Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2064-2076.doi: 10.3724/SP.J.1006.2023.23067

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020

BAI Yan1(), GAO Ting-Ting2, LU Shi2, ZHENG Shu-Bo2, LU Ming2,*()   

  1. 1 National Agro Technical Extension and Service Center, Beijing 100125, China
    2 Jilin Academy of Agricultural Sciences / National Engineering Research Center of Major Food Crops / National Engineering Research Center for Maize (Jilin) / Key Laboratory Biology and Genetic Improvement of Maize in Northeast Region, Ministry of Agriculture and Rural Affairs, Changchun 130033, Jilin, China
  • Received:2022-09-30 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-21
  • Contact: LU Ming E-mail:by271039957@163.com;lum7893@163.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02);Horizontal Scientific Research Program of National Agro Technical Extension and Service Center.

Abstract:

Seed is the chip of agriculture and the upgrading of excellent varieties has played an important role in improving the yield of corn in China. It is of great practical significance to study the historical contribution and developing trend of mega maize varieties in China in recent 40 years. Based on the dataset of planting area of individual maize varieties released by the National Extension and Service Center of Agricultural Technology from 1982 to 2020, 27 mega maize varieties such as Zhengdan 958 in recent 40 years with the total promotion of 321 million hectares accounting for 29.09% of the total corn planting area in China were screened..There were four utmost mega varieties (Zhengdan 958, Zhongdan 2, Danyu 13, and Xianyu 335) and six massive mega varieties (Jundan 20, Yedan 2, Nongda 108, Yedan 13, Sidan 19, and Yandan 14). The promotion period was 8-30 years, with an average of 17.63 years, the maximum promotion area in a single year was 699,700-4,569,500 hm2, with an average of 1,507,900 hm2. It was mainly distributed in Shandong, Henan, Hebei, Jilin, Heilongjiang, Inner Mongolia, and other production regions and the provinces (regions) with 13 varieties exceeding 666,700 hm2 per year were Shandong, Henan, Hebei, Jilin, Heilongjiang, Inner Mongolia, Liaoning, and Sichuan. The proportion of planting area of mega varieties to the total area increased rapidly from 1982 to 1989, remained stable from 1990 to 1997, decreased after 1998, and decreased to about 12% by 2020. Some varieties such as Yufeng 303 and Zhongkeyu 505 had the potential to develop into mega varieties. In the future, intelligent design breeding will efficiently cultivate a new generation of breakthrough varieties and accelerate the improvement of maize yield. According to the current maize production problems and future development trends, it is recommended to further improve the regional test of maize varieties in terms of distribution layout, test accuracy and variety approval standards of regional tests.

Key words: the year from 1982 to 2020, maize, mega variety, historical evolution, developing trend

Fig. 1

Dynamic change of maize variety numbers planting area in China from 1982 to 2020 A: more than 0.67×104 hm2; B: more than 66.7×104 hm2."

Table 1

Accumulative planting area of maize mega varieties in China from 1982 to 2020"

大品种
Mega
variety
累计推广面积
Total planting area
单年最大面积
The largest area in one year
面积列前三名年数
Duration with area
ranking in top 3
起始
Starting
year
终止
Ending
year
年数
Number
of years
面积
Area
(×104 hm2)
年份
Year
面积
Area
(×104 hm2)
起始
Starting
year
终止
Ending
year
年数
Number
of years
中单2号 Zhongdan 2 1982 2011 30 3237.13 1989 228.93 1982 1999 17
丹玉6号 Danyu 6 1982 1990 9 256.73 1982 108.27 1982 1982 1
郑单2号 Zhengdan 2 1982 1996 15 246.33 1982 83.47 1982 1983 2
鲁原单4号 Luyuandan 4 1982 1989 8 204.13 1982 69.67 1983 1983 1
四单8号 Sidan 8 1982 1993 12 696.67 1986 103.93 1984 1986 3
吉单101 Jidan 101 1982 2000 19 337.20 1984 75.20 1984 1984 1
烟单14 Yandan 14 1983 2008 26 1039.60 1987 119.80 1985 1988 4
丹玉13 Danyu 13 1985 2009 25 2810.47 1989 350.07 1987 1996 10
掖单2号 Yedan 2 1982 2004 23 1871.07 1994 157.20 1989 1998 10
掖单4号 Yedan 4 1986 2003 18 721.07 1990 124.40 1990 1990 1
掖单13 Yedan 13 1991 2012 22 1557.40 1995 226.47 1992 1999 8
沈单7号 Shendan 7 1987 2001 15 500.00 1992 70.07
掖单12 Yedan 12 1991 2003 13 566.27 1996 96.27
掖单19号 Yedna 19 1994 2009 16 421.80 1996 96.87
本玉9号 Benyu 9 1991 2009 19 583.60 1997 96.47
四单19 Sidan 19 1992 2017 26 1077.13 1999 86.53
西玉3号 Xiyu 3 1993 2008 16 333.73 1998 70.33
鲁单50 Ludan 50 1997 2009 13 333.00 1999 79.27 2000 2001 2
农大108 Nongda 108 1998 2020 23 1837.13 2002 273.27 2000 2003 4
豫玉22 Yuyu 22 1997 2020 24 728.33 2003 115.40 2001 2003 3
郑单958 Zhengdan 958 2001 2020 20 5971.12 2012 456.95 2002 2020 19
鲁单981 Ludan 981 2000 2019 20 579.33 2007 88.80 2004 2008 5
浚单20 Xundan 20 2004 2020 17 1923.19 2010 309.30 2007 2015 9
先玉335 Xianyu 335 2006 2020 15 2368.50 2012 281.02 2009 2019 11
德美亚1号 Demeiya 1 2008 2020 13 491.28 2014 72.87
京科968 Jingke 968 2012 2020 9 740.99 2018 134.53 2016 2020 5
登海605 Denghai 605 2011 2020 10 649.78 2016 95.93

Table 2

List of maize varieties with the three first annual planting area in China from 1982 to 2020"

年份
Year
第1名The first place 第2名 The second place 第3名 The third place
品种
Variety
面积Area
(×104 hm2)
品种
Variety
面积Area
(×104 hm2)
品种
Variety
面积Area
(×104 hm2)
1982 中单2号 Zhongdan 2 160.20 丹玉6号 Danyu 6 108.27 郑单2号 Zhengdan 2 83.47
1983 中单2号 Zhongdan 2 175.27 郑单2号 Zhengdan 2 65.47 鲁原单4号 Luyuandan 4 64.53
1984 中单2号 Zhongdan 2 175.80 四单8号 Sidan 8 78.60 吉单101 Jidan 101 75.20
1985 中单2号 Zhongdan 2 197.67 四单8号 Sidan 8 98.33 烟单14 Yandan 14 79.67
1986 中单2号 Zhongdan 2 207.80 四单8号 Sidan 8 103.93 烟单14 Yandan 14 98.67
1987 丹玉13 Danyu 13 224.93 中单2号 Zhongdan 2 171.53 烟单14 Yandan 14 119.40
1988 丹玉13 Danyu 13 304.33 中单2 号Zhongdan 2 193.73 烟单14 Yandan 14 97.40
1989 丹玉13 Danyu 13 350.07 中单2号 Zhongdan 2 228.93 掖单2号 Yedan 2 138.53
1990 丹玉13 Danyu 13 300.80 中单2号 Zhongdan 2 187.07 掖单4号 Yedan 4 124.40
1991 丹玉13 Danyu 13 312.33 中单2号 Zhongdan 2 185.13 掖单2号 Yedan 2 156.80
1992 丹玉13 Danyu 13 218.60 中单2号 Zhongdan 2 198.00 掖单13 Yedan 13 98.13
1993 丹玉13 Danyu 13 197.00 掖单2号 Yedan 2 151.13 中单2号 Zhongdan 2 142.07
1994 丹玉13 Danyu 13 192.73 掖单13 Yedan 13 160.47 掖单2号 Yedan 2 157.20
1995 掖单13 Yedan 13 226.47 丹玉13 Danyu 13 189.20 中单2 号Zhongdan 2 165.13
1996 掖单13 Yedan 13 210.00 中单2号 Zhongdan 2 169.07 丹玉13 Danyu 13 149.00
1997 掖单13 Yedan 13 200.20 中单2号 Zhongdan 2 116.13 掖单2号 Yedan 2 104.40
1998 掖单13 Yedan 13 150.53 中单2号 Zhongdan 2 105.33 掖单2号 Yedan 2 101.20
1999 掖单13 Yedan 13 102.27 四单19 Sidan19 86.53 中单2号 Zhongdan 2 82.87
2000 农大108 Nongda108 187.40 掖单13 Yedan 13 109.07 鲁单50 Ludan 50 74.07
2001 农大108 Nongda108 254.00 豫玉22 Yuyu 22 73.13 鲁单50 Ludan 50 64.07
2002 农大108 Nongda108 273.27 豫玉22 Yuyu 22 98.00 郑单958 Zhengdan 958 88.27
2003 农大108 Nongda108 234.20 郑单958 Zhengdan 958 140.93 豫玉22 Yuyu 22 115.40
2004 郑单958 Zhengdan 958 286.27 农大108 Nongda108 181.33 鲁单981 Ludan 981 76.20
2005 郑单958 Zhengdan 958 345.13 农大108 Nongda108 145.13 鲁单981 Ludan 981 69.00
2006 郑单958 Zhengdan 958 390.53 农大108 Nongda108 96.33 鲁单981 Ludan 981 76.73
2007 郑单958 Zhengdan 958 379.40 浚单20 Xundan 20 109.73 鲁单981 Ludan 981 88.80
2008 郑单958 Zhengdan 958 380.27 浚单20 Xundan 20 163.87 鲁单981 Ludan 981 58.87
2009 郑单958 Zhengdan 958 454.00 浚单20 Xundan 20 245.20 先玉335 Xianyu 335 112.80
2010 郑单958 Zhengdan 958 415.05 浚单20 Xundan 20 309.30 先玉335 Xianyu 335 191.91
2011 郑单958 Zhengdan 958 452.15 先玉335 Xianyu 335 238.13 浚单20 Xundan 20 220.08
2012 郑单958 Zhengdan 958 456.95 先玉335 Xianyu 335 281.02 浚单20 Xundan 20 191.44
2013 郑单958 Zhengdan 958 431.93 先玉335 Xianyu 335 268.13 浚单20 Xundan 20 159.27
2014 郑单958 Zhengdan 958 360.37 先玉335 Xianyu 335 270.76 浚单20 Xundan 20 112.93
2015 郑单958 Zhengdan 958 308.65 先玉335 Xianyu 335 248.97 浚单20 Xundan 20 94.44
2016 郑单958 Zhengdan 958 262.92 先玉335 Xianyu 335 217.50 京科968 Jingke 968 134.47
2017 郑单958 Zhengdan 958 229.41 先玉335 Xianyu 335 168.42 京科968 Jingke 968 134.39
2018 郑单958 Zhengdan 958 204.95 先玉335 Xianyu 335 135.14 京科968 Jingke 968 134.53
2019 郑单958 Zhengdan 958 187.87 京科968 Jingke 968 97.27 先玉335 Xianyu 335 88.87
2020 郑单958 Zhengdan 958 186.53 京科968 Jingke 968 99.53 裕丰303 Yufeng 303 97.33

Fig. 2

Contribution of maize mega varieties in China to the promotion of yield improvement from 1982 to 2020"

Fig. 3

Top 10 provinces for maize mega variety planting in China from 1982 to 2020 A: 1982-2020; B: 1982-1990; C: 1991-2000; D: 2001-2010; E: 2011-2020; SD: Shandong; HN: Henan; JL: Jilin; SC: Sichuan; HB: Hebei; LN: Liaoning; SX1: Shanxi; HLJ: Heilongjiang; IM: Inner Mongolia; SX2: Shaanxi; AH: Anhui; GS: Gansu."

Table 3

Provinces with more than 66.7×104 hm2 of maize varieties in China in a single year from 1982 to 2020"

省(区)
Province (region)
品种(年份)
Variety (year)
山东 Shandong 掖单2号 Yedan 2 (1989, 1991), 掖单13 Yedan 13 (1996), 鲁单50 Ludan 50 (1999), 农大108 Nongda 108 (2001-2002), 豫玉22 Yuyu 22 (2002), 郑单958 Zhengdan 958 (2006, 2009-2013, 2015-2018)
河南 Henan 丹玉13 Danyu 13 (1989-1992), 郑单958 Zhengdan 958 (2004-2013), 浚单20 Xundan 20 (2008-2012)
河北 Hebei 郑单958 Zhengdan 958 (2005-2017)
吉林 Jilin 四单8号 Sidan 8 (1984-1986), 中单2号 Zhongdan 2 (1992), 先玉335 Xianyu 335 (2010-2012)
黑龙江 Heilongjiang 德美亚1号 Demeiya 1 (2014-2015)
内蒙古 Inner Mongolia 京科968 Jingke 968 (2016-2020)
辽宁 Liaoning 丹玉13 Danyu 13 (1988, 1990)
四川 Sichuan 中单2号 Zhongdan 2 (1989, 1990)

Fig. 4

"

[1] 仇焕广, 李新海, 余嘉玲. 中国玉米产业:发展趋势与政策建议. 农业经济问题, 2021, (7): 4-16.
Qiu H G, Li X H, Yu J L, China’s corn industry: development trends and policy recommendations. Agric Econ Issues, 2021, (7): 4-16. (in Chinese with English abstract)
[2] 戴景瑞, 鄂立柱. 我国玉米育种科技创新问题的几点思考. 玉米科学, 2010, 18(1): 1-5.
Dai J R, E L Z. Some thoughts on scientific and technological innovation of maize breeding in my country. J Maize Sci, 2010, 18(1): 1-5. (in Chinese with English abstract)
[3] 戴景瑞, 鄂立柱. 百年玉米,再铸辉煌——中国玉米产业百年回顾与展望. 农学学报, 2018, 8(1): 74-79.
Dai J R, E L Z. From the past centennial progress to more brilliant achievements in the future: the history and prospects of maize industrialization in China. J Agric, 2018, 8(1): 74-79. (in Chinese with English abstract)
[4] 吴永常, 马忠玉, 王东阳, 姜洁. 我国玉米品种改良在增产中的贡献分析. 作物学报, 1998, 24: 595-600.
Wu Y C, Ma Z Y, Wang D Y, Jiang J. Contribution analysis of improved maize varieties in yield increase in my country. Acta Agron Sin, 1998, 24: 595-600. (in Chinese with English abstract)
[5] 王振华, 刘文国, 高世斌, 李新海. 玉米种业的昨天、今天和明天. 中国畜牧业, 2021, (19): 26-32.
Wang Z H, Liu W G, Gao S B, Li X H