Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2412-2432.doi: 10.3724/SP.J.1006.2023.24228

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq

HU Xin(), LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long()   

  1. Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences / Yunnan Key Laboratory of Sugarcane Genetic Improvement / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs (Yunnan), Kaiyuan 661699, Yunnan, China
  • Received:2022-10-12 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-10
  • Supported by:
    Yunnan Fundamental Research Projects(2019FA016);Yunnan Fundamental Research Projects(202201AU070200);Yunnan Seeds and Seed Industry Joint Laboratory Project(202205AR070001-09)

Abstract:

Sugarcane smut, caused by the fungus Sporisorium scitamineum, is the most challenging disease of sugarcane, causing significant losses in cane yield. There is a dearth of information on smut resistance mechanism in elite parents for the development of smut-resistant varieties. In the present study, we adopted joint Illumina- and Single Molecule Real-Time (SMRT)-based RNA-seq analysis to identify transcript expression in an smut-resistant and -susceptible parents (ROC25 and ROC22) infected with S. scitamineum. A total of 79,885 high-quality transcripts was obtained, including 60,115 open reading frames, 3692 alternate splicing isoforms, 1799 long non-coding RNAs, 29,139 simple sequence repeats, and 7794 transcription factors. About 92.72% of the total transcripts were annotated, which should have increased the available data amount for transcriptome profile analysis. There were 2033 and 9716 differentially expressed transcripts (DETs) in ROC22 and ROC25, respectively. The analyses of GO and KEGG enrichment showed that more GO terms and KEGG pathways were observed in ROC25 than ROC22. It was found that MAPK signalling pathway-plant, phenylpropanoid biosynthesis, plant-pathogen interaction, linoleic acid metabolism, and starch and sucrose metabolism were enriched both in resistant and susceptible parents. In addition, MAPK superfamily genes were differentially regulated in different parents, more DETs of MEKK1 and MKK4 were detected in resistant parent, and the relative expression levels of MKK5, MPK10, and MPK12 genes were specifically altered in resistant parent. It suggested that MAPK superfamily genes might play the important roles in the regulation of sugarcane response to S. scitamineum infection. Moreover, lots of transcription factors (TFs) associated with plant disease resistance were found to respond to S. scitamineum infection in both ROC22 and ROC25 parents, including WRKY, MYB, NAC, and AP2/ERF-ERF. Majority of the TFs were up-regulated. Compared to the susceptible ROC22 parent, the number of activated transcription factors in the resistant ROC25 parent was higher, indicating that these extra TFs might have positive effects in the defense against S. scitamineum. This study provides a comprehensive set of reference transcripts for sugarcane and thus increases our understanding on the interactions between sugarcane and S. scitamineum, which should be helpful in guiding on exploitation and utilization of smut-resistance gene resources.

Key words: sugarcane, Sporisorium scitamineum, full-length transcriptomes, RNA-seq, ROC

Table 1

Sporisorium scitamineum inoculation design and sampling for RNA-seq"

品种
Variety
处理方式
Treatment
接种后天数
Days after inoculation (d)
样品编号
Samples no.
生物重复样品编号
Number of biological duplicate
sample
ROC25 黑穗病孢子侵染S. scitamineum inoculation 5 RS5d RS5dR1, RS5dR2, RS5dR3
黑穗病孢子侵染S. scitamineum inoculation 8 RS8d RS8dR1, RS8dR2, RS8dR3
黑穗病孢子侵染S. scitamineum inoculation 11 RS11d RS11dR1, RS11dR2, RS11dR3
清水处理Water inoculation 5 RW5d RW5dR1, RW5dR2, RW5dR3
清水处理Water inoculation 8 RW8d RW8dR1, RW8dR2, RW8dR3
清水处理Water inoculation 11 RW11d RW11dR1, RW11dR2, RW11dR3
ROC22 黑穗病孢子侵染S. scitamineum inoculation 5 SS5d SS5dR1, SS5dR1, SS5dR2
黑穗病孢子侵染S. scitamineum inoculation 8 SS8d SS8dR1, SS8dR1, SS8dR2
黑穗病孢子侵染S. scitamineum inoculation 11 SS11d SS11dR1, SS11dR1, SS11dR2
清水处理Water inoculation 5 SW5d SW5dR1, SW5dR2, SW5dR3
清水处理Water inoculation 8 SW8d SW8dR1, SW8dR2, SW8dR3
清水处理Water inoculation 11 SW11d SW11dR1, SW11dR2, SW11dR3

Table 2

Primer sequences for real-time fluorescence quantitative PCR"

基因编号
Gene ID
正向引物序列
Forward sequences (5°-3')
反向引物序列
Reverse sequences (5°-3')
25S RNA-1 ATAACCGCATCAGGTCTCCAAG CCTCAGAGCCAATCCTTTTCC
25S RNA-2 GCAGCCAAGCGTTCATAGC CCTATTGGTGGGTGAACAATCC
GAPDH CACGGCCACTGGAAGCA TCCTCAGGGTTCCTGATGCC
actin CTGGAATGGTCAAGGCTGGT TCCTTCTGTCCCATCCCTACC
tubulin CCAAGTTCTGGGAGGTGATCTG TTGTAGTAGACGTTGATGCGCTC
F01_transcript_48016 CGAATCCGAACTACTTTAACCCC GTAGTCCTTGCCCTCCTTCGTC
F01_transcript_95850 TTCTACAATGGACCAGCGATG ACGGTACAGGGAACGCTCTAAT
F01_transcript_47889 AGGACCAGTGGAAGGAGACGG TGACCCTGCTGACGCCTCTTG
F01_transcript_100210 CACCACTACTGCTCTTCCTCCCC GAGCTGTAGCCGAAGCGAGAC
F01_transcript_114120 GCACGCACAAGTCAGACCAGG GATGAGCGGGATCGTCGAGGG
F01_transcript_122916 CCACCTGTGATGAGCATGAAGA GGGTCCTGCATCCACTCCTG
F01_transcript_36883 GGGGATAAGGTGCTGGTGGT CTTCTCCCTGGACGAGTGCC
F01_transcript_4165 TCAAGCACAAACGACGAATAGT CCCTGACCACCTTCTCCAATG
F01_transcript_102327 TGAATGAAGCCCTGCGAGAA TTGTGATGCTGAGCCTGGTG
F01_transcript_106895 GGAGACCGGGAACACTGACCTG CGAAGAACGTGCTGCATGGGT
F01_transcript_116870 CCGATGTCCATGTTCGGGATG CGAGCGTGCTGCCGTTGTAG
F01_transcript_123150 TACCTCCGACCACTCTTCTCC CTGTTCTGCCTTCCCACGAGA
F01_transcript_124105 ATGGGCAAACTTGGGACACTC GGCAAGAAGAGCACGAGAAGC
F01_transcript_124126 ATTGTCAAGGAGGCAAGAACC GCGAACCTCCCTAACCCTCTT
F01_transcript_21134 GACCGGGTGCCTGAAGAAGT GGCGTGTAGTAGTCGGCGTAG

Fig. 1

Read length of consensus isoform and assessing annotation completeness A: the read length of consensus isoform, the left Y-axis corresponds to the frequency distribution histogram of consensus isoform read length, and the right Y-axis corresponds to the cumulative frequency curve of consensus isoform read length. B: the assessment of sequence annotation completeness."

Fig. 2

Characteristics and structure analysis of the full-length transcripts in sugarcane A: the classification of AS cases; B: the overlap of long non-coding RNAs predicted by four different method; C: the classification of SSR types, c, p1, p2, p3, p4, p5, and p6 represent compound SSR, mono-nucleotide, di-nucleotide, tri-nucleotide, tetra-nucleotide, penta- nucleotide, and hexa-nucleotide, respectively. D: the length distribution of predicted protein; E: the top 20 types of predicted transcription factors."

Table 3

Annotation results of unique full-length transcripts based on different databases"

数据库名称
Annotated databases
转录本数目
Isoform number
占比
Proportion in total (%)
Nr 73,781 92.36
eggNOG 70,639 88.43
GO 62,274 77.95
Pfam 58,475 73.20
Swiss-Prot 51,974 65.06
KOG 39,415 49.34
KEGG 31,331 39.22
COG 25,455 31.86
All 74,066 92.72

Fig. 3

Annotation and classification of full-length transcripts in sugarcane A, B, and C indicate Nr, KEGG, and GO characteristics of the obtained transcripts, respectively."

