Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2097-2104.doi: 10.3724/SP.J.1006.2023.24184

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of major QTLs for nodule formation in peanut

HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang()   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2022-08-09 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-22
  • Contact: JIANG Hui-Fang E-mail:peanutlab@oilcrops.cn
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-13);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(2022-2060299-089-031)

Abstract:

Peanut is an important oil and economic crop of legumes in China. Nodules are important for symbiotic nitrogen fixation in peanut. Dissecting the genetic basis of nodule formation could promote the understanding of nitrogen fixation ability and characteristics of nodules in peanut. However, there are few studies on nodule formation and the genetic basis of nodule formation remained unclear in peanut. In this study, the nodules were investigated in a high generation RIL population and seven lines were identified without nodule. The chlorophyll content, plant height, fresh weight per plant, and dry weight per plant of the lines without nodule were significantly lower than those of parents. Using the previous genetic linkage map based on SSR markers, major QTLs qPNA08 and qPNB07 were identified on chromosome A08 and B07, respectively. The InDel markers in the two major QTLs were developed by the genome resequencing data of parents and performed amplification in the RILs. The interval of QTLs qPNA08 and qPNB07 was reduced to 1.6 Mb and 1.8 Mb, respectively. Meanwhile, the phenotypic variation explained of these two QTLs was increased to 16.4% and 9.9%, respectively. There were four and two nodulin genes variation loci in the two target intervals, respectively. This study provided the understanding for unveiling the genetic basis of formation and development of nodule and symbiotic nitrogen fixation in peanut.

Key words: peanut, nodule formation, QTLs mapping, linkage analysis

Fig. 1

Peanut plants with root and nodules A: root with nodules; B: root without nodules."

Table 1

Evaluation of chlorophyll content and agronomic traits of lines without nodules and parental lines"

材料
Accession
叶绿素
Chlorophyll content (SPAD)
株高
Plant height
(cm)
单株植株鲜重
Fresh weight per plant
(g)
单株荚果干重
Dry weight per plant
(g)
2019 2020 2019 2020 2019 2020 2019 2020
L039 28.81 29.07 30.33 28.23 168.3 129.0 24.2 27.4
L053 26.34 27.54 32.33 33.75 126.3 126.9 21.6 27.4
L086 26.27 24.43 32.70 36.46 157.5 139.0 20.9 24.8
L097 27.37 28.38 35.13 38.75 160.0 208.8 24.4 21.0
L099 25.03 24.37 51.89 52.44 187.0 218.0 25.7 29.6
L135 29.22 29.97 37.12 39.63 139.0 145.0 20.2 20.1
L140 20.41 25.14 38.52 39.12 202.5 119.0 16.1 19.5
中花10号Zhonghua 10 43.91 45.80 47.25 50.90 493.3 322.5 56.6 58.1
ICG12625 40.92 46.18 66.56 61.24 530.3 411.0 32.8 37.3

Table 2

Identification of major QTL for nodule formation in peanut RILs"

位点
QTL
连锁群
Linkage group
阈值
LOD
遗传变异解释率
PVE (%)
加性效应
Additive effect
标记区间
Marker internal
物理位置
Physical position (Mb)
qPNA08 A08 3.7 9.1 0.067 AHGS1880-AGGS1495 9.5-14.2
qPNB07 B07 3.1 7.1 -0.061 Ai07B24086-Ai07B26973 118.7-128.6

Table 3

Information of major QTLs for nodules formation in peanut RILs"

位点
QTL
连锁群
Linkage group
阈值
LOD
遗传变异解释率
PVE (%)
加性效应
Additive effect
标记区间
Marker internal
物理位置
Physical position (Mb)
qPNA08 A08 5.9 16.4 0.100 InDelA08-3-InDelA08-6 10.8-12.4
qPNB07 B07 3.7 9.9 -0.074 InDelB07-13-InDelB07-17 126.4-128.1

Fig. 2

Major QTLs for nodules formation in peanut"

Table 4

Annotation of SNP and InDel in the major QTLs for nodules formation"

类别
Category
qPNA08 qPNB07
数量
Number
比例
Ratio (%)
数量
Number
比例
Ratio (%)
基因间区Intergenic region 183 77.22 226 84.01
上游/下游区Upstream/downstream region 20 8.44 23 8.55
上游区Upstream region 11 4.64 15 5.58
下游区Downstream region 6 2.53 8 2.97
上游区&下游区Upstream & downstream region 3 1.27 0 0
基因区Genic region 34 14.35 20 7.43
内含子Intronic 18 7.59 14 5.20
外显子Exonic 8 3.38 3 1.12
同义突变Synonymous 3 1.27 0 0
非同义突变Nonsynonymous 5 2.11 1 0.37
终止突变Stopgain 0 0 1 0.37
非移码缺失Nonframeshift deletion 0 0 1 0.37
5′UTR区5′UTR 4 1.69 2 0.74
3′UTR区3′UTR 3 1.27 1 0.37
剪切区Splicing region 1 0.42 0 0

