Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2433-2445.doi: 10.3724/SP.J.1006.2023.23071
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
AI Rong1,2(), ZHANG Chun2(
), YUE Man-Fang2, ZOU Hua-Wen1,*(
), WU Zhong-Yi2,*(
)
[1] | 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, (7): 4-16. |
Qiu H G, Li X H, Yu J L. China’s corn industry development trends and policy recommendations. Iss Agric Econ 2021, (7): 4-16. (in Chinese) | |
[2] |
Osmond C B, Austin M P, Berry J A, Billings W D, Boyer J, Dacey J W H, Nobel P S, Smith S D, Winner W E. Stress physiology and the distribution of plants: the survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 1987, 37: 38-48.
doi: 10.2307/1310176 |
[3] | 张雪莹, 刘欣. 转录因子与叶片发育的研究进展. 植物生理学报, 2022, 58(1): 91-100. |
Zhang X Y, Liu X. Research progress of transcription factors and leaf development. Plant Phys J, 2022, 58(1): 91-100. (in Chinese with English abstract) | |
[4] | 葛宝宇, 林轶, 侯和胜. ERF类转录因子的结构与功能. 安徽农学通报, 2007, (20): 32-35. |
Ge B Y, Lin Y, Hou H S. Structure and function of ERF transcription factors. AnHui Agric Sci Bull, 2007, (20): 32-35. (in Chinese with English abstract) | |
[5] | 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45: 1465-1474. |
Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors. Chin Sci Bull, 2000, 45: 1465-1474. (in Chinese)
doi: 10.1360/csb2000-45-14-1465 |
|
[6] | 张艳馥, 沙伟. 转录因子概述. 生物学教学, 2009, 34(10): 7-8. |
Zhang Y F, Sha W. Overview of transcription factors. Biol Teach, 2009, 34(10): 7-8. (in Chinese) | |
[7] |
悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432 |
Yue M F, Zhang C, Wu Z Y. Advances in the structure and function of plant transcription factor AP2/ERF family proteins. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract). | |
[8] |
Ng D W K, Abeysinghe J K, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci, 2018, 19: 3737.
doi: 10.3390/ijms19123737 |
[9] |
Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626 |
[10] |
Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649.
doi: 10.1111/nph.12291 pmid: 24010138 |
[11] |
Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
doi: 10.1006/bbrc.2001.6299 |
[12] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828 |
[13] |
Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 1996, 30: 679-684.
doi: 10.1007/BF00049344 pmid: 8605318 |
[14] |
Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648 |
[15] |
Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783 |
[16] |
Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
doi: 10.3389/fpls.2021.705883 |
[17] |
Tang M J, Sun J W, Liu Y, Chen F, Shen S H. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol, 2007, 63: 419-428.
doi: 10.1007/s11103-006-9098-7 |
[18] |
Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y H. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806.
doi: 10.1105/tpc.18.00918 |
[19] |
Zhang G Y, Chen M, Chen X P, Xu Z S, Li L C, Guo J M, Ma Y Z. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 2010, 37: 809-818.
doi: 10.1007/s11033-009-9616-1 |
[20] |
Zhai Y, Wang Y, Li Y J, Lei T T, Yan F, Su L T, Li X W, Zhao Y, Sun X, Li J W, Wang Q Y. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 2013, 513: 174-183.
doi: 10.1016/j.gene.2012.10.018 |
[21] |
Tang Y H, Qin S S, Guo Y L, Chen Y B, Wu P Z, Chen Y P, Li M R, Jiang H W, Wu G J. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress. PLoS One, 2016, 11: e0150879.
doi: 10.1371/journal.pone.0150879 |
[22] |
Jung S E, Bang S W, Kim S H, Seo J S, Yoon H B, Kim Y S, Kim J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
doi: 10.3390/ijms22147656 |
[23] |
Şahin-Çevik M, Moore G A. Two AP2 domain containing genes isolated from the cold-hardy citrus relative Poncirus trifoliata are induced in response to cold. Funct Plant Biol, 2006, 33: 863-875.
doi: 10.1071/FP06005 pmid: 32689297 |
[24] |
Zhang J, Liao J Y, Ling Q Q, Xi Y, Qian Y X. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253 |
[25] |
Hao L D, Shi S B, Guo H B, Li M, Hu P, Wei Y D, Feng Y F. Genome-wide identification and expression profiles of ERF subfamily transcription factors in Zea mays. PeerJ, 2020, 8: e9551.
doi: 10.7717/peerj.9551 |
[26] |
Wang Z Y, Zhao X, Ren Z Z, Abou-Elwafa SF, Pu X Y, Zhu Y F, Dou D D, Su H H, Cheng H Y, Liu Z X, Chen Y H, Wang E, Shao R X, Ku L X. ZmERF21directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328.
doi: 10.1111/pce.v45.2 |
[27] |
Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281 |
[28] | 王莉, 王作平, 张中保, 白玲, 吴忠义. 玉米早期籽粒中强表达启动子的筛选. 作物杂志, 2020, (4): 114-120. |
Wang L, Wang Z P, Zhang Z B, Bai L, Wu Z Y. Screening of strong expression promoters in early kernels of maize. Crops, 2020, (4): 114-120. (in Chinese with English abstract) | |
[29] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[30] |
杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022 |
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract) | |
[31] |
悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060 |
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract). | |
[32] |
Wang Y Q, Xia D N, Li W Q, Cao X Y, Ma F, Wang Q Q, Zhan X Q, Hu T X. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses. Sci Hortic, 2022, 304: 111332.
doi: 10.1016/j.scienta.2022.111332 |
[33] |
Peng X J, Ma X Y, Fan W H, Su M, Cheng L Q, Alam I, Lee B H, Qi D M, Shen S H, Liu G S. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep, 2011, 30: 1493-1502.
doi: 10.1007/s00299-011-1058-2 |
[34] |
Qu Y J, Nong Q D, Jian S G, Lu H F, Zhang M Y, Xia K F. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21: 4586.
doi: 10.3390/ijms21134586 |
[35] |
Cai X T, Xu P, Zhao P X, Liu R, Yu L H, Xiang C B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun, 2014, 5: 5833.
doi: 10.1038/ncomms6833 |
[1] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[2] | MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497. |
[3] | LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471. |
[4] | YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330. |
[5] | BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076. |
[6] | WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087. |
[7] | WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096. |
[8] | WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929. |
[9] | LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022. |
[10] | MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757. |
[11] | CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828. |
[12] | ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629. |
[13] | LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652. |
[14] | WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362. |
[15] | LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304. |
|