Table 4

eggNOG annotation and classification of full-length transcripts"

eggNOG注释分类
eggNOG_class
频率
Frequency
占比
Proportion in total (%)
未知功能Function unknown 35,891 50.81
信号转导机制Signal transduction mechanisms 4924 6.97
翻译后修饰、蛋白质折叠和伴侣蛋白Posttranslational modification, protein turnover, and chaperones 4856 6.87
转录Transcription 3435 4.86
碳水化合物转运代谢Carbohydrate transport and metabolism 3117 4.41
胞内转运、分泌和小泡运输Intracellular trafficking, secretion, and vesicular transport 2447 3.46
氨基酸转运代谢Amino acid transport and metabolism 2223 3.15
复制、重组和修复Replication, recombination, and repair 2157 3.05
翻译、核糖体结构和生物合成Translation, ribosomal structure, and biogenesis 2128 3.01
脂肪转运代谢Lipid transport and metabolism 1328 1.88
能量生成和转换Energy production and conversion 1327 1.88
无机离子转运代谢Inorganic ion transport and metabolism 1201 1.70
细胞壁/膜/被膜的生物合成Cell wall/membrane/envelope biogenesis 1168 1.65
次级代谢物生物合成、转运和代谢Secondary metabolites biosynthesis, transport, and catabolism 915 1.30
细胞骨架Cytoskeleton 799 1.13
核苷酸转运和代谢Nucleotide transport and metabolism 584 0.83
辅酶转运和代谢Coenzyme transport and metabolism 552 0.78
RNA加工修饰RNA processing and modification 474 0.67
抵御机制Defense mechanisms 469 0.66
细胞周期控制、细胞分裂和染色体分裂Cell cycle control, cell division, and chromosome partitioning 317 0.45
染色质结构和动力学Chromatin structure and dynamics 288 0.41
细胞运动Cell motility 35 0.05
核酸结构Nuclear structure 4 0.01

Fig. 4

Correlation analysis and principal component analysis of test samples from ROC22 and ROC25 in response to S. scitamineum infection or water infection A, B, C, and D indicate the correlation coefficient of test samples from ROC22 inoculated with water, ROC22 inoculated with S. scitamineum, ROC25 inoculated with water, and ROC25 inoculated with S. scitamineum, respectively. E and F indicate PCA diagram of ROC22 and ROC25 samples, respectively."

Fig. 5

Comparative analysis of differentially expressed transcripts (DETs) in ROC22 and ROC25 at different days after S. scitamineum infection A: the differentially expressed transcripts (DETs) in ROC22 and ROC25 at different days after S. scitamineum infection; B: the overlap of DEGs between ROC22 and ROC25."

Fig. 6

Validation of the transcriptomic data with quantitative RT-PCR in 15 transcripts 15 transcripts were used in this validation referring to Table 2. Fold changes of each RNA-seq expression data (FPKM value) and quantitative real-time PCR (2-ΔΔCt) between S. scitamineum inoculation group and water inoculation group were compared."

Fig. S1

Correlations between RNA-Seq and qRT-PCR"

Fig. 7

GO enrichment of differentially expressed transcripts in ROC22 and ROC25 varieties subsequent to S. scitamineum infection A and B indicate TOP20 GO enrichment terms of differentially expressed transcripts in ROC22 and ROC25, respectively. C, D, and E indicate comparison of biological processes (MP), cellular components (CC), and molecular functions (MF) in different varieties, respectively."

Fig. 8

KEGG pathway enrichment analysis of differentially expressed transcripts in ROC22 and ROC25 varieties subsequent to S. scitamineum infection A and B indicate TOP20 KEGG enrichment terms of differentially expressed transcripts in ROC22 and ROC25, respectively. C indicates comparison of KEGG pathways in different varieties."

Table 5

Differential expression of MAPK superfamily genes in responsive to S. scitamineum in ROC22 and ROC25"

转录本名称
Transcritp ID
基因名
Gene ID
log2 (FC)
SW5d-vs-SS5d SW8d-vs-SS8d SW11d-vs-SS11d RW5d-vs-RS5d RW8d-vs-RS8d RW11d-vs-RS11d
F01_transcript_115924 MEKK1 -0.1614 -0.0838 -0.2729 0.1979 1.1462** 0.1635
F01_transcript_120122 MEKK1 0.3479 -0.1157 0.0410 0.1525 1.1749** 0.0612
F01_transcript_41431 MEKK1 1.0244 -0.2638 -0.0968 0.6841 1.8470** 0.2169
F01_transcript_6191 MEKK1 0.3943 0.0512 0.1264 0.1595 1.3689** 0.1557
F01_transcript_68151 MEKK1 0.1510 0.3081 0.3105 0.2617 1.3543** 0.1533
F01_transcript_7538 MEKK1 0.1827 0.2544 -0.0911 0.1083 1.1495** 0.1818
F01_transcript_88331 MEKK1 0.2773 -0.0902 -0.0362 0.0474 1.1993** 0.1769
F01_transcript_23414 MEKK1 1.2139** -0.3284 0.2417 0.3994 0.9609** -0.8091
F01_transcript_62670 MKK5 0.4105 0.1947 -0.2444 0.7258* 1.3829** 0.1018
F01_transcript_66954 MKK5 0.5368 0.2693 -0.1905 0.5021 1.1541** 0.3214
F01_transcript_100608 MPK4 1.0335** 0.0591 0.2897 0.8256** 2.0799** -0.1261
F01_transcript_108403 MPK4 0.6234 0.0827 0.0487 0.2481 1.4680** -1.1494**
F01_transcript_124690 MPK4 0.5862 0.2034 -0.2955 0.0533 1.8433** -0.6117
F01_transcript_44325 MPK4 -0.0594 -0.0003 -0.0301 -0.0253 1.0736** -1.1649**
F01_transcript_50250 MPK4 0.3101 0.0442 0.0138 0.0402 1.2023** -1.0936**
F01_transcript_100187 MPK5 1.4254** 0.2182 0.4447 0.4336 2.6910** 0
F01_transcript_114847 MPK5 0.9429 0.5651 -0.5916 -0.2143 2.9083** -0.1926
F01_transcript_21269 MPK5 1.4307** 0.3602 0.0160 0.2160 2.4543** -1.0587*
F01_transcript_22098 MPK5 1.3170** 0.4901 -0.0618 0.2325 2.9756** -1.0525**
F01_transcript_50394 MPK5 0.9511 -0.0242 1.8625 0.7534 2.9206* -0.2538
F01_transcript_92541 MPK5 1.4680** 0.3570 0.1825 0.0913 2.5695** -1.3285*
F01_transcript_79030 MPK10 0.0748 0.1538 -0.0760 0.6273* 1.1745** 0.2728
F01_transcript_103525 MPK12 0.9006 -0.0089 0.9832 0.4093 2.3050** -1.4729
F01_transcript_110871 MPK12 0.6251 0.5034 0.0290 0.6422 2.5462** 0.5090
F01_transcript_55631 MPK12 0.6746 0.4856 0.6111 0.4327 1.9302** -0.0233
F01_transcript_6660 MPK12 0.2403 0.1333 -0.0408 0.1689 1.4939** -0.3976
F01_transcript_6996 MPK12 -0.1050 0.3137 -0.6515 0.2966 1.6429** -0.3540
F01_transcript_72629 MPK12 0.3551 -0.2691 1.1131 0.6586 1.8283** -0.5795
F01_transcript_98181 MPK12 1.2283 0.2168 -0.6781 0.3370 3.3959* -1.3219

Table 6

Dynamic expression of resistance-related transcription factor family genes in ROC22 and ROC25 after S. scitamineum infection"

转录因子家族Transcription factor family 检测出转录因子基因数Detected TF family number 差异表达的转录因子基因数
Number of differentially
expressed TF family genes
差异表达基因表达模式(上调/下调)
Dynamic expression patterns of differentially expressed TF family genes
(Up-regulated/Down-regulated)
ROC22 ROC25 共同
Shared
SW5d-vs-SS5d SW8d-vs-SS8d SW11d-vs-SS11d RW5d-vs-RS5d RW8d-vs-RS8d RW11d-vs-RS11d
AP2/ERF-ERF 34 7 23 6 7/0 0/0 0/0 6/0 12/4 9/4
MYB 24 4 13 3 3/0 0/0 1/0 0/0 4/4 5/4
NAC 25 12 16 10 11/1 0/0 0/0 1/0 10/0 10/1
WRKY 37 15 20 14 15/0 1/1 3/0 4/0 18/0 5/3
[1] Magarey R C, Bull J I, Sheahan T, Denney D, Bruce R C. Yield losses caused by sugarcane smut in several crops in Queensland. Proc Aust Soc Sugar Cane Technol, 2010, 32: 347-354.
[2] Sundar A R, Barnabas E L, Malathi P, Viswanathan R, Sundar A R, Barnabas E L. A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. Botany, 2012, 2014: 226.
[3] Magarey R C, Bull J I, Lonie K J, Piperidis G. The effect of smut resistance on disease incidence and severity under natural spread conditions. Proc Aust Soc Sugar Cane Technol, 2012, 34: 8.
[4] 王长秘, 李婕, 张荣跃, 王晓燕, 单红丽, 仓晓燕, 尹炯, 罗志明, 黄应昆. 甘蔗黑穗病研究进展. 中国糖料, 2021, 43(2): 65-70.
Wang C M, Li J, Zhang R Y, Wang X Y, Shan H L, Cang X Y, Ying J, Luo Z M, Huang Y K. Research progress of sugarcane smut disease. Sugar Crops Chin, 2021, 43(2): 65-70. (in Chinese with English abstract)
[5] Chao C, Hoy J, Saxton A, Martin F A. Heritability of resistance and repeatability of clone reactions to sugarcane smut in Louisiana. Phytopathology, 1990, 80: 622-626.
doi: 10.1094/Phyto-80-622
[6] 许莉萍, 陈如凯. 甘蔗黑穗病及其抗病育种的现状与展望. 福建农业学报, 2000, 15(2): 26-31.
Xu L P, Chen R K. Current status and prospects of smut and smut resistance breeding in sugarcane. Fujian J Agric Sci, 2000, 15(2): 26-31. (in Chinese with English abstract)
[7] Alexander K C, Ramakrishnan K. Infection of the bud, establishment in the host and production of whips in sugarcane smut (Ustilago scitaminea) of sugarcane. Proc Int Soc Sug Cane Technol, 1980, 17: 1452-1455.
[8] Aitken K S, Bhuiyan S, Berkman P J, Croft B, McNeil M. Investigation of the genetic mechanisms of resistance to smut in sugarcane. Proc Int Soc Sugar Cane Technol, 2013, 28: 968-977.
[9] Marques J P R, Appezzato-da-Glória B, Piepenbring M, Massola Jr N S, Monteiro-Vitorello C B, Vieira M L C. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Annals Bot, 2017, 119: 815-827.
[10] Rajput M A, Rajput N A, Syed R N, Lodhi A M, Que Y X. Sugarcane smut: current knowledge and the way forward for management. J Fungi, 2021, 7: 1095.
doi: 10.3390/jof7121095
[11] Dean L J. The effect of wounding and high-pressure spray inoculation on the smut reaction of sugarcane clones. Phytopathology, 1982, 72: 1023-1025.
doi: 10.1094/Phyto-72-1023
[12] Vitorello C B, Schaker P D C, Benevenuto J, Teixeira-Silva N S, Almeida S S. Progress in understanding fungal diseases affecting sugarcane:smut. In: Rott P, ed. Achieving Sustainable Cultivation of Sugarcane. Cambridge, UK: Burleigh Dodds Science Publishing, 2018. pp 221-243.
[13] Lloyd H L, Naidoo M. Chemical assay potentially suitable for determination of smut resistance of sugarcane cultivars. Plant Dis, 1983, 67: 1103-1105.
doi: 10.1094/PD-67-1103
[14] Fontaniella B, Marquez A, Rodriguez C W, Pinon D, Solas M T, Vicente C, Legaz M E. A role for sugarcane glycoproteins in the resistance of sugarcane to Ustilago scitaminea. Plant Physiol Biochem, 2002, 40: 881-889.
doi: 10.1016/S0981-9428(02)01443-2
[15] Millanes A M, Vicente C, Legaz M E. Sugarcane glycoproteins bind to surface, specific ligands and modify cytoskeleton arrangement of Ustilago scitaminea teliospores. J Plant Interact, 2008, 3: 95-110.
doi: 10.1080/17429140701861727
[16] Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS ONE, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476
[17] Peters L P, Carvalho G, Vilhena M B, Creste S, Azevedo R A, Monteiro-Vitorello C B. Functional analysis of oxidative burst in sugarcane smut-resistant and-susceptible genotypes. Planta, 2017, 245: 749-764.
doi: 10.1007/s00425-016-2642-z pmid: 28004180
[18] Peters L P, Teixeira-Silva N S, Bini A P, Silva M M L, Moraes N, Crestana G S, Monteiro-Vitorello C B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol, 2020, 124: 1039-1051.
doi: 10.1016/j.funbio.2020.09.009
[19] Schaker P D, Palhares A C, Taniguti L M, Peters L P, Creste S, Aitken K S, Van Sluys M A, Kitajima J P, Vieira M L, Monteiro-Vitorello C B. RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS One, 2016, 11: e0162237.
doi: 10.1371/journal.pone.0162237
[20] Schaker P D, Peters L P, Cataldi T R, Labate C A, Caldana C, Monteiro-Vitorello C B. Metabolome dynamics of smutted sugarcane reveals mechanisms involved in disease progression and whip emission. Front Plant Sci, 2017, 8: 882.
doi: 10.3389/fpls.2017.00882 pmid: 28620397
[21] Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics, 2016, 17: 800.
doi: 10.1186/s12864-016-3146-8
[22] Bhuiyan S A, Magarey R C, McNeil M D, Aitken K S. Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane: a contemporary review. Phytopathology, 2021, 111: 1905-1917.
doi: 10.1094/PHYTO-05-21-0221-RVW
[23] Wang D, Wang L, Su W, Ren Y, You C, Zhang C, Que Y, Su Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.
doi: 10.1038/s41598-020-78007-9 pmid: 33262418
[24] Huang N, Ling H, Zhang X, Mao H, Su Y, Su W, Liu F, Xu L, Chen R, Que Y. A small GTP-binding gene scran from sugarcane is involved in responses to various hormone stresses and Sporisirium scitamineum challenge. Sugar Technol, 2018, 20: 669-680.
doi: 10.1007/s12355-018-0598-y
[25] Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. Plant Cell Rep, 2020, 39: 1785-1801.
doi: 10.1007/s00299-020-02606-z
[26] Sun T, Liu F, Wang W, Wang L, Wang Z, Li J, Que Y, Xu L, Su Y. The role of sugarcane catalase gene ScCAT2 in the defense response to pathogen challenge and adversity stress. Int J Mol Sci, 2018, 19: 2686.
doi: 10.3390/ijms19092686
[27] Ren Y, Zou W, Feng J, Zhang C, Su W, Zhao Z, Wang D, Sun T, Wang W, Cen G, Que Y, Su Y. Characterization of the sugarcane MYC gene family and the negative regulatory role of ShMYC4 in response to pathogen stress. Ind Crop Prod, 2022, 176: 114292.
doi: 10.1016/j.indcrop.2021.114292
[28] 吴才文, 赵俊, 赵培方, 刘家勇, 杨昆, 夏红明, 昝逢刚. 几个新台糖甘蔗品种杂交育种潜力研究. 西南农业学报, 2010, 23: 1413-1417.
Wu C W, Zhao J, Zhao P F, Liu J Y, Yang K, Xia H M, Zan F G. Research on breeding potential of several ROC varieties in sugarcane. Southwest China J Agric Sci, 2010, 23: 1413-1417. (in Chinese with English abstract)
[29] 赵理贤, 肖雪, 陈悦佳, 刘丹丹, 黄有总, 邹承武, 陈保善. 33 份甘蔗种质资源的 ISSR 标记和遗传多样性. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1128.006.html.
Zhao L, Xiao X, Chen Y, Liu D, Huang Y, Zou C, Chen B. ISSR marker polymorphism and genetic diversity of 33 sugarcane germplasm resources. Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1128.006.html. (in Chinese with English abstract)
[30] 邓海华, 张琼. 我国大陆近年育成甘蔗品种的亲本分析. 广东农业科学, 2006, 12(2): 7-10.
Deng H H, Zhang Q. Analysis on the parents of commercial varieties released in Mainland China in recent years. Guangdong Agric Sci, 2006, 12(2): 7-10. (in Chinese with English abstract)
[31] 刘新龙, 李旭娟, 刘洪博, 马丽, 徐超华, 范源洪. 云南甘蔗常用亲本资源遗传多样性的SSR分析. 植物遗传资源学报, 2015, 16: 1212-1222.
Liu X L, Li X J, Liu H B, Ma L, Xu C H, Fan Y H. Genetic diversity analysis of Yunnan commonly-used parents by using SSR marker. J Plant Genet Resour, 2015, 16: 1212-1222. (in Chinese with English abstract)
[32] 沈万宽, 姜子德, 杨湛端, 刘睿, 陈健文, 邓海华. 甘蔗抗黑穗病的鉴定新方法及其品种抗性评价. 华中农业大学学报, 2014, 33(2): 51-56.
Shen W K, Jiang Z D, Yang Z D, Liu R, Chen J W, Deng H H. New resistance identification method and resistance evaluation of sugarcane varieties to smut disease. J China Agric Univ, 2014, 33(2): 51-56. (in Chinese with English abstract)
[33] 阙友雄, 许莉萍, 林剑伟, 陈天生, 陈如凯, 李依龙. 甘蔗品种黑穗病抗性评价体系的建立(英文). 植物遗传资源学报, 2006, 7: 18-23.
Que Y X, Xu L P, Lin J W, Chen T S, Chen R K, Li Y L. Establishment of evaluation system of smut resistance for sugarcane varieties. J Plant Genet Resour, 2006, 7: 18-23.
[34] 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文,福建福州, 2014.
Su Y C. Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014. (in Chinese with English abstract)
[35] Thomas S, Underwood J G, Tseng E, Holloway A K. Long-read sequencing of chicken transcripts and identification of new transcript isoforms. PLoS ONE, 2014, 9: e94650.
doi: 10.1371/journal.pone.0094650
[36] Hackl T, Hedrich R, Schultz J, Förster F. Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics, 2014, 30: 3004-3011.
doi: 10.1093/bioinformatics/btu392 pmid: 25015988
[37] Li W Z, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22: 1658-1659.