Table 5

Information of nodulin genes with variation locus between parents in the gene region"

基因
Gene ID
染色体
Chromosome
位置
Position
中花10号基因型
Genotype in
Zhonghua 10
ICG12625基因型
Genotype in ICG12625
变异位置
Variation
location
arahy 0GM2Z0 A08 11170576 GA G 上游区Upstream
arahy 9F81FQ A08 11024163 A G 上游区Upstream
A08 11024537 C T 上游区Upstream
A08 11020291 CAT C 3′UTR区3′UTR
arahy L4R73E A08 11107037 G C 剪切区Splicing
arahy M7858J A08 11066800 A ATAT 上游区Upstream
arahy AT5BZQ B07 126823960 T C 上游区Upstream
B07 126822807 CCT C 5′UTR区5′UTR
arahy DE00KI B07 127083363 A G 上游区Upstream

Table 6

Expression of nodulin genes in the major QTL regions in the root and nodule"

基因
Gene ID
染色体
Chromosome
基因位置
Position (bp)

Root
根瘤
Nodule
arahy.9F81FQ A08 11020073-11024051 123.72 8.76
arahy.L4R73E A08 11104688-11110744 54.76 4.52
arahy.M7858J A08 11061653-11066507 9.91 71.95
arahy.0GM2Z0 A08 11168701-11170133 0.14 8.91
arahy.AT5BZQ B07 127473205-127478066 99.18 18.578
arahy.QHG6EX B07 127589943-127595947 31.83 0.57
arahy.I1VTPH B07 127508511-127513030 2.99 19.23
arahy.DE00KI B07 127733203-127737565 0.59 10.17
[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 161-166. (in Chinese with English abstract)
[2] 吴正锋, 陈殿绪, 郑永美, 王才斌, 孙学武, 李向东, 王兴祥, 石程仁, 冯昊, 于天一. 花生不同氮源供氮特性及氮肥利用率研究. 中国油料作物学报, 2016, 38: 207-213.
Wu Z F, Chen D X, Zheng Y M, Wang C B, Sun X W, Li X D, Wang X X, Shi C R, Feng H, Yu T Y. Supply characteristics of different nitrogen sources and nitrogen use efficiency of peanut. Chin J Oil Crop Sci, 2016, 38: 207-213. (in Chinese with English abstract)
[3] 郑永美, 杜连涛, 王春晓, 吴正锋, 孙学武, 于天一, 沈浦, 王才斌. 不同花生品种根瘤固氮特点及其与产量的关系. 应用生态学报, 2019, 30: 961-968.
doi: 10.13287/j.1001-9332.201903.019
Zheng Y M, Du L T, Wang C X, Wu Z F, Sun X W, Yu T Y, Shen P, Wang C B. Nitrogen fixation characteristics of root nodules in different peanut varieties and their relationship with yield. Chin J Appl Ecol, 2019, 30: 961-968. (in Chinese with English abstract)
[4] Oldroyd G E, Downie J A. Calcium, kinases and nodulation signalling in legumes. Nat Rev Mol Cell Biol, 2004, 5: 566-576.
[5] Smit P, Raedts J, Portyanko V, Debellé F, Gough C, Bisseling T, Geurts R. NSP1 of the GRAS protein family is essential for rhizobia Nod factor-induced transcription. Science, 2005, 308: 1789-1791.
doi: 10.1126/science.1111025
[6] Hirsch S, Kim J, Muñoz A, Heckmann A B, Downie J A, Oldroyd G E.GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 2009, 21: 545-557.
doi: 10.1105/tpc.108.064501 pmid: 19252081
[7] Ferguson B J, Indrasumunar A, Hayashi S, Lin M H, Lin Y H, Reid D E, Gresshoff P M. Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol, 2010, 52: 61-76.
doi: 10.1111/j.1744-7909.2010.00899.x
[8] Oldroyd G E, Downie J A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol, 2008, 59: 519-546.
doi: 10.1146/annurev.arplant.59.032607.092839 pmid: 18444906
[9] Krusell L, Madsen L H, Sato S, Aubert G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijn F, Pajuelo E, Sandal N, Stougaard J. Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature, 2002, 420: 422-426.
doi: 10.1038/nature01207
[10] Searle I R, Men A E, Laniya T S, Buzas D M, Iturbe-Ormaetxe I, Carroll B J, Gresshoff P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 2003, 299: 109-112.
doi: 10.1126/science.1077937 pmid: 12411574
[11] De Smet I. Lateral root initiation: one step at a time. New Phytol, 2012, 193: 867-873.
pmid: 22403823
[12] Wang T, Guo J, Peng Y, Lyu X, Liu B, Sun S, Wang X. Light-induced mobile factors from shoots regulate rhizobium-triggered soybean root nodulation. Science, 2021, 374: 65-71.
doi: 10.1126/science.abh2890 pmid: 34591638
[13] Kanchan K, Anindya K, Zaigam R A, Emeric D, Dany S, Pierre C, Fabienne C, Maitrayee D. Transcriptomic analysis with the progress of symbiosis in ‘crack-entry’ legume Arachis hypogaea highlights its contrast with ‘infection thread’ adapted legumes. Mol Plant Microbe Interact, 2019, 32: 271-285.
doi: 10.1094/MPMI-06-18-0174-R
[14] Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibanez F, Wang J, Guo B, Sudini H K, Gopalakrishnan S, DasGupta M, Varshney R K, Pandey M K. Molecular basis of root nodule symbiosis between Bradyrhizobium and ‘crack-entry’ legume groundnut (Arachis hypogaea L.). Plants, 2020, 9: 276.
doi: 10.3390/plants9020276
[15] Kinkema M, Scott P T, Gresshoff P M. Legume nodulation: successful symbiosis through short and long-distance signaling. Funct Plant Biol, 2006, 33: 707-721.
doi: 10.1071/FP06056 pmid: 32689281
[16] Madsen L H, Tirichine L, Jurkiewicz A, Sullivan J T, Heckmann A B, Bek A S, Ronson C W, James E K, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun, 2010, 1: 10.
doi: 10.1038/ncomms1009 pmid: 20975672
[17] Nigam S N, Nambiar P T C, Dwivedi S L, Gibbons R W, Dart P J. Genetics of nonnodulation in groundnut (Arachis hypogaea L.) studies with single and mixed Rhizobium strains. Euphytica, 1982, 31: 691-693.
doi: 10.1007/BF00039207
[18] Essomba N B, Coffelt T A, Branch W D, Van Scoyoc S W. Inheritance of stem color and non-nodulation in peanut. Peanut Sci, 1991, 18: 126-131.
doi: 10.3146/i0095-3679-18-2-16
[19] Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.)nodulation. Sci Rep, 2017, 7: 40066.
doi: 10.1038/srep40066 pmid: 28059169
[20] Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X, Chen Y, Lei Y, Liao B, Jiang H. Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Mol Breed, 2019, 39: 23.
doi: 10.1007/s11032-019-0934-2
[21] Clevenger J, Chu Y, Scheffler B, Ozias-Akins P. A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci, 2016, 7: 1446.
pmid: 27746793
[22] van Kammen A. Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol Biol Rep, 1984, 2: 43-45.
[23] Nap J P, Bisseling T. Developmental biology of a plant prokaryote symbiosis, the legume root nodule. Science, 1990, 250: 948-954.
pmid: 17746918
[24] Gleason C, Chaudhuri S, Yang T, Muñoz A, Poovaiah B W, Oldroyd G E. Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature, 2006, 441: 1149-1152.
doi: 10.1038/nature04812
[25] Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen A S, Kawaguchi M, Downie A, Sato S, Tabata S, Kouchi H, Parniske M, Kawasaki S, Stougaard J. Deregulation of a Ca2+/calmodulin- dependent kinase leads to spontaneous nodule development. Nature, 2006. 441: 1153-1156.
doi: 10.1038/nature04862
[26] Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H. Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot, 2007, 58:2033-2041.
pmid: 17452749
[27] Yan Z, Hossain M S, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers B C, Stacey G. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. New Phytol, 2015, 207: 748-759.
doi: 10.1111/nph.13365 pmid: 25783944
[28] Greene E A, Erard M, Dedieu A, Barker D G. MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins. Plant Mol Biol, 1998, 36: 775-783.
pmid: 9526510
[29] Vijn I, Yang W C, Pallisgård N, Ostergaard Jensen E, van Kammen A, Bisseling T. VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol Biol, 1995, 28: 1111-1119.
pmid: 7548828
[30] de Blank C, Mylona P, Yang W C, Katinakis P, Bisseling T, Franssen H.Characterization of the soybean early nodulin cDNA clone GmENOD55. Plant Mol Biol, 1993, 22: 1167-1171.
pmid: 8400132
[1] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[2] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[3] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[4] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[5] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[6] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[7] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[8] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[9] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[10] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[11] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
[12] BAI Dong-Mei, XUE Yun-Yun, HUANG Li, HUAI Dong-Xin, TIAN Yue-Xia, WANG Peng-Dong, ZHANG Xin, ZHANG Hui-Qi, LI Na, JIANG Hui-Fang, LIAO Bo-Shou. Assessment of cold tolerance of different peanut varieties and screening of evaluation indexes at germination stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2066-2079.
[13] XU Yang, ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu, DAI Liang-Xiang. Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil [J]. Acta Agronomica Sinica, 2022, 48(8): 2088-2099.
[14] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[15] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .