Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2446-2461.doi: 10.3724/SP.J.1006.2023.24186
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
WANG Fei-Fei1(), ZHANG Sheng-Zhong1, HU Xiao-Hui1, CHU Ye2, CUI Feng-Gao1, ZHONG Wen3, ZHAO Li-Bo4, ZHANG Tian-Yu3, GUO Jin-Tao5, YU Hao-Liang6, MIAO Hua-Rong1,*(
), CHEN Jing1,*(
)
[1] |
Hilhorst H W. Standardizing seed dormancy research. Methods Mol Biol, 2011, 773: 43-52.
doi: 10.1007/978-1-61779-231-1_3 pmid: 21898248 |
[2] |
Baskin J M, Baskin C C. A classification system for seed dormancy. Seed Sci Res, 2007, 14: 1-16.
doi: 10.1079/SSR2003150 |
[3] | Fenner M, Thompson K, The Ecology of Seeds. New York: Cambridge University Press, 2005. pp 99-104. |
[4] |
Wang M L, Wang H, Zhao C, Tonnis B, Tallury S, Wang X, Clevenger J, Guo B. Identification of QTLs for seed dormancy in cultivated peanut using a recombinant inbred line mapping population. Plant Mol Biol Rep, 2021, 40: 208-217.
doi: 10.1007/s11105-021-01315-5 |
[5] | 胡晓辉, 崔凤高, 张胜忠, 苗华荣, 张智猛, 陈静. 花生种子休眠特异突变材料的创制及理化因素研究. 花生学报, 2018, 47(1): 33-37. |
Hu X H, Cui F G, Zhang S Z, Miao H R, Zhang Z M, Chen J. Study on the creation and physicochemical factors of peanut seed dormancy mutant. J Peanut Sci, 2018, 47(1): 33-37. (in Chinese with English abstract) | |
[6] |
Shi J, Shi J, Liang W, Zhang D. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet, 2021, 134: 3553-3562.
doi: 10.1007/s00122-021-03911-1 pmid: 34312681 |
[7] |
Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy. Annu Rev Plant Biol, 2008, 59: 387-415.
doi: 10.1146/annurev.arplant.59.032607.092740 pmid: 18257711 |
[8] |
Sondheimer E, Tzou D S, GalsonE C. Abscisic acid levels and seed dormancy. Plant Physiol, 1968, 43: 1443-1447.
doi: 10.1104/pp.43.9.1443 pmid: 16656935 |
[9] |
Kallio P, Piiroinen P. Effect of gibberellin on the termination of dormancy in some seeds. Nature, 1959, 183: 1830-1831.
doi: 10.1038/1831830a0 |
[10] |
Nee G, Xiang Y, Soppe W J. The release of dormancy, a wake-up call for seeds to germinate. Curr Opin Plant Biol, 2017, 35: 8-14.
doi: S1369-5266(16)30133-9 pmid: 27710774 |
[11] |
Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2007, 15: 281-307.
doi: 10.1079/SSR2005218 |
[12] |
Zhang M, Zeng Q, Liu H, Qi F, Sun Z, Miao L, Li X, Li C, Liu D, Guo J, Zhang M, Xu J, Shi L, Tian M, Dong W, Huang B, Zhang X. Identification of a stable major QTL for fresh-seed germination on chromosome Arahy. 04 in cultivated peanut (Arachis hypogaea L.). Crop J, 2022, 10: 1767-1773.
doi: 10.1016/j.cj.2022.03.012 |
[13] | 郝西, 张俊, 刘娟, 臧秀旺, 董文召, 汤丰收. 不同花生品种种子休眠性鉴定. 种子, 2018, 37(8): 1-3. |
Hao X, Zhang J, Liu J, Zang X W, Dong W Z, Tang F S. Identification of seed dormancy of diffident varieties. Seed, 2018, 37(8): 1-3. (in Chinese with English abstract) | |
[14] | 任明刚, 何大智, 冯明友, 李婵, 杨如英, 张超, 穆航. 贵州78份地方花生品种的休眠性及相关分析. 种子, 2020, 39(11): 55-58. |
Ren M G, He D Z, Feng M Y, Li C, Yang R Y, Zhang C, Mu H. Dormancy and correlation analysis of 78 local peanut varieties in Guizhou. Seed, 2020, 39(11): 55-58 (in Chinese with English abstract). | |
[15] |
Xie K, Bai J, Yang Y Y, Duan N B, Ma Y M, Guo T, Yao F Y, Ding H F. The RNA-seq transcriptome analysis identified genes related to rice seed dormancy. Biol Plant, 2019, 63: 308-313.