doi: 10.1093/bioinformatics/btl158 pmid: 16731699
[38] Simão F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015, 31: 3210-3212.
doi: 10.1093/bioinformatics/btv351 pmid: 26059717
[39] Liu X, Mei W, Soltis P S, Soltis D E, Barbazuk W B. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol Ecol Resour, 2017, 17: 1243-1256.
doi: 10.1111/1755-0998.12670 pmid: 28316149
[40] Kong L, Zhang Y, Ye Z Q, Liu X Q, Zhao S Q, Wei L, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007, 35: 345-349.
pmid: 17631615
[41] Wang L, Park H J, Dasari S, Wang S, Kocher J P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res, 2013, 41: e74.
doi: 10.1093/nar/gkt006
[42] Zheng Y, Jiao C, Sun H, Rosli H G, Pombo M A, Zhang P, Banf M, Dai X, Martin G B, Giovannoni J J, Zhao P X, Rhee S Y, Fei Z. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant, 2016, 9: 1667-1670.
doi: S1674-2052(16)30223-4 pmid: 27717919
[43] Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras, T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 pmid: 23104886
[44] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf, 2011, 12: 323.
doi: 10.1186/1471-2105-12-323
[45] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106
[46] 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30(3): 274-278.
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crops, 2009, 30(3): 274-278. (in Chinese with English abstract)
[47] Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol, 2011, 157: 804-814.
doi: 10.1104/pp.111.174003 pmid: 21803860
[48] 杨洪强, 接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报, 2003, 33: 8-13.
Yang H Q, Jie Y L. The plant MAPK and its function in pathogen signaling cascades. Acta Phytopathol Sin, 2003, 33: 8-13. (in Chinese with English abstract)
[49] Gordon S P, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev I V, Figueroa M, Schilling J S, Chen F, Wang Z. Widespread polycistronic transcripts in fungi revealed by Single-Molecule mRNA Sequencing. PLoS ONE, 2015, 10: e0132628.
doi: 10.1371/journal.pone.0132628
[50] Abdel-Ghany S E, Hamilton M, Jacobi J L, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy A S. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun, 2016, 7: 11706.
doi: 10.1038/ncomms11706 pmid: 27339290
[51] Vicente C, Legaz M E, Sánchez-Elordi E. Physiological basis of smut infectivity in the early stages of sugar cane colonization. J Fungi, 2021, 7: 44.
doi: 10.3390/jof7010044
[52] Peters L P, Teixeira-Silva N S, Bini A P, Silva M M L, Moraes N, Crestana G S, Creste S, Azevedo R A, Carvalho G, Monteiro-Vitorello C B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol, 2020, 124: 1039-1051.
doi: 10.1016/j.funbio.2020.09.009
[53] Ferreira S A, Comstock J C, Wu K K. Evaluating sugarcane for smut resistance. Proc Int Soc Sugarcane Technol, 1980, 17: 1463-1476.
[54] Marques J P R, Hoy J W, Appezzato-da-Glória B, Viveros A F G, Vieira M L C, Baisakh N. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Front Plant Sci, 2018, 9: 698.
doi: 10.3389/fpls.2018.00698 pmid: 29875793
[55] Dhar M K, Mishra S, Bhat A, Chib S, Kaul S. Plant carotenoid cleavage oxygenases: structure-function relationships and role in development and metabolism. Brie Funct Genomics, 2020, 19: 37.
[56] Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen- activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79: 143-180.
doi: 10.1152/physrev.1999.79.1.143 pmid: 9922370
[57] Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23: 1639-1653.
doi: 10.1105/tpc.111.084996
[58] Fu S F, Chou W C, Huang D D, Huang H J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol, 2002, 43: 958-963.
doi: 10.1093/pcp/pcf111
[59] Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 2003, 300: 775-783.
doi: 10.1016/S0006-291X(02)02868-1
[60] Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot, 2014, 65: 5795-5809.
doi: 10.1093/jxb/eru313 pmid: 25071223
[61] Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J, 2010, 63: 599-612.
doi: 10.1111/j.1365-313X.2010.04264.x
[62] Song F, Goodman R M. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta, 2002, 215: 997-1005.
pmid: 12355160
[63] Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857
[64] Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530
[65] Wu Q, Xu L, Guo J, Su Y, Que Y. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. BioMed Res Int, 2013, 2013: 9.
[66] Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 2005, 10: 339-346.
doi: 10.1016/j.tplants.2005.05.009 pmid: 15953753
[67] Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961-1972.
pmid: 12913152
[68] Koo S C, Moon B C, Kim J K, Kim C Y, Sung S J, Kim M C, Cho M J, Cheong Y H. OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Biophys Res Commun, 2009, 387: 365-370.
doi: 10.1016/j.bbrc.2009.07.026
[69] Ning J, Yuan B, Xie K B, Hu H H, Wu C Q, Xiong L Z. Isolation and identification of SA and JA inducible protein kinase gene OsSJMK1 in rice. Acta Genet Sin, 2006, 33: 625-633.
doi: 10.1016/S0379-4172(06)60092-9
[70] Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao S J. Transcription factors in plant stress responses: challenges and potential for sugarcane improvement. Plants, 2020, 9: 491.
doi: 10.3390/plants9040491
[71] Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L. The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci, 2017, 36: 311-335.
doi: 10.1080/07352689.2018.1441103
[72] Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopath Res, 2019, 1: 3.
doi: 10.1186/s42483-018-0008-0
[73] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[74] Zang Z, Lyu Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci, 2020, 11: 850.
doi: 10.3389/fpls.2020.00850
[75] Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Front Plant Sci, 2017, 8: 299.
[76] Hawku M D, Goher F, Islam M A, Guo J, He F, Bai X, Yuan P, Kang Z, Guo J. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci, 2021, 22: 2080.
[77] Ji S, Liu Z, Wang Y. Trichoderma-induced ethylene responsive factor MsERF105 mediates defense responses in Malus sieversii. Front Plant Sci, 2021, 12: 708010.
doi: 10.3389/fpls.2021.708010
[78] He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci USA, 2020, 117: 271-277.
doi: 10.1073/pnas.1902771116 pmid: 31848246
[79] Zhu X, Li X, He Q, Guo D, Liu C, Cao J, Wu Z, Kang Z, Wang X. TaMYB29: a novel R2R3-MYB transcription factor involved in wheat defense against stripe rust. Front Plant Sci, 2021, 12: 783388.
doi: 10.3389/fpls.2021.783388
[80] Gu K D, Zhang Q Y, Yu J Q, Wang J H, Zhang F J, Wang C K, Zhao Y W, Sun C H, You C X, Hu D G, Hao Y J. R2R3-MYB transcription factor MdMYB73 confers increased resistance to the fungal pathogen Botryosphaeria dothidea in apples via the salicylic acid pathway. J Agric Food Chem, 2021, 69: 447-458.
doi: 10.1021/acs.jafc.0c06740
[81] Shan T, Rong W, Xu H, Du L, Liu X, Zhang Z. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep, 2016, 6: 28777.
doi: 10.1038/srep28777
[82] Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017, 45: D1040-D1045.
doi: 10.1093/nar/gkw982
[83] Agisha V N, Ashwin N M R, Vinodhini R T, Nalayeni K, Ramesh S A, Malathi P, Viswanathan R. Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. Front Plant Sci, 2022, 13: 969826.
doi: 10.3389/fpls.2022.969826
[84] Wang L, Liu F, Zhang X, Wang W, Sun T, Chen Y, Dai M, Yu S, Xu L, Su Y, Que Y. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.
doi: 10.3390/ijms19124059
[1] DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397.
[2] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[3] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[4] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[5] LU Meng-Qi, XIE Ruo-Han, LI Xiang, YANG Ming-Chong, HE Zi-Wei, GAO Jie, ZHAO Xiao-Yan, SHEN Xiang-Ling, CHEN Yan, WANG Ji-Bin, HU Li-Hua, DUAN Ming-Zheng, WANG Ling-Qiang. Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum [J]. Acta Agronomica Sinica, 2023, 49(7): 1954-1967.
[6] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[7] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[8] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties’ leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[9] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng . Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[10] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[11] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[12] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[13] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[14] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[15] GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .