Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2412-2432.doi: 10.3724/SP.J.1006.2023.24228
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
HU Xin(), LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long()
[1] | Magarey R C, Bull J I, Sheahan T, Denney D, Bruce R C. Yield losses caused by sugarcane smut in several crops in Queensland. Proc Aust Soc Sugar Cane Technol, 2010, 32: 347-354. |
[2] | Sundar A R, Barnabas E L, Malathi P, Viswanathan R, Sundar A R, Barnabas E L. A mini-review on smut disease of sugarcane caused by Sporisorium scitamineum. Botany, 2012, 2014: 226. |
[3] | Magarey R C, Bull J I, Lonie K J, Piperidis G. The effect of smut resistance on disease incidence and severity under natural spread conditions. Proc Aust Soc Sugar Cane Technol, 2012, 34: 8. |
[4] | 王长秘, 李婕, 张荣跃, 王晓燕, 单红丽, 仓晓燕, 尹炯, 罗志明, 黄应昆. 甘蔗黑穗病研究进展. 中国糖料, 2021, 43(2): 65-70. |
Wang C M, Li J, Zhang R Y, Wang X Y, Shan H L, Cang X Y, Ying J, Luo Z M, Huang Y K. Research progress of sugarcane smut disease. Sugar Crops Chin, 2021, 43(2): 65-70. (in Chinese with English abstract) | |
[5] |
Chao C, Hoy J, Saxton A, Martin F A. Heritability of resistance and repeatability of clone reactions to sugarcane smut in Louisiana. Phytopathology, 1990, 80: 622-626.
doi: 10.1094/Phyto-80-622 |
[6] | 许莉萍, 陈如凯. 甘蔗黑穗病及其抗病育种的现状与展望. 福建农业学报, 2000, 15(2): 26-31. |
Xu L P, Chen R K. Current status and prospects of smut and smut resistance breeding in sugarcane. Fujian J Agric Sci, 2000, 15(2): 26-31. (in Chinese with English abstract) | |
[7] | Alexander K C, Ramakrishnan K. Infection of the bud, establishment in the host and production of whips in sugarcane smut (Ustilago scitaminea) of sugarcane. Proc Int Soc Sug Cane Technol, 1980, 17: 1452-1455. |
[8] | Aitken K S, Bhuiyan S, Berkman P J, Croft B, McNeil M. Investigation of the genetic mechanisms of resistance to smut in sugarcane. Proc Int Soc Sugar Cane Technol, 2013, 28: 968-977. |
[9] | Marques J P R, Appezzato-da-Glória B, Piepenbring M, Massola Jr N S, Monteiro-Vitorello C B, Vieira M L C. Sugarcane smut: shedding light on the development of the whip-shaped sorus. Annals Bot, 2017, 119: 815-827. |
[10] |
Rajput M A, Rajput N A, Syed R N, Lodhi A M, Que Y X. Sugarcane smut: current knowledge and the way forward for management. J Fungi, 2021, 7: 1095.
doi: 10.3390/jof7121095 |
[11] |
Dean L J. The effect of wounding and high-pressure spray inoculation on the smut reaction of sugarcane clones. Phytopathology, 1982, 72: 1023-1025.
doi: 10.1094/Phyto-72-1023 |
[12] | Vitorello C B, Schaker P D C, Benevenuto J, Teixeira-Silva N S, Almeida S S. Progress in understanding fungal diseases affecting sugarcane:smut. In: Rott P, ed. Achieving Sustainable Cultivation of Sugarcane. Cambridge, UK: Burleigh Dodds Science Publishing, 2018. pp 221-243. |
[13] |
Lloyd H L, Naidoo M. Chemical assay potentially suitable for determination of smut resistance of sugarcane cultivars. Plant Dis, 1983, 67: 1103-1105.
doi: 10.1094/PD-67-1103 |
[14] |
Fontaniella B, Marquez A, Rodriguez C W, Pinon D, Solas M T, Vicente C, Legaz M E. A role for sugarcane glycoproteins in the resistance of sugarcane to Ustilago scitaminea. Plant Physiol Biochem, 2002, 40: 881-889.
doi: 10.1016/S0981-9428(02)01443-2 |
[15] |
Millanes A M, Vicente C, Legaz M E. Sugarcane glycoproteins bind to surface, specific ligands and modify cytoskeleton arrangement of Ustilago scitaminea teliospores. J Plant Interact, 2008, 3: 95-110.
doi: 10.1080/17429140701861727 |
[16] |
Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-seq. PLoS ONE, 2014, 9: e106476.
doi: 10.1371/journal.pone.0106476 |
[17] |
Peters L P, Carvalho G, Vilhena M B, Creste S, Azevedo R A, Monteiro-Vitorello C B. Functional analysis of oxidative burst in sugarcane smut-resistant and-susceptible genotypes. Planta, 2017, 245: 749-764.
doi: 10.1007/s00425-016-2642-z pmid: 28004180 |
[18] |
Peters L P, Teixeira-Silva N S, Bini A P, Silva M M L, Moraes N, Crestana G S, Monteiro-Vitorello C B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol, 2020, 124: 1039-1051.
doi: 10.1016/j.funbio.2020.09.009 |
[19] |
Schaker P D, Palhares A C, Taniguti L M, Peters L P, Creste S, Aitken K S, Van Sluys M A, Kitajima J P, Vieira M L, Monteiro-Vitorello C B. RNAseq transcriptional profiling following whip development in sugarcane smut disease. PLoS One, 2016, 11: e0162237.
doi: 10.1371/journal.pone.0162237 |
[20] |
Schaker P D, Peters L P, Cataldi T R, Labate C A, Caldana C, Monteiro-Vitorello C B. Metabolome dynamics of smutted sugarcane reveals mechanisms involved in disease progression and whip emission. Front Plant Sci, 2017, 8: 882.
doi: 10.3389/fpls.2017.00882 pmid: 28620397 |
[21] |
Su Y, Xu L, Wang Z, Peng Q, Yang Y, Chen Y, Que Y. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics, 2016, 17: 800.
doi: 10.1186/s12864-016-3146-8 |
[22] |
Bhuiyan S A, Magarey R C, McNeil M D, Aitken K S. Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane: a contemporary review. Phytopathology, 2021, 111: 1905-1917.
doi: 10.1094/PHYTO-05-21-0221-RVW |
[23] |
Wang D, Wang L, Su W, Ren Y, You C, Zhang C, Que Y, Su Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.
doi: 10.1038/s41598-020-78007-9 pmid: 33262418 |
[24] |
Huang N, Ling H, Zhang X, Mao H, Su Y, Su W, Liu F, Xu L, Chen R, Que Y. A small GTP-binding gene scran from sugarcane is involved in responses to various hormone stresses and Sporisirium scitamineum challenge. Sugar Technol, 2018, 20: 669-680.
doi: 10.1007/s12355-018-0598-y |
[25] |
Sun T, Cen G, You C, Lou W, Wang Z, Su W, Wang W, Li D, Que Y, Su Y. ScAOC1, an allene oxide cyclase gene, confers defense response to biotic and abiotic stresses in sugarcane. Plant Cell Rep, 2020, 39: 1785-1801.
doi: 10.1007/s00299-020-02606-z |
[26] |
Sun T, Liu F, Wang W, Wang L, Wang Z, Li J, Que Y, Xu L, Su Y. The role of sugarcane catalase gene ScCAT2 in the defense response to pathogen challenge and adversity stress. Int J Mol Sci, 2018, 19: 2686.
doi: 10.3390/ijms19092686 |
[27] |
Ren Y, Zou W, Feng J, Zhang C, Su W, Zhao Z, Wang D, Sun T, Wang W, Cen G, Que Y, Su Y. Characterization of the sugarcane MYC gene family and the negative regulatory role of ShMYC4 in response to pathogen stress. Ind Crop Prod, 2022, 176: 114292.
doi: 10.1016/j.indcrop.2021.114292 |
[28] | 吴才文, 赵俊, 赵培方, 刘家勇, 杨昆, 夏红明, 昝逢刚. 几个新台糖甘蔗品种杂交育种潜力研究. 西南农业学报, 2010, 23: 1413-1417. |
Wu C W, Zhao J, Zhao P F, Liu J Y, Yang K, Xia H M, Zan F G. Research on breeding potential of several ROC varieties in sugarcane. Southwest China J Agric Sci, 2010, 23: 1413-1417. (in Chinese with English abstract) | |
[29] | 赵理贤, 肖雪, 陈悦佳, 刘丹丹, 黄有总, 邹承武, 陈保善. 33 份甘蔗种质资源的 ISSR 标记和遗传多样性. 分子植物育种, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1128.006.html. |
Zhao L, Xiao X, Chen Y, Liu D, Huang Y, Zou C, Chen B. ISSR marker polymorphism and genetic diversity of 33 sugarcane germplasm resources. Mol Plant Breed, 2022, https://kns.cnki.net/kcms/detail/46.1068.S.20220728.1128.006.html. (in Chinese with English abstract) | |
[30] | 邓海华, 张琼. 我国大陆近年育成甘蔗品种的亲本分析. 广东农业科学, 2006, 12(2): 7-10. |
Deng H H, Zhang Q. Analysis on the parents of commercial varieties released in Mainland China in recent years. Guangdong Agric Sci, 2006, 12(2): 7-10. (in Chinese with English abstract) | |
[31] | 刘新龙, 李旭娟, 刘洪博, 马丽, 徐超华, 范源洪. 云南甘蔗常用亲本资源遗传多样性的SSR分析. 植物遗传资源学报, 2015, 16: 1212-1222. |
Liu X L, Li X J, Liu H B, Ma L, Xu C H, Fan Y H. Genetic diversity analysis of Yunnan commonly-used parents by using SSR marker. J Plant Genet Resour, 2015, 16: 1212-1222. (in Chinese with English abstract) | |
[32] | 沈万宽, 姜子德, 杨湛端, 刘睿, 陈健文, 邓海华. 甘蔗抗黑穗病的鉴定新方法及其品种抗性评价. 华中农业大学学报, 2014, 33(2): 51-56. |
Shen W K, Jiang Z D, Yang Z D, Liu R, Chen J W, Deng H H. New resistance identification method and resistance evaluation of sugarcane varieties to smut disease. J China Agric Univ, 2014, 33(2): 51-56. (in Chinese with English abstract) | |
[33] | 阙友雄, 许莉萍, 林剑伟, 陈天生, 陈如凯, 李依龙. 甘蔗品种黑穗病抗性评价体系的建立(英文). 植物遗传资源学报, 2006, 7: 18-23. |
Que Y X, Xu L P, Lin J W, Chen T S, Chen R K, Li Y L. Establishment of evaluation system of smut resistance for sugarcane varieties. J Plant Genet Resour, 2006, 7: 18-23. | |
[34] | 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文,福建福州, 2014. |
Su Y C. Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2014. (in Chinese with English abstract) | |
[35] |
Thomas S, Underwood J G, Tseng E, Holloway A K. Long-read sequencing of chicken transcripts and identification of new transcript isoforms. PLoS ONE, 2014, 9: e94650.
doi: 10.1371/journal.pone.0094650 |
[36] |
Hackl T, Hedrich R, Schultz J, Förster F. Proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics, 2014, 30: 3004-3011.
doi: 10.1093/bioinformatics/btu392 pmid: 25015988 |
[37] |
Li W Z, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 2006, 22: 1658-1659.
doi: 10.1093/bioinformatics/btl158 pmid: 16731699 |
[38] |
Simão F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 2015, 31: 3210-3212.
doi: 10.1093/bioinformatics/btv351 pmid: 26059717 |
[39] |
Liu X, Mei W, Soltis P S, Soltis D E, Barbazuk W B. Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Mol Ecol Resour, 2017, 17: 1243-1256.
doi: 10.1111/1755-0998.12670 pmid: 28316149 |
[40] |
Kong L, Zhang Y, Ye Z Q, Liu X Q, Zhao S Q, Wei L, Gao G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res, 2007, 35: 345-349.
pmid: 17631615 |
[41] |
Wang L, Park H J, Dasari S, Wang S, Kocher J P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res, 2013, 41: e74.
doi: 10.1093/nar/gkt006 |
[42] |
Zheng Y, Jiao C, Sun H, Rosli H G, Pombo M A, Zhang P, Banf M, Dai X, Martin G B, Giovannoni J J, Zhao P X, Rhee S Y, Fei Z. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant, 2016, 9: 1667-1670.
doi: S1674-2052(16)30223-4 pmid: 27717919 |
[43] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras, T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 pmid: 23104886 |
[44] |
Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf, 2011, 12: 323.
doi: 10.1186/1471-2105-12-323 |
[45] |
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106.
doi: 10.1186/gb-2010-11-10-r106 |
[46] | 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30(3): 274-278. |
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crops, 2009, 30(3): 274-278. (in Chinese with English abstract) | |
[47] |
Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. Plant Physiol, 2011, 157: 804-814.
doi: 10.1104/pp.111.174003 pmid: 21803860 |
[48] | 杨洪强, 接玉玲. 植物MAPK及其在病原信号传递中的作用. 植物病理学报, 2003, 33: 8-13. |
Yang H Q, Jie Y L. The plant MAPK and its function in pathogen signaling cascades. Acta Phytopathol Sin, 2003, 33: 8-13. (in Chinese with English abstract) | |
[49] |
Gordon S P, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, Kang D, Underwood J, Grigoriev I V, Figueroa M, Schilling J S, Chen F, Wang Z. Widespread polycistronic transcripts in fungi revealed by Single-Molecule mRNA Sequencing. PLoS ONE, 2015, 10: e0132628.
doi: 10.1371/journal.pone.0132628 |
[50] |
Abdel-Ghany S E, Hamilton M, Jacobi J L, Ngam P, Devitt N, Schilkey F, Ben-Hur A, Reddy A S. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun, 2016, 7: 11706.
doi: 10.1038/ncomms11706 pmid: 27339290 |
[51] |
Vicente C, Legaz M E, Sánchez-Elordi E. Physiological basis of smut infectivity in the early stages of sugar cane colonization. J Fungi, 2021, 7: 44.
doi: 10.3390/jof7010044 |
[52] |
Peters L P, Teixeira-Silva N S, Bini A P, Silva M M L, Moraes N, Crestana G S, Creste S, Azevedo R A, Carvalho G, Monteiro-Vitorello C B. Differential responses of genes and enzymes associated with ROS protective responses in the sugarcane smut fungus. Fungal Biol, 2020, 124: 1039-1051.
doi: 10.1016/j.funbio.2020.09.009 |
[53] | Ferreira S A, Comstock J C, Wu K K. Evaluating sugarcane for smut resistance. Proc Int Soc Sugarcane Technol, 1980, 17: 1463-1476. |
[54] |
Marques J P R, Hoy J W, Appezzato-da-Glória B, Viveros A F G, Vieira M L C, Baisakh N. Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Front Plant Sci, 2018, 9: 698.
doi: 10.3389/fpls.2018.00698 pmid: 29875793 |
[55] | Dhar M K, Mishra S, Bhat A, Chib S, Kaul S. Plant carotenoid cleavage oxygenases: structure-function relationships and role in development and metabolism. Brie Funct Genomics, 2020, 19: 37. |
[56] |
Widmann C, Gibson S, Jarpe M B, Johnson G L. Mitogen- activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999, 79: 143-180.
doi: 10.1152/physrev.1999.79.1.143 pmid: 9922370 |
[57] |
Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell, 2011, 23: 1639-1653.
doi: 10.1105/tpc.111.084996 |
[58] |
Fu S F, Chou W C, Huang D D, Huang H J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol, 2002, 43: 958-963.
doi: 10.1093/pcp/pcf111 |
[59] |
Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochem Biophys Res Commun, 2003, 300: 775-783.
doi: 10.1016/S0006-291X(02)02868-1 |
[60] |
Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J Exp Bot, 2014, 65: 5795-5809.
doi: 10.1093/jxb/eru313 pmid: 25071223 |
[61] |
Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H. A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J, 2010, 63: 599-612.
doi: 10.1111/j.1365-313X.2010.04264.x |
[62] |
Song F, Goodman R M. OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta, 2002, 215: 997-1005.
pmid: 12355160 |
[63] |
Wang Q, Li J, Hu L, Zhang T, Zhang G, Lou Y. OsMPK3 positively regulates the JA signaling pathway and plant resistance to a chewing herbivore in rice. Plant Cell Rep, 2013, 32: 1075-1084.
doi: 10.1007/s00299-013-1389-2 pmid: 23344857 |
[64] |
Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact, 2006, 19: 530-540.
doi: 10.1094/MPMI-19-0530 |
[65] | Wu Q, Xu L, Guo J, Su Y, Que Y. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology. BioMed Res Int, 2013, 2013: 9. |
[66] |
Nakagami H, Pitzschke A, Hirt H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci, 2005, 10: 339-346.
doi: 10.1016/j.tplants.2005.05.009 pmid: 15953753 |
[67] |
Cheong Y H, Moon B C, Kim J K, Kim C Y, Kim M C, Kim I H, Park C Y, Kim J C, Park B O, Koo S C, Yoon H W, Chung W S, Lim C O, Lee S Y, Cho M J. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol, 2003, 132: 1961-1972.
pmid: 12913152 |
[68] |
Koo S C, Moon B C, Kim J K, Kim C Y, Sung S J, Kim M C, Cho M J, Cheong Y H. OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Biophys Res Commun, 2009, 387: 365-370.
doi: 10.1016/j.bbrc.2009.07.026 |
[69] |
Ning J, Yuan B, Xie K B, Hu H H, Wu C Q, Xiong L Z. Isolation and identification of SA and JA inducible protein kinase gene OsSJMK1 in rice. Acta Genet Sin, 2006, 33: 625-633.
doi: 10.1016/S0379-4172(06)60092-9 |
[70] |
Javed T, Shabbir R, Ali A, Afzal I, Zaheer U, Gao S J. Transcription factors in plant stress responses: challenges and potential for sugarcane improvement. Plants, 2020, 9: 491.
doi: 10.3390/plants9040491 |
[71] |
Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L. The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci, 2017, 36: 311-335.
doi: 10.1080/07352689.2018.1441103 |
[72] |
Yuan X, Wang H, Cai J, Li D, Song F. NAC transcription factors in plant immunity. Phytopath Res, 2019, 1: 3.
doi: 10.1186/s42483-018-0008-0 |
[73] |
Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40: 750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[74] |
Zang Z, Lyu Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Front Plant Sci, 2020, 11: 850.
doi: 10.3389/fpls.2020.00850 |
[75] | Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, Xu P, Zhang S. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Front Plant Sci, 2017, 8: 299. |
[76] | Hawku M D, Goher F, Islam M A, Guo J, He F, Bai X, Yuan P, Kang Z, Guo J. TaAP2-15, an AP2/ERF transcription factor, is positively involved in wheat resistance to Puccinia striiformis f. sp. tritici. Int J Mol Sci, 2021, 22: 2080. |
[77] |
Ji S, Liu Z, Wang Y. Trichoderma-induced ethylene responsive factor MsERF105 mediates defense responses in Malus sieversii. Front Plant Sci, 2021, 12: 708010.
doi: 10.3389/fpls.2021.708010 |
[78] |
He J, Liu Y, Yuan D, Duan M, Liu Y, Shen Z, Yang C, Qiu Z, Liu D, Wen P, Huang J, Fan D, Xiao S, Xin Y, Chen X, Jiang L, Wang H, Yuan L, Wan J. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci USA, 2020, 117: 271-277.
doi: 10.1073/pnas.1902771116 pmid: 31848246 |
[79] |
Zhu X, Li X, He Q, Guo D, Liu C, Cao J, Wu Z, Kang Z, Wang X. TaMYB29: a novel R2R3-MYB transcription factor involved in wheat defense against stripe rust. Front Plant Sci, 2021, 12: 783388.
doi: 10.3389/fpls.2021.783388 |
[80] |
Gu K D, Zhang Q Y, Yu J Q, Wang J H, Zhang F J, Wang C K, Zhao Y W, Sun C H, You C X, Hu D G, Hao Y J. R2R3-MYB transcription factor MdMYB73 confers increased resistance to the fungal pathogen Botryosphaeria dothidea in apples via the salicylic acid pathway. J Agric Food Chem, 2021, 69: 447-458.
doi: 10.1021/acs.jafc.0c06740 |
[81] |
Shan T, Rong W, Xu H, Du L, Liu X, Zhang Z. The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep, 2016, 6: 28777.
doi: 10.1038/srep28777 |
[82] |
Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017, 45: D1040-D1045.
doi: 10.1093/nar/gkw982 |
[83] |
Agisha V N, Ashwin N M R, Vinodhini R T, Nalayeni K, Ramesh S A, Malathi P, Viswanathan R. Transcriptome analysis of sugarcane reveals differential switching of major defense signaling pathways in response to Sporisorium scitamineum isolates with varying virulent attributes. Front Plant Sci, 2022, 13: 969826.
doi: 10.3389/fpls.2022.969826 |
[84] |
Wang L, Liu F, Zhang X, Wang W, Sun T, Chen Y, Dai M, Yu S, Xu L, Su Y, Que Y. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.
doi: 10.3390/ijms19124059 |
[1] | DU Cui-Cui, WU Ming-Xing, ZHANG Ya-Ting, XIE Wan-Jie, ZHANG Ji-Sen, WANG Heng-Bo. Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.) [J]. Acta Agronomica Sinica, 2023, 49(9): 2385-2397. |
[2] | MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497. |
[3] | YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484. |
[4] | DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953. |
[5] | LU Meng-Qi, XIE Ruo-Han, LI Xiang, YANG Ming-Chong, HE Zi-Wei, GAO Jie, ZHAO Xiao-Yan, SHEN Xiang-Ling, CHEN Yan, WANG Ji-Bin, HU Li-Hua, DUAN Ming-Zheng, WANG Ling-Qiang. Relationship of “LabelmeP1.0”-derived vascular parameters with agronomic traits in sorghum [J]. Acta Agronomica Sinica, 2023, 49(7): 1954-1967. |
[6] | PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425. |
[7] | XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538. |
[8] | ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties’ leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716. |
[9] | YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng . Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676. |
[10] | SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664. |
[11] | WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61. |
[12] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
[13] | LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600. |
[14] | LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613. |
[15] | GUO Nan-Nan, LIU Tian-Ce, SHI Shuo, HU Xin-Ting, NIU Ya-Dan, LI Liang. Regulation of long non-coding RNA (LncRNA) in barley roots in response to Piriformospora indica colonization [J]. Acta Agronomica Sinica, 2022, 48(7): 1625-1634. |
|