doi: 10.32615/bp.2019.035 |
[16] | Han Z, Wang B, Tian L, Wang S, Zhang J, Guo S, Zhang H, Xu L, Chen Y. Comprehensive dynamic transcriptome analysis at two seed germination stages in maize (Zea mays L.). Physiol Plant, 2020, 168: 205-217. |
[17] |
Li X, Qiao H, Wang Z, Han B, Xing Y, Yang Y. A Comparative transcriptome analysis reveals new insights into pre-harvest sprouting (PHS) in wheat. Res Square, 2021, DOI: 10.21203/rs.3.rs-910461/v1.
doi: 10.21203/rs.3.rs-910461/v1 |
[18] |
Park M, Choi W, Shin S Y, Moon H, Lee D, Gho Y S, Jung K H, Jeon J S, Shin C. Identification of genes and microRNAs affecting pre-harvest sprouting in rice(Oryza sativa L.)by transcriptome and small RNAome analyses. Front Plant Sci, 2021, 12: 727302.
doi: 10.3389/fpls.2021.727302 |
[19] | Xu P, Tang G, Cui W, Chen G, Ma C L, Zhu J, Li P, Shan L, Liu Z, Wan S. Transcriptional differences in peanut (Arachis hypogaea L.)seeds at the freshly harvested, after-ripening and newly germinated seed stages: insights into the regulatory networks of seed dormancy release and germination. PLoS One, 2020, 15: e0219413. |
[20] |
Zhang J, Qian J Y, Bian Y H, Liu X, Wang C L. Transcriptome and metabolite conjoint analysis reveals the seed dormancy release process in Callery Pear. Int J Mol Sci, 2022, 23: 2186.
doi: 10.3390/ijms23042186 |
[21] |
Tai L, Wang H J, Xu X J, Sun W H, Ju L, Liu W T, Li W Q, Sun J, Chen K M. Pre-harvest sprouting in cereals: genetic and biochemical mechanisms. J Exp Bot, 2021, 72: 2857-2876.
doi: 10.1093/jxb/erab024 pmid: 33471899 |
[22] |
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballen-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019, 51: 877-884.
doi: 10.1038/s41588-019-0405-z pmid: 31043755 |
[23] |
Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7: 191.
pmid: 16597342 |
[24] |
Liu D, Yu H L, Li F L, Guo H H. An analysis of dormancy and dormancy release in Taxus chinensis var. mairei seeds. Seed Sci Technol, 2011, 39: 29-43.
doi: 10.15258/sst |
[25] |
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe W J. Molecular mechanisms of seed dormancy. Plant Cell Environ, 2012, 35: 1769-1786.
doi: 10.1111/pce.2012.35.issue-10 |
[26] |
Ali-Rachedi S, Bouinot D, Wagner M H, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479-488.
doi: 10.1007/s00425-004-1251-4 pmid: 15060827 |
[27] |
Cadman C S, Toorop P E, Hilhorst H W, Finch-Savage W E. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J, 2006, 46: 805-822.
doi: 10.1111/tpj.2006.46.issue-5 |
[28] |
Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501-523.
doi: 10.1111/j.1469-8137.2006.01787.x pmid: 16866955 |
[29] | 崔维佩, 唐桂英, 徐平丽, 李鹏祥, 朱洁琼, 单雷. 花生种子萌发过程中内源激素含量的变化. 中国油料作物学报, 2020, 42: 869-877. |
Cui W P, Tang G Y, Xu P L, Li P X, Zhu J Q, Shan L. Changes of endogenous hormone content in peanut seeds during germination. Chin J Oil Crop Sci, 2020, 42: 869-877. (in Chinese with English abstract) | |
[30] |
Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta, 2000, 210: 279-285.
doi: 10.1007/PL00008135 pmid: 10664134 |
[31] |
Shu K, Liu X D, Xie Q, He Z H. Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant, 2016, 9: 34-45.
doi: S1674-2052(15)00356-1 pmid: 26343970 |
[32] |
Yang B, Cheng J, Wang J, Cheng Y, He Y, Zhang H, Wang Z. Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regul, 2019, 89: 131-141.
doi: 10.1007/s10725-019-00516-z |
[33] |
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 2001, 25: 295-303.
pmid: 11208021 |
[34] |
Lee S, Cheng H, King K E, Wang W, He Y, Hussain A, Lo J, Harberd N P, Peng J. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev, 2002, 16: 646-658.
doi: 10.1101/gad.969002 |
[35] |
Ramaih S, Guedira M, Paulsen G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat. Funct Plant Biol, 2003, 30: 939-945.
doi: 10.1071/FP03113 pmid: 32689078 |
[36] |
Bai B, Novak O, Ljung K, Hanson J, Bentsink L. Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. New Phytol, 2018, 217: 1077-1085.
doi: 10.1111/nph.14885 pmid: 29139127 |
[37] |
Pellizzaro A, Neveu M, Lalanne D, Vu B L, Kanno Y, Seo M, Leprince O, Buitink J. A role for auxin signaling in the acquisition of longevity during seed maturation. New Phytol, 2020, 225: 284-296.
doi: 10.1111/nph.16150 pmid: 31461534 |
[38] |
Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol, 2009, 50: 1786-1800.
doi: 10.1093/pcp/pcp121 pmid: 19713425 |
[39] |
Ayele B T, Ozga J A, Wickramarathna A D, Reinecke D M. Gibberellin metabolism and transport during germination and young seedling growth of pea (Pisum sativum L.). J Plant Growth Regul, 2011, 31: 235-252.
doi: 10.1007/s00344-011-9234-8 |
[40] |
Liu A, Gao F, Kanno Y, Jordan M C, Kamiya Y, Seo M, Ayele B T. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling. PLoS One, 2013, 8: e56570.
doi: 10.1371/journal.pone.0056570 |
[41] |
Fait A, Angelovici R, Less H, Ohad I, Urbanczyk-Wochniak E, Fernie A R, Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant Physiol, 2006, 142: 839-854.
doi: 10.1104/pp.106.086694 |
[42] |
Rosental L, Nonogaki H, Fait A. Activation and regulation of primary metabolism during seed germination. Seed Sci Res, 2014, 24: 1-15.
doi: 10.1017/S0960258513000391 |
[43] |
Pandey M K, Pandey A K, Kumar R, Nwosu C V, Guo B, Wright G C, Bhat R S, Chen X, Bera S K, Yuan M, Jiang H, Faye I, Radhakrishnan T, Wang X, Liang X, Liao B, Zhang X, Varshney R K, Zhuang W. Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet, 2020, 133: 1679-1702.
doi: 10.1007/s00122-020-03592-2 pmid: 32328677 |
[44] | Ullrich S E. Barley: Production, Improvement, and Uses. Chichester: John Wiley & Sons, 2010. p 137. |
[45] |
Bryan A, Joseph L, Bennett J A, Jacobson H I, Andersen T T. Design and synthesis of biologically active peptides: a ‘tail’ of amino acids can modulate activity of synthetic cyclic peptides. Peptides, 2011, 32: 2504-2510.
doi: 10.1016/j.peptides.2011.10.007 |
[46] |
Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt J G, Fincher G B, Matsumoto T, Takeda K, Komatsuda T. Alanine aminotransferase controls seed dormancy in barley. Nat Commun, 2016, 7: 11625.
doi: 10.1038/ncomms11625 pmid: 27188711 |
[47] |
McClung C R. Plant circadian rhythms. Plant Cell, 2006, 18: 792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397 |
[48] |
Penfield S, Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell, 2009, 21: 1722-1732.
doi: 10.1105/tpc.108.064022 pmid: 19542296 |
[1] | HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504. |
[2] | HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432. |
[3] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[4] | CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132. |
[5] | HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104. |
[6] | LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170. |
[7] | LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817. |
[8] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[9] | TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230. |
[10] | SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954. |
[11] | JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876. |
[12] | LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471. |
[13] | ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties’ leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716. |
[14] | GUO Jian-Bin, CHENG Liang-Qiang, LI Wei-Tao, LIU Nian, LUO Huai-Yong, DING Ying-Bin, YU Bo-Lun, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut [J]. Acta Agronomica Sinica, 2023, 49(10): 2698-2704. |
[15] | ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248. |
|