Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2385-2397.doi: 10.3724/SP.J.1006.2023.24232

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of sucrose transporter protein SsSWEET11 gene in sugarcane (Saccharum spontaneum L.)

DU Cui-Cui1(), WU Ming-Xing1(), ZHANG Ya-Ting1, XIE Wan-Jie1, ZHANG Ji-Sen2,*(), WANG Heng-Bo1,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs / National Sugarcane Engineering Technology Research / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2022-10-16 Accepted:2023-02-10 Online:2023-09-12 Published:2023-02-21
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2021YFF1000104);National Undergraduate Innovation and Entrepreneurship Training Program Project(X202210389051);China Agriculture Research System of MOF and MARA(Sugar, CARS-17)

Abstract:

SWEET (Sugars Will Eventually be Exported Transporter) proteins are widely involved in the physiological and biochemical processes of plant growth and development and response to pathogen stress by regulating the transportation, distribution, transformation, and storage of sugar in plants. This study revealed the biological function of SWEET genes in the growth and development of sugarcane and its interaction with red stripe pathogen Acidovorax avenae subsp. avenae (Aaa). Firstly, based on the PacBio full-length transcriptome cDNA library of S. spontaneum SES208 and comparative genomics, the specific primers were designed according to the re-annotated SsSWEET11 gene sequence. The full-length sequence was mined from the cDNA library by quantitative RT-PCR technology. The characteristics of the SWEET proteins were analyzed using various biological information tools, and the SWEET proteins from some plants were constructed a phylogenetic tree. Secondly, RT-qPCR detected the relative expressions of the SsSWEET11 gene with different tissues and two cultivars, ROC22 (resistant to red stripe) and MT11-610 (susceptible to red stripe). Finally, transient overexpression and subcellular localization performed the function of the SsSWEET11 gene. The results showed that the full-length cDNA sequence of the SsSWEET11 gene (GenBank accession number: OP554214) was cloned from S. spontaneum SES208, with an open reading frame of 927 bp and encoding 308 amino acid residues, which contained two MtN3_saliva domains and seven transmembrane domains. Phylogenetic analysis revealed that the SWEET protein family could be divided into four subfamilies, and SsSWEET11 belonged to subfamily III. The amino acid sequence similarity between SsSWEET11 and SbSWEET11 protein from sorghum is 97.99%. qRT-PCR demonstrated that the SsSWEET11 gene was constitutively expressed in different tissues of S. spontaneum and the relative expression level in leaves and roots was significantly higher than that in other tissues. Under the stress of Aaa, the SsSWEET11 gene presented a different expression pattern between sugarcane cultivars (ROC22) and (MT11-610) and was significantly reduced in the resistant sugarcane cultivar compared with the blank control. However, the expression of ShSWEET11 was significantly up-regulated in the susceptible sugarcane cultivar after 48 hours post-inoculation (hpi) and 72 hpi, which were 5.90 times and 5.43 times higher than the control, respectively. Subcellular localization indicated that the SsSWEET11-GFP fusion protein was located in the plasma membrane. After transiently overexpression of the SsSWEET11 gene for one day, the color of Nicotiana benthamiana leaves remained unchanged by DAB staining, and seven days after inoculation with Pseudomonas solanacearum, and Fusarium solani var. coeruleum, the incidence of transient overexpression of ShSWEET11 gene in N. benthamiana leaves were more susceptible than that of the control. Allergic reaction-related genes, jasmonic acid, and salicylic acid metabolism pathway-related genes were up-regulated, but ethylene pathway-related genes did not respond, suggesting that the SsSWEET11 gene is involved in jasmonic acid and salicylic acid signal transduction pathways, and the infection of N. benthamiana leaves by pathogens can induce an allergic reaction. These results not only provided an accumulation for the development of molecular markers associated with sugarcane resistance to Aaa but also laid a foundation for in-depth analysis of the molecular mechanism in sugarcane in response to Aaa infection.

Key words: Saccharum spontaneum, SsSWEET11 gene, sucrose transporter protein, red stripe pathogen, gene function, sugarcane

Table 1

Primers used in the study"

名称
Name
引物序列
Primer sequences (5°-3°)
备注
Note
CDS-SWEET11-F_27 AATCGAGCATCACCTTAGCAGTAGC 基因克隆
Gene cloning
CDS-SWEET11-R_1194 TCGTCCGAGTCGATCCGAGCC
CDS-SsSWEET11-F_72 GGAAGGAAGTCGCACTAGGAA
SsSWEET11-QF AGGTGTACCGCAAGAAGTCG 定量PCR引物
qRT-PCR primers
SsSWEET11-QR AGCGCGTAGAAGATCCACAG
GAPDH-F CACGGCCACTGGAAGCA 内参基因
Reference gene
GAPDH-R TCCTCAGGGTTCCTGATGCC
pMDC202-SsSWEET11-F CTCGACTCTAGAACTAGTATGGCAGGAGGCCTCTTCTCCAT 过表达载体构建
Construction of overexpression vector
pMDC202-SsSWEET11-R ATTTTTTCTACCGGTACCCACCGCGGCGGCGGGGAC
pSuper-1300-SsSWEET11-F GGGGCCCGGGGTCGACATGGCAGGAGGCCTCTTCTCCAT 亚细胞定位载体构建
Construction of subcellular localization vector
pSuper-1300-SsSWEET11-R CCCTTGCTCACCATGGTACCCACCGCGGCGGCGGGGAC

Fig. 1

Sequence analysis and prediction of transmembrane domain of SsSWEET11 A: the nucleic acid sequence of SsSWEET11 and its deduced amino acid sequence (The red underlined parts are the two conserved domains MtN3_saliva). B: the predicted transmembrane domain of SsSWEET11 protein."

Fig. 2

Multiple alignment of SWEET protein sequences from different species"

Fig. 3

Phylogenetic tree of SWEET family members from some species and the prediction of the conserved modifs SWEET members are from some species. AtSWEETs: Arabidopsis thaliana; OsSWEETs: Oryza sativa; SbSWEETs: Sorghum bicolor; XP_021614562.1 (MeSWEET10a): Manihot esculenta; KU686986.1 (StSWEET11) and XM_006344629.2 (StSWEET16): Solanum tuberosum; KAH9797555.1 (CsSWEET2a): Citrus sinensis; GH_D03G1971 (GhSWEET10D): Gossypium hirsutum; Medtr3g098930.1 (MtSWEET11): Medicago sativa."

Fig. 4

Relative expression pattern of SsSWEET11 genes in different tissues The error bar represents the standard error of each group treatment (n = 3). Different lowercase letters indicate significant differences at the 5% probability level."

Fig. 5

Relative expression pattern of ShSWEET11 gene in resistant and susceptible sugarcane cultivars infected by Acidovorax avenae subsp. avenae ROC22 and MT11-610 are resistant and susceptible to red stripe disease, respectively. The abscissa is the infection time of Acidovorax avenae subsp. avenae, and the ordinate is the relative expression level of SsSWEET11 gene. The error bar represents the standard error of each group treatment (n = 3). Different lowercase letters indicate significant differences at the 5% probability level."

Fig. 6

Transient expression of SsSWEET11 gene in tobacco leaves and the relative expression level of immune-related genes A-1 and B-1 represent the phenotype and DAB staining results of injection of Fusarium solani var. coeruleum and Pseudomonas solanacearum after the transient expression of the SsSWEET11 gene in tobacco leaves, respectively. Symptom 0 describes transient overexpression of the SsSWEET11 gene for 1 day, and symptoms 1 d and 7 d represent a different time when the pathogen invaded tobacco leaves after the transient overexpression of the SsSWEET11 gene. A-2 and B-2 indicate the relative expression levels of tobacco immunity-related genes after transient expression of the SsSWEET11 gene, respectively. a: the leaf phenotype after injection; b: leaves under the microscope; c: the leaf phenotype after DAB staining; d: that obtained after microscopic DAB staining. 35S::00 indicates the empty vector, and 35S::SsSWEET11 indicates the recombinant vector."

Fig. 7

Subcellular localization of SsSWEET11 protein Photographs were taken under three fields of view (visible field, green fluorescence, and merged field). 35S::GFP and 35S:: SsSWEET11::GFP were represented the results of injection of GV3101 bacterial solution with empty vector and recombinant vector into N. benthamiana leaves, respectively. Bar: 50 μm."

[1] Oz M T, Altpeter A, Karan R, Merotto A, Altpeter F. CRISPR/ Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome, 2021, 3: 673566.
[2] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析. 作物学报, 2023, 49: 46-61.
doi: 10.3724/SP.J.1006.2023.24005
Wang H B, Zhang C, Wu M X, Li X, Jiang Z L, Lin R X, Guo J L, Que Y X. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar. Acta Agron Sin, 2023, 49: 46-61. (in Chinese with English abstract)
[3] 张风娟, 李健, 杜成忠, 杨丽涛, 李杨瑞, 邢永秀. 不同甘蔗品种叶片气孔对水分胁迫的响应. 广西植物, 2014, 34: 821-827.
Zhang F J, Li J, Du C Z, Yang L T, Li Y R, Xing Y X. Stomatal response to water stress in leaves of different sugarcane cultivars. Guihaia, 2014, 34: 821-827. (in Chinese with English abstract)
[4] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析. 作物学报, 2023, 49: 97-104.
doi: 10.3724/SP.J.1006.2023.14239
Li J, Zhou J R, Chu N, Sun H D, Huang M T, Fu H Y, Gao S J. Gene cloning and expression analysis of ScPR10 in sugarcane under Acidovorax avenae subsp. avenae infection. Acta Agron Sin, 2023, 49: 97-104. (in Chinese with English abstract)
[5] Fontana P D, Rago A M, Fontana C A, Vignolo G M, Cocconcelli P S, Mariotti J A. Isolation and genetic characterization of Acidovorax avenae from red stripe infected sugarcane in Northwestern Argentina. Eur J Plant Pathol, 2013, 137: 525-534.
doi: 10.1007/s10658-013-0263-y
[6] 胡丽萍, 张峰, 徐惠, 刘光敏, 王亚钦, 何洪巨. 植物SWEET基因家族结构、功能及调控研究进展. 生物技术通报, 2017, 33(4): 27-37.
doi: 10.13560/j.cnki.biotech.bull.1985.2017.04.004
Hu L P, Zhang F, Xu H, Liu G M, Wang Y Q, He H J. Research advances in the structure, function and regulation of SWEET gene family in plants. Biol Bull, 2017, 33(4): 27-37. (in Chinese with English abstract)
[7] Ayre B G. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant, 2011, 4: 377-394.
doi: 10.1093/mp/ssr014 pmid: 21502663
[8] 黄成, 李旭楠, 李诗燕, 王锦达. 植物SWEET基因家族的研究进展. 中国农学通报, 2022, 38(17): 17-26.
doi: 10.11924/j.issn.1000-6850.casb2021-0669
Huang C, Li X N, Li S Y, Wang J D. Research progress of plant SWEET gene family. Chin Agri Sci Bull, 2022, 38(17): 17-26. (in Chinese with English abstract)
[9] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606
[10] 胡伟长. 甘蔗SWEET基因家族的演化与功能分析. 福建农林大学硕士学位论文, 福建福州, 2017.
Hu W C. The Evolution and Function of SWEET Genes in Saccharum. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2017. (in Chinese with English abstract)
[11] 吴旭莉, 吴正丹, 晚传芳, 杜叶, 高艳, 李賾萱, 王志前, 唐道彬, 王季春, 张凯. 甘薯糖转运蛋白IbSWEET15的功能研究. 作物学报, 2023, 49: 129-139.
doi: 10.3724/SP.J.1006.2023.24023
Wu X L, Wu Z D, Wan C F, Du Y, Gao Y, Li Z X, Wang Z Q, Tang D B, Wang J C, Zhang K. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato. Acta Agron Sin, 2023, 49: 129-139. (in Chinese with English abstract)
[12] Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351
[13] Guo W J, Nagy R, Chen H Y, Pfrunder S, Yu Y C, Santelia D, Frommer W B, Martinoia E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol, 2014, 164: 777-789.
doi: 10.1104/pp.113.232751
[14] Liu X, Zhang Y, Yang C, Tian Z, Li J. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development. Sci Rep, 2016, 6: 24563.
doi: 10.1038/srep24563 pmid: 27102826
[15] 麻明英, 郝晨星, 张凯, 肖桂华, 苏翰英, 文康, 邓子牛, 马先锋. 甜橙SWEET2a促进柑橘溃疡病菌侵染. 园艺学报, 2022, 49: 1247-1260.
doi: 10.16420/j.issn.0513-353x.2021-0323
Ma M Y, Hao C X, Zhang K, Xiao G H, Su H Y, Wen K, Deng Z N, Ma X F. CsSWEET2a promotes the infection of Xanthomonas citri subsp. citri. Acta Hortic Sin, 2022, 49: 1247-1260. (in Chinese with English abstract)
[16] Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
doi: 10.1111/jipb.12173
[17] Chen L Q, Lin I W, Qu X Q, Sosso D, McFarlane H E, Londoño A, Samuels A L, Frommer W B. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell, 2015, 27: 607-619.
doi: 10.1105/tpc.114.134585
[18] Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[19] Yang B, Sugio A, White F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA, 2006, 103: 10503-10508.
doi: 10.1073/pnas.0604088103
[20] Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol, 2013, 200: 808-819.
doi: 10.1111/nph.12411 pmid: 23879865
[21] Hu W C, Hua X T, Zhang Q, Wang J P, Shen Q C, Zhang X T, Wang K, Yu Q Y, Lin Y R, Ming R G, Zhang J S. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biol, 2018, 18: 270.
doi: 10.1186/s12870-018-1495-y
[22] Hua X T, Shen Q C, Li Y H, Zhou D, Zhang Z, Akbar S, Wang Z C, Zhang J S. Functional characterization and analysis of transcriptional regulation of sugar transporter SWEET13c in sugarcane Saccharum spontaneum. BMC Plant Biol, 2022, 22: 363.
doi: 10.1186/s12870-022-03749-9
[23] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析. 作物学报, 2021, 47: 1275-1296.
doi: 10.3724/SP.J.1006.2021.04192
Su Y C, Li C N, Su W H, You C H, Cen G L, Zhang C, Ren Y J, Que Y X. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar. Acta Agron Sin, 2021, 47: 1275-1296. (in Chinese with English abstract)
[24] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[25] Xue B T, Guo J L, Que Y X, Fu Z W, Wu L G, Xu L P. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane. Int J Mol Sci, 2014, 15: 8846-8862.
doi: 10.3390/ijms15058846 pmid: 24857916
[26] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[27] Mao H Y, Wang W J, Su W H, Su Y C, Liu F, Li C N, Wang L, Zhang X, Xu L P, Que Y X. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep, 2019, 38: 637-655.
doi: 10.1007/s00299-019-02394-1
[28] Sohn S I, Kim Y H, Kim B R, Lee S Y, Lim C K, Hur J H, Lee J Y. Transgenic tobacco expressing the hrpN(EP) gene from Erwinia pyrifoliae triggers defense responses against botrytis cinerea. Mol Cells, 2007, 24: 232-239.
[29] Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991, 254: 1194-1197.
doi: 10.1126/science.254.5035.1194 pmid: 17776411
[30] Chen N, Goodwin P H, Hsiang T. The role of ethylene during the infection of Nicotiana tabacum by Colletotrichum destructivum. J Exp Bot, 2003, 54: 2449-2456.
pmid: 14565949
[31] Feng L, Frommer W B. Structure and function of SemiSWEET and SWEET sugar transporters. Trends Biochem Sci, 2015, 40: 480-486.
doi: 10.1016/j.tibs.2015.05.005 pmid: 26071195
[32] Gao Y, Wang Z Y, Kumar V, Xu X F, Yuan D P, Zhu X F, Li T Y, Jia B, Xuan Y H. Genome-wide identification of the SWEET gene family in wheat. Gene, 2018, 642: 284-292.
doi: 10.1016/j.gene.2017.11.044
[33] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508: 546-549.
[34] Yuan M, Wang S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant, 2013, 6: 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047
[35] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[36] 沈翘楚. 甘蔗SWEET基因家族关键成员的功能分析. 福建农林大学硕士学位论文, 福建福州, 2020.
Shen Q C. Functional Analysis of Key SWEET Gene Members in Sugarcane. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2020 (in Chinese with English abstract).
[37] 梁大曲, 石长双, 涂晶晶, 徐刚, 吴峰. 马尾松PmSWEET基因的克隆、亚细胞定位及表达分析. 植物生理学报, 2022, 58: 447-457.
Liang D Q, Shi C S, Tu J J, Xu G, Wu F. Cloning, subcellular localization and expression analysis of PmSWEET gene in Pinus massoniana. Plant Physiol J, 2022, 58: 447-457. (in Chinese with English abstract)
doi: 10.1104/pp.58.4.447
[38] Gao Y, Zhang C, Han X, Wang Z Y, Ma L, Yuan P, Wu J N, Zhu X F, Liu J M, Li D P, Hu Y B. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol Plant Pathol, 2018, 19: 2149-2161.
doi: 10.1111/mpp.2018.19.issue-9
[39] Sosso D, Luo D, Li Q B, Sasse J, Yang J, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M. Seed filling in domesticated maize and rice depends on SWEET- mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422
[40] Feng C Y, Han J X, Han X X, Jiang J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene, 2015, 573: 261-272.
doi: 10.1016/j.gene.2015.07.055
[41] Chong J, Piron M C, Meyer S, Merdinoglu D, Bertsch C, Mestre P. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot, 2014, 65: 6589-6601.
doi: 10.1093/jxb/eru375
[42] Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome resequence analysis. BMC Genomics, 2015, 16: 520.
doi: 10.1186/s12864-015-1730-y
[43] Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J, 2015, 83: 1046-1058.
doi: 10.1111/tpj.2015.83.issue-6
[44] Guan Y F, Huang X Y, Zhu J, Gao J F, Zhang H X, Yang Z N. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol, 2008, 147: 852-863.
doi: 10.1104/pp.108.118026
[45] Klemens P A, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus H E. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol, 2013, 163: 1338-1352.
doi: 10.1104/pp.113.224972
[46] Kryvoruchko I S, Sinharoy S, Torres-Jerez I, Sosso D, Pislariu C I, Guan D, Murray J, Benedito V A, Frommer W B, Udvardi M K. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula. Plant Physiol, 2016, 171: 554-565.
doi: 10.1104/pp.15.01910 pmid: 27021190
[47] Barker L, Kühn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164.
doi: 10.1105/tpc.12.7.1153 pmid: 10899981
[48] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005
[49] Cox K L, Meng F, Wilkins K E, Li F, Wang P, Booher N J, Carpenter S C D, Chen L Q, Zheng H, Gao X, Zheng Y, Fei Z, Yu J Z, Isakeit T, Wheeler T, Frommer W B, He P, Bogdanove A J, Shan L. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton. Nat Commun, 2017, 8: 15588.
doi: 10.1038/ncomms15588
[50] 李明. 马铃薯糖转运蛋白StSWEET基因的克隆及功能分析. 青海大学硕士学位论文, 青海西宁, 2019.
Li M. Cloning and Functional Analysis of StSWEET in Potato. MS Thesis of Qinghai University, Xining, Qinghai, China, 2019. (in Chinese with English abstract)
[51] Cao J, Li M, Chen J, Liu P, Li Z. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci Rep, 2016, 6: 37674.
doi: 10.1038/srep37674
[1] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[2] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[3] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, ZHOU Ying-Shuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, ZHANG Mu-Qing, XU Jing-Sheng. Interaction of sugarcane VAMP associated protein ScPVA12 with SCMV P3N-PIPO [J]. Acta Agronomica Sinica, 2023, 49(9): 2472-2484.
[4] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[5] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[6] YANG Xiao-Yi, WANG Hui-Hui, ZHANG Yan-Wen, HOU Dian-Yun, ZHANG Hong-Xiao, KANG Guo-Zhang, XU Hua-Wei. Function analysis of OsPIN5c gene by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2023, 49(2): 354-364.
[7] PAN Jie-Ming, TIAN Shao-Rui, LIANG Yan-Lan, ZHU Yu-Lin, ZHOU Ding-Gang, QUE You-Xiong, LING Hui, HUANG Ning. Identification and expression analysis of PIN-LIKES gene family in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(2): 414-425.
[8] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[9] YANG Zong-Tao, JIAO Wen-Di, ZHANG Hai, ZHANG Ke-Ming, CHENG Guang-Yuan, LUO Ting-Xu, ZENG Kang, ZHOU Ying-Shuan, XU Jing-Sheng . Interaction of sugarcane glutathione S-transferase ScGSTF1 with P3N-PIPO in response to SCMV infection [J]. Acta Agronomica Sinica, 2023, 49(10): 2665-2676.
[10] SHEN Qing-Qing, WANG Tian-Ju, WANG Jun-Gang, ZHANG Shu-Zhen, ZHAO Xue-Ting, HE Li-Lian, LI Fu-Sheng. Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(10): 2654-2664.
[11] WANG Heng-Bo, ZHANG Chang, WU Ming-Xing, LI Xiang, JIANG Zhong-Li, LIN Rong-Xiao, GUO Jin-Long, QUE You-Xiong. Genome-wide identification of NAC transcription factors ATAF subfamily in Sacchrum spontaneum and functional analysis of its homologous gene ScNAC2 in sugarcane cultivar [J]. Acta Agronomica Sinica, 2023, 49(1): 46-61.
[12] LI Pei-Ting, ZHAO Zhen-Li, HUANG Chao-Hua, HUANG Guo-Qiang, XU Liang-Nian, DENG Zu-Hu, ZHANG Yu, ZHAO Xin-Wang. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA [J]. Acta Agronomica Sinica, 2022, 48(7): 1583-1600.
[13] LI Xu-Juan, LI Chun-Jia, WU Zhuan-Di, TIAN Chun-Yan, HU Xin, QIU Li-Hang, WU Jian-Ming, LIU Xin-Long. Expression characteristic and gene diversity analysis of ScHTD2 in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(7): 1601-1613.
[14] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[15] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[3] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[4] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[5] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[6] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[7] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[8] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[9] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[10] Qui Chongli. STUDIES ON THE INCOMPATIBILITY OF HYBRIDIZATION BETWEEN TRITICUM AESTIVUM L.AND HEXAPLOID TRITICALE Ⅰ.THE DEVELOPMENT OF HYBRID EMBRYO[J]. Acta Agron Sin, 1986, (01): 49 -56 .