Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2373-2384.doi: 10.3724/SP.J.1006.2023.24242

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings

XU Yang1(), ZHANG Dai2, KANG Tao3, WEN Sai-Qun4, ZHANG Guan-Chu1, DING Hong1, GUO Qing1, QIN Fei-Fei1, DAI Liang-Xiang1,*(), ZHANG Zhi-Meng1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei, China
    3Tai’an Academy of Agricultural Sciences, Tai’an 271001, Shandong, China
    4Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050050, Hebei, China
  • Received:2022-10-28 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-15
  • Supported by:
    National Natural Science Foundation of China(31971856);National Natural Science Foundation of China(31901574);National Natural Science Foundation of China(31971854);Modern Agricultural Industry Technical System of Shandong Province(SDAIT-04-06)

Abstract:

Different peanut varieties have different salt tolerance. In this study, to determine the flow rates of ions Na+, K+, Ca2+, NH4+, NO3-, and Cl- in root tips of peanut seedlings under salt stress via Non-invasive Micro-test technique, a salt-tolerant peanut variety Huayu 25 (HY25) and a salt-sensitive variety Huayu 20 (HY20) were used as the experimental materials. The growth traits, the relative expression level of major salt tolerance genes, and the contents of osmotic regulatory substances (soluble sugar and proline) were also measured to establish the difference of ion absorption and stress resistance regulation in different varieties. The results showed as follows: (1) Under NaCl stress, Na+ influx was inhibited, and its efflux increased, but promoted the influx of K+. The efflux rate of Na+ and influx rate of K+ in HY25 were higher than HY20, which may improve salinity tolerance by preserving K+ and discharging Na+. (2) Salt stress promoted Ca2+ influx, and the Ca2+ influx rate of salt-tolerant varieties was higher than the salt-sensitive varieties, which might be related to salt tolerance. (3) NO3- exhibited efflux in both varieties under salt stress, but the efflux rate of the salt-tolerant variety HY25 was lower, indicating that HY25 could resist the harm of salt stress by slowing the loss of NO3-. (4) Salt stress induced Cl- efflux in HY25 but influx in salt-sensitive variety, indicating that HY25 could reduce the toxicity of Cl- by accelerating the efflux of Cl-. (5) Salt stress significantly up-regulated the relative expression level of salt-tolerant genes AhNHX1, AhHA1, AhSAMDC1, and AhLeaD in salt-tolerant variety HY25, which could help improve its salt tolerance. Clarifying the dynamic changes of root ion flow and resistance mechanism under salt stress can provide the theoretical support for improving the emergence, establishment, and development of peanut seedlings in saline-alkali land and the establishment of regulation technology.

Key words: peanut, salt stress, dynamic ion, salt tolerance genes, non-invasive micro-test technique (NMT)

Fig. 1

Effects of NaCl stress on instantaneous and average flow rate of Na+ in root tips A: the instantaneous flow rate of Na+ in root tip under NaCl stress and normal condition; B: the average flow rate of Na+ in root tip under NaCl stress and normal condition via NMT for 10 min. HY20CK: HY20 in normal condition; HY20S: HY20 in 150 mmol L-1 NaCl; HY25CK: HY25 in normal condition; HY25S: HY25 in 150 mmol L-1 NaCl."

Fig. 2

Effects of NaCl stress on instantaneous and average flow rate of K+ in root tips A: the instantaneous flow rate of K+ in the root tip under NaCl stress and normal condition; B: the average flow rate of K+ in the root tip under NaCl stress and normal condition via NMT for 10 min. Abbreviations are the same as those given in Fig. 1."

Fig. 3

Effects of salt stress on instantaneous and average flow rate of Ca2+ in root tips A: the instantaneous flow rate of Ca2+ in root tip under NaCl stress and normal condition; B: the average flow rate of Ca2+ in root tip under NaCl stress and normal condition via NMT for 10 min. Abbreviations are the same as those given in Fig. 1."

Fig. 4

Effects of salt stress on instantaneous and average flow rate of NH4+ in root tips A: the instantaneous flow rate of NH4+ in root tip under NaCl stress and normal condition; B: the average flow rate of NH4+ in root tip under NaCl stress and normal condition via NMT for 10 min. Abbreviations are the same as those given in Fig. 1."

Fig. 5

Effects of salt stress on instantaneous and average flow rate of NO3- in root tips A: the instantaneous flow rate of NO3- in root tip under NaCl stress and normal condition; B: the average flow rate of NO3- in root tip under NaCl stress and normal condition via NMT for 10 min. Abbreviations are the same as those given in Fig. 1."

Fig. 6

Effects of salt stress on instantaneous and average flow rate of Cl- in root tips A: the instantaneous flow rate of Cl- in root tip under NaCl stress and normal condition; B: the average flow rate of Cl- in root tip under NaCl stress and normal condition via NMT for 10 min. Abbreviations are the same as those given in Fig. 1."

Table 1

Equilibrium relationship between the average rate of Na+ and each ion"

K+/Na+ Ca2+/Na+ NH4+/Na+ NO3-/Na+ Cl-/Na+
HY20CK -0.00845 0.0115 0.0134 0.00119 -0.0107
HY20S 1.369 0.139 -0.0276 -0.0362 0.329
HY25CK -0.683 0.0312 -0.0364 -0.00737 0.0307
HY25S -6.108 -0.527 -0.254 0.0400 0.387

Fig. 7

Relative expression level of salt tolerance genes in different peanut varieties with or without salt stress HY25: Huayu 25; HY20: Huayu 20. Statistical differences are indicated by lowercase letters above the columns, and different letters represent significant differences among treatments at P < 0.05."

Fig. 8

Proline and soluble sugar contents of different peanut varieties with or without salt stress HY25: Huayu 25; HY20: Huayu 20. Statistical differences are indicated by lowercase letters above the columns, and different letters represent significant differences among treatments at P < 0.05."

Table 2

Effects of salt stress on seedling growth of different peanut varieties"

品种
Variety name
处理
Treatment
主根长
Primary root length
主茎高
Main shoot height
每株地下干重Underground dry weight per plant (g) 每株地上干重
Aboveground dry weight per plant (g)
根冠比
Root/shoot ratio
花育25
Huayu 25
CK 4.450±0.308 a 19.320±1.071 a 0.240±0.0163 a 1.640±0.0829 a 0.146±0.00303 a
150 mmol L-1 NaCl 2.553±0.244 b 12.470±0.474 b 0.130±0.00816 c 1.107±0.0946 c 0.119±0.00347 c
花育20
Huayu 20
CK 4.997±0.418 a 12.380±0.849 b 0.210±0.00817 b 1.433±0.184 b 0.148±0.0138 a
150 mmol L-1 NaCl 1.920±0.153 c 7.867±0.818 c 0.113±0.0125 d 0.820±0.0993 d 0.139±0.00984 b
[1] Jafar M Z, Faroo Q M, Cheema M A, Afzal I, Basra S M A, Wahid M A, Aziz T, Shahid M. Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci, 2012, 198: 38-45.
doi: 10.1111/jac.2011.198.issue-1
[2] 杨帆, 魏晓岑, 张士超, 王宝山. 不同甜高粱品种萌发期抗盐和抗旱性比较. 植物生理学报, 2015, 51: 1604-1610.
Yang F, Wei X C, Zhang S C, Wang B S. Comparison on salt and drought resistances of different varieties of Sorghum bicolor at germination stage. Plant Physiol J, 2015, 51: 1604-1610. (in Chinese with English abstract)
[3] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[4] 吴兰荣, 陈静, 许婷婷, 苗华荣, 胡文广, 禹山林. 花生全生育期耐盐鉴定研究. 花生学报, 2005, 34(1): 20-24.
Wu L R, Chen J, Xu T T, Miao H R, Hu W G, Yu S L. Identification of salt tolerance in peanut growth duration. J Peanut Sci, 2005, 34(1): 20-24. (in Chinese with English abstract)
[5] 郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪. 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 2016, 40: 69-79.
doi: 10.17521/cjpe.2015.0240
Guo R, Li F, Zhou J, Li H R, Xia X, Liu Q. Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses. Chin J Plant Ecol, 2016, 40: 69-79. (in Chinese with English abstract)
doi: 10.17521/cjpe.2015.0240
[6] 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805-814.
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805-814. (in Chinese with English abstract)
[7] 温赛群, 袁光, 张智猛, 张冠初, 慈敦伟, 丁红, 徐扬, 姜常松, 戴良香. 花生品种苗期耐盐性评价与筛选. 农学学报, 2021, 11: 29-35.
doi: 10.11923/j.issn.2095-4050.cjas20190900190
Wen S Q, Yuan G, Zhang Z M, Zhang G C, Ci D W, Ding H, Xu Y, Jiang C S, Dai L X. Salt tolerance of peanut varieties at seedling stage: assessment and screening. J Agric, 2021, 11: 29-35. (in Chinese with English abstract)
doi: 10.11923/j.issn.2095-4050.cjas20190900190
[8] 史晓龙, 张智猛, 戴良香, 张冠初, 田家明, 丁红, 慈敦伟, 温赛群. 施钙对盐胁迫下花生荚果发育动态的影响. 中国农学通报, 2019, 35(20): 6-12.
doi: 10.11924/j.issn.1000-6850.casb18080120
Shi X L, Zhang Z M, Dai L X, Zhang G C, Tian J M, Ding H, Ci D W, Wen S Q. Calcium fertilizer affects the development of peanut pod under salt stress. Chin Agric Sci Bull, 2019, 35(20): 6-12. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb18080120
[9] 史晓龙, 张智猛, 戴良香, 张冠初, 慈敦伟, 丁红, 田家明. 外源施钙对盐胁迫下花生营养元素吸收与分配的影响. 应用生态学报, 2018, 29: 3302-3310.
doi: 10.13287/j.1001-9332.201810.026
Shi X L, Zhang Z M, Dai L X, Zhang G C, Ci D W, Ding H, Tian J M. Effects of calcium fertilizer application on absorption and distribution of nutrients in peanut under salt stress. Chin J Appl Ecol, 2018, 29: 3302-3310. (in Chinese with English abstract)
[10] 温赛群, 丁红, 徐扬, 张冠初, 张智猛, 戴良香. 不同花生品种对NaCl胁迫生理响应特征. 西北植物学报, 2021, 41: 1535-1544.
Wen S Q, Ding H, Xu Y, Zhang G C, Zhang Z M, Dai L X. Physiological response characteristics of peanut varieties with different salt resistance under NaCl stress. Acta Bot Boreali- Occident Sin, 2021, 41: 1535-1544 (in Chinese with English abstract).
[11] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应. 作物学报, 2021, 47: 1581-1592.
doi: 10.3724/SP.J.1006.2021.04160
Dai L X, Xu Y, Zhang G C, Shi X L, Qin F F, Ding H, Zhang Z M. Response of rhizosphere bacterial community diversity to salt stress in peanut. Acta Agron Sin, 2021, 47: 1581-1592. (in Chinese with English abstract)
[12] 刘容秀, 崔金腾, 张克中. NaCl 胁迫对‘Robina’百合叶片和根部抗氧化酶系统及根尖离子流速的影响. 北京农学院学报, 2020, 35(2): 77-83.
Liu R X, Cui J T, Zhang K Z. Effects of NaCl stress on the antioxidant enzyme system in leaves and roots and ion flux in root tip of Lilium ‘Robina’. J Beijing Univ Agric, 2020, 35(2): 77-83. (in Chinese with English abstract)
[13] 刘阿康, 马瑞琦, 王德梅, 王艳杰, 杨玉双, 赵广才, 常旭虹. 覆膜和补施氮肥对晚播冬小麦冬前植株生长及群体质量的影响. 作物学报. 2022, 48: 1771-1786.
doi: 10.3724/SP.J.1006.2022.11057
Liu A K, Ma R Q, Wang D M, Wang Y J, Yang Y S, Zhao G C, Chang X H. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter. Acta Agron Sin, 2022, 48: 1771-1786. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11057
[14] 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用. 作物学报, 2022, 48: 2016-2027.
doi: 10.3724/SP.J.1006.2022.12041
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. Regulation effects of seedling raising by melatonin and methyl jasmonate substrate on low temperature stress tolerance in rice. Acta Agron Sin, 2022, 48: 2016-2027. (in Chinese with English abstract)
[15] 赵楠. 胞外ATP调控不同耐盐性杨树K+/Na+离子平衡的信号网络研究. 北京林业大学博士学位论文, 北京, 2017.
Zhao N. The Role of Extracellular ATP-Mediated Salt Signaling in the Regulation of K+/Na+ Homeostasis in Two Poplars with Contrasting Salt Tolerance. PhD Dissertation of Beijing Forestry University, Beijing, China, 2017. (in Chinese with English abstract)
[16] 朱志明, 毛桂莲, 许兴, 王盛, 郑蕊, 杨淑娟. 盐胁迫下宁夏枸杞根系Na+、K+平衡及抑制剂对其影响的研究. 干旱地区农业研究, 2017, 35(6): 140-145.
Zhu Z M, Mao G L, Xu X, Wang S, Zheng R, Yang S J. Effect of salt stress and inhibitor on uptake and transportation of Na+ and K+ in the root of Ningxia Lycium barbarum L. Agric Res Arid Areas, 2017, 35(6): 140-145. (in Chinese with English abstract)
[17] 刘晴晴. 不同生境盐地碱蓬根系拒盐机制研究. 山东师范大学硕士学位论文, 山东济南, 2018.
Lui Q Q. Study on the Mechanism of Salt Exclusion in the Roots of Suaeda salsa in Different Habitats. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2018. (in Chinese with English abstract)
[18] Feng S, Sun H W, Ma H P, Zhang X, Ma S R, Qiao K, Zhou A M, Bu Y Y, Liu S K. Sexual differences in physiological and transcriptional responses to salinity stress of Salix linearistipularis. Front Plant Sci, 2020, 11: 517962.
doi: 10.3389/fpls.2020.517962
[19] 付晴晴. ‘左山一’杂交砧木株系耐盐评价及钠离子吸收分配特征研究. 山东农业大学硕士学位论文, 山东泰安, 2018.
Fu Q Q. Salt tolerance Evaluation and Na+Absorption and Distribution Characteristics of Hybrid Roots Tocks from ‘Zuo Shan 1’. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018. (in Chinese with English abstract)
[20] 邢磊, 王文磊, 徐燕, 纪德华, 许凯, 陈昌生, 谢潮添. 低盐胁迫对坛紫菜(Pyropia haitanensis)离子转运的影响. 集美大学学报(自然科学版), 2021, 26(1): 1-7.
Xing L, Wang W L, Xu Y, Ji D H, Xu K, Chen C S, Xie C T. Effects of low salt stress on ion transport in Pyropia haitanensis. J Jimei Univ (Nat Sci), 2021, 26(1): 1-7. (in Chinese with English abstract)
[21] 李丹, 黄绢, 张伟溪, 丁昌俊, 苏晓华, 黄秦军. 盐胁迫条件下转多基因库安托杨根尖离子流变化. 林业科学, 2015, 51(9): 35-41.
Li D, Huang J, Zhang W X, Ding C J, Su X H, Huang Q J. Ion fluxes of multiple transgenic Populus × euramericana ‘Guariento’ under salt stress. Sci Silvae Sin, 2015, 51(9): 35-41. (in Chinese with English abstract)
[22] 董彬彬. 盐胁迫对钝顶螺旋藻生长、离子响应及代谢产物的影响研究. 南京农业大学硕士学位论文, 江苏南京, 2019.
Dong B B. Effects of Salt Stress on Growth, Ion Response and Metabolites of Spirulina platensis. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2019. (in Chinese with English abstract)
[23] Chen Z, Pottosin I I, Cuin T A, Fuglsang A T, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren M G, Newman I A, Shabala S. Root plasma membrane transporters controlling K+/Na+ homeostasis in salt stressed barley. Plant Physiol, 2007, 145: 1714-1725.
doi: 10.1104/pp.107.110262
[24] Cuin T A, Betts S A, Chalmandrier R, Shabala S. A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot, 2008, 59: 2697-2706.
doi: 10.1093/jxb/ern128
[25] Yu Y C, Xu T, Li X, Tang J, Ma D F, Li Z Y, Sun J. NaCl-induced changes of ion homeostasis and nitrogen metabolism in two sweet potato (Ipomoea batatas L.)cultivars exhibit different salt tolerance at adventitious root stage. Environ Exp Bot, 2016, 129: 23-36.
doi: 10.1016/j.envexpbot.2015.12.006
[26] Tang Z H, Liu Y J, Guo X R, Zu Y G. The combined effects of salinity and nitrogen forms on Catharanthus roseus: the role of internal ammonium and free amino acids during salt stress. J Plant Nutr Soil Sci, 2011, 174: 135-144.
doi: 10.1002/jpln.v174.1
[27] Kant S, Kant P, Lips H, Barak S. Partial substitution of NO3- by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. J Plant Physiol, 2007, 164: 303-311.
doi: 10.1016/j.jplph.2005.12.011
[28] Hessini K, Ghandour M, Albouchi A, Soitani A, Werner K H, Abdelly C. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress. J Plant Res, 2008, 121: 311-318.
doi: 10.1007/s10265-008-0151-2 pmid: 18389173
[29] Miranda R D S, Mesquita R O, Costa J H, Alvarez-Pizarro J C, Prisco J T, Gomes-Filho E. Integrative control between proton pumps and SOS1 antiporters in roots is crucial for maintaining low Na+accumulation and salt tolerance in ammonium-supplied Sorghum bicolor. Plant Cell Physiol, 2017, 58: 522-536.
doi: 10.1093/pcp/pcw231 pmid: 28158828
[30] Ehlting B, Dluzniewska P, Dietrich H, Selle A, Teuber M, Ha¨nsch R, Nehls U, Polle A, Schnitzler J P, Rennenberg H, Gessler A. Interaction of nitrogen nutrition and salinity in grey poplar (Populus tremulaalba). Plant Cell Environ, 2007, 30: 796-811.
doi: 10.1111/j.1365-3040.2007.01668.x pmid: 17547652
[31] Sagi M, Dovrat A, Kipnis T, Lips H. Ionic balance, biomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass. J Plant Nutr, 1997, 20: 1291-1316.
doi: 10.1080/01904169709365336
[32] Aslam M, Huffaker R C, Rains D W. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol, 1984, 76: 321-325.
doi: 10.1104/pp.76.2.321 pmid: 16663840
[33] 龚明, 赵方杰, 吴颂如, 汪良驹, 刘友亮. NaCl胁迫对大麦硝酸盐吸收和有关的酶活的影响. 植物生理学通讯, 1990, (2): 13-16.
Gong M, Zhao F J, Wu S R, Wang L J, Lui Y L. Influences of NaCl stress on nitrate uptake and related enzyme activities of barley seedings. Plant Physiol Biochem, 1990, (2): 13-16. (in Chinese with English abstract)
[34] Tavakkoli E, Fatehi F, Coventry S. Pichu Rengasamy P, McDonald G K. Additive effects of Na+ and Cl- ions on barley growth under salinity stress. J Exp Bot, 2011, 62: 2189-2203.
doi: 10.1093/jxb/erq422 pmid: 21273334
[35] 高奔, 宋杰, 刘金萍, 隋娜, 范海, 王宝山. 盐胁迫对不同生境盐地碱蓬光合及离子积累的影响. 植物生态学报, 2010, 34: 671-677.
doi: 10.3773/j.issn.1005-264x.2010.06.006
Gao B, Song J, Liu J P, Sui N, Fan H, Wang B S. Effects of salt stress on photosynthesis and ion accumulation patterns of Suaeda salsa under different habitats. Chin J Plant Ecol, 2010, 34: 671-677. (in Chinese with English abstract)
[36] Aslam M, Huffaker R C, William R D. Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiol, 1984, 76: 321-325.
doi: 10.1104/pp.76.2.321 pmid: 16663840
[37] Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285: 1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050
[38] 孔伟伟. 花生质膜H+-ATPase基因AhHA1在盐胁迫响应中的功能研究. 山东师范大学硕士学位论文, 山东济南, 2020.
[41] Yin X Y, Yang A F, Zhang K W, Zhang J R. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin, 2004, 46: 854-861.
[42] Fan Y, Wan S, Jiang Y, Xia Y Q, Chen X H, Gao M Z, Cao Y X, Luo Y H, Zhou Y, Jiang X Y. Over-expression of a plasma membrane H+-ATPase Sp AHA1 conferred salt tolerance to transgenic Arabidopsis. Protoplasma, 2018, 255: 1827-1837.
doi: 10.1007/s00709-018-1275-4
[43] Roy M, Wu R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci, 2002, 163: 987-992.
doi: 10.1016/S0168-9452(02)00272-8
[44] 姜平平, 潘雷雷, 黄建斌, 纪红昌, 唐艳艳, 于明洋, 朱虹, 隋炯明, 王晶珊, 乔利仙. 花生AhLea-D基因的克隆及耐盐性验证. 农业生物技术学报. 2020, 28: 811-822.
Jiang P P, Pan L L, Huang J B, Ji H C, Tang Y Y, Yu M Y, Zhu H, Sui J M, Wang J S, Qiao L X. Cloning and salt tolerance validation of AhLea-D gene in peanut (Arachis hypogaea). J Agric Biotechnol, 2020, 28: 811-822. (in Chinese with English abstract)
[38] Kong W W. Role of Peanut Plasma Membrane H+-ATPase Gene AhHA1 in Salt Stress Response. MS Thesis of Shandong Normal University, Jinan, Shandong, China, 2020. (in Chinese with English abstract)
[39] Mellidou I, Moschou P N, Ioannidis N E, Pankou C, Gemes K, Valassakis C, Andronis E A, Beris D, Haralampidis K, Roussis A, Karamanoli A, Matsi T, Kotzabasis K, Constantinidou H I, Roubelakis-Angelakis K A. Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Front Plant Sci, 2016, 7: 379.
[40] Koubaa S, Brini F. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. Plant Physiol Biochem, 2020, 156: 396-406.
doi: 10.1016/j.plaphy.2020.09.028
[1] HU Mei-Ling, ZHI Chen-Yang, XUE Xiao-Meng, WU Jie, WANG Jin, YAN Li-Ying, WANG Xin, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, JIANG Hui-Fang, LEI Yong, LIAO Bo-Shou. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2498-2504.
[2] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[3] HUANG Li, CHEN Wei-Gang, LI Wei-Tao, YU Bo-Lun, GUO Jian-Bin, ZHOU Xiao-Jing, LUO Huai-Yong, LIU Nian, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Identification of major QTLs for nodule formation in peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2097-2104.
[4] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[5] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[6] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[7] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[8] SUN Quan-Xi, YUAN Cui-Ling, MOU Yi-Fei, YAN Cai-Xia, ZHAO Xiao-Bo, WANG Juan, WANG Qi, SUN Hui, LI Chun-Juan, SHAN Shi-Hua. Genome-wide identification and expression analysis of SWEET genes from peanut genomes [J]. Acta Agronomica Sinica, 2023, 49(4): 938-954.
[9] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[10] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[11] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[12] GUO Jian-Bin, CHENG Liang-Qiang, LI Wei-Tao, LIU Nian, LUO Huai-Yong, DING Ying-Bin, YU Bo-Lun, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Correlation analysis of sucrose content with protein and oil content and QTL mapping of sucrose content in peanut [J]. Acta Agronomica Sinica, 2023, 49(10): 2698-2704.
[13] ZOU Xiao-Xia, LIN Yi-Min, ZHAO Ya-Fei, LIU Yan, LIU Juan, WANG Yue-Fu, WANG Wei- Hua. Effects of calcium application on the distribution of photosynthetic carbon in plant-soil system at different peanut pod development stages [J]. Acta Agronomica Sinica, 2023, 49(1): 239-248.
[14] DING Hong, ZHANG Zhi-Meng, XU Yang, ZHANG Guan-Chu, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang. Physiological and transcriptional regulation mechanisms of nitrogen alleviating drought stress in peanut [J]. Acta Agronomica Sinica, 2023, 49(1): 225-238.
[15] ZHANG Sheng-Zhong, HU Xiao-Hui, CI Dun-Wei, YANG Wei-Qiang, WANG Fei-Fei, QIU Jun-Lan, ZHANG Tian-Yu, ZHONG Wen, YU Hao-Liang, SUN Dong-Ping, SHAO Zhan-Gong, MIAO Hua-Rong, CHEN Jing. QTLs analysis for reticulation thickness based on reconstruction of three dimensional models in peanut pods [J]. Acta Agronomica Sinica, 2022, 48(8): 1894-1904.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .