/fpls.2017.01885 pmid: 29163608 |
[30] |
Feng H, Tang Q, Cai J, Xu B, Xu G, Yu L. Rice OsHAK 16 functions in potassium uptake and translocation in shoot, maintaining potassium homeostasis and salt tolerance. Planta, 2019, 250: 549-561.
doi: 10.1007/s00425-019-03194-3 |
[31] |
Zhang M, Liang X, Wang L, Cao Y, Song W, Shi J, Lai J, Jiang C. A HAK family Na+ transporter confers natural variation of salt tolerance in maize. Nat Plants, 2019, 5: 1297-1308.
doi: 10.1038/s41477-019-0565-y pmid: 31819228 |
[32] |
Jing X, Song X, Cai S, Wang P, Lu G, Yu L, Zhang C, Wu Z. Overexpression of OsHAK5 potassium transporter enhances virus resistance in rice (Oryza sativa). Mol Plant Pathol, 2022, 23: 1107-1121.
doi: 10.1111/mpp.v23.8 |
[33] |
刁现民, 程汝宏.十五年区试数据分析展示谷子糜子育种现状中国农业科学, 2017, 50: 4469-4474.
doi: 10.3864/j.issn.0578-1752.2017.23.001 |
Diao X M, Cheng R H. Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data. Sci Agric Sin, 2017, 50: 4469-4474. (in Chinese with English abstract) | |
[34] | 张亚琦, 李淑文, 杜雄, 文宏达. 施钾对杂交谷子水分利用效率和产量的影响. 河北农业大学学报, 2014, 37(6): 1-6. |
Zhang Y Q, Li S W, Du X, Wen H D. Effect of potassium fertilization on water use efficiency and yield of hybrid millet. J Hebei Agric Univ, 2014, 37(6): 1-6. (in Chinese with English abstract) | |
[35] | 宋淑贤, 田伯红, 王建广, 赵光辉, 刘艳丽, 张立新. 不同施钾量对谷子生长及产量的影响. 辽宁农业科学, 2015, (6): 6-8. |
Song S X, Tian B H, Wang J G, Zhao G H, Liu Y L, Zhang L X. Effect of potassium fertilization on the growth and yield of millet. Liaoning Agric Sci, 2015, (6): 6-8 (in Chinese with English abstract). | |
[36] | 郝科星, 李娜娜, 侯富恩. 氮·磷·钾肥运筹对谷子品质与产量的影响. 安徽农业科学, 2016, 44(13): 51-55. |
Hao K X, Li N N, Hou H E. Effect of N, P, K Fertilizer management on the quality and yield of millet. J Anhui Agric Sci, 2016, 44(13): 51-55. (in Chinese with English abstract) | |
[37] |
Nadeem F, Ahmad Z, Hassan M U, Wang R, Diao X, Li X. Adaptation of foxtail millet (Setaria italica L.) to abiotic stresses: a special perspective of responses to nitrogen and phosphate limitations. Front Plant Sci, 2020, 11: 187.
doi: 10.3389/fpls.2020.00187 |
[38] |
陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46: 1591-1604.
doi: 10.3724/SP.J.1006.2020.04064 |
Chen E Y, Wang R F, Qin L, Yang Y B, Li F F, Zhang H W, Wang H L, Liu B, Kong Q H, Guan Y A. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination. Acta Agron Sin, 2020, 46: 1591-1604. (in Chinese with English abstract) | |
[39] |
Sato Y, Nanatani K, Hamamoto S, Shimizu M, Takahashi M, Tabuchi-Kobayashi M, Mizutani A, Schroeder J I, Souma S, Uozumi N. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. J Biochem, 2014, 155: 315-323.
doi: 10.1093/jb/mvu007 |
[40] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
pmid: 15171794 |
[41] | 宋毓峰, 张良, 董连红, 靳义荣, 史素娟, 白岩, 刘朝科, 冯广林, 冯祥国, 王倩, 刘好宝. 植物KUP/HAK/KT家族钾转运体研究进展. 中国农业科技导报, 2013, 15(6): 92-98. |
Song Y F, Zhang L, Dong L H, Jin Y R, Shi S J, Bai Y, Liu C K, Feng G L, Feng X G, Wang Q, Liu H B. Research progress on KUP/HAK/KT potassium transporter family in plant. J Agric Sci Technol, 2013, 15(6): 92-98. (in Chinese with English abstract) | |
[42] | 柴薇薇, 王文颖, 崔彦农, 王锁民. 植物钾转运蛋白KUP/HAK/KT家族研究进展. 植物生理学报, 2019, 55: 1747-1761. |
Chai W W, Wang W Y, Cui Y N, Wang S M. Research progress of function on KUP/HAK/KT family in plants. Plant Physiol J, 2019, 55: 1747-1761. (in Chinese with English abstract) | |
[43] |
Feng X, Liu W, Qiu C W, Zeng F, Wang Y, Zhang G, Chen Z H, Wu F. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J, 2020, 18: 1683-1696.
doi: 10.1111/pbi.13332 pmid: 31917885 |
[44] |
Kim E J, Kwak J M, Schroeder U J I. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell, 1998, 10: 51-62.
pmid: 9477571 |
[45] |
Uchiyama M, Fudaki R, Kobayashi T, Adachi Y, Ukai Y, Yoshihara T, Shimada H. Rice OsHAK5 is a major potassium transporter that functions in potassium uptake with high specificity but contributes less to cesium uptake. Biosci Biotechnol Biochem, 2022, 86: 1599-1604.
doi: 10.1093/bbb/zbac152 |
[46] |
Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G. The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol, 2014, 166: 945-959.
doi: 10.1104/pp.114.246520 pmid: 25157029 |
[47] |
Maathuis F. The role of monovalent cation transporters in plant responses to salinity. J Exp Bot, 2006, 57: 1137-1147.
doi: 10.1093/jxb/erj001 pmid: 16263900 |
[48] |
Zhang L, Sun X, Li Y, Luo X, Song S, Chen Y, Wang X, Mao D, Chen L, Luan S. Rice Na+-permeable transporter OsHAK12 mediates shoots Na+ exclusion in response to salt stress. Front Plant Sci, 2021, 12: 771746.
doi: 10.3389/fpls.2021.771746 |
[1] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[2] | WEN Li-Chao, XIONG Tao, DENG Zhi-Chao, LIU Tao, GUO Cun, LI Wei, GUO Yong-Feng. Expression and functional characterization of NtNAC080 transcription factor gene from Nicotiana tabacumin under abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2171-2182. |
[3] | WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768. |
[4] | LIU Jia, ZOU Xiao-Yue, MA Ji-Fang, WANG Yong-Fang, DONG Zhi-Ping, LI Zhi-Yong, BAI Hui. Genome-wide identification and characterization of MAPK genes and their response to biotic stresses in foxtail millet [J]. Acta Agronomica Sinica, 2023, 49(6): 1480-1495. |
[5] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[6] | ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331. |
[7] | WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925. |
[8] | GUO Jia-Xin, LU Xiao-Yu, TAO Yi-Fan, GUO Hui-Juan, MIN Wei. Analysis of metabolites and pathways in cotton under salt and alkali stresses [J]. Acta Agronomica Sinica, 2022, 48(8): 2100-2114. |
[9] | HAN Shang-Ling, HUO Yi-Qiong, LI Hui, HAN Hua-Rui, HOU Si-Yu, SUN Zhao-Xia, HAN Yuan-Huai, LI Hong-Ying. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet [J]. Acta Agronomica Sinica, 2022, 48(7): 1645-1657. |
[10] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[11] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[12] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[13] | DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885. |
[14] | ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279. |
[15] | YUE Man-Fang, ZHANG Chun, ZHENG Deng-Yu, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmbHLH91 to abiotic stress [J]. Acta Agronomica Sinica, 2022, 48(12): 3004-3017. |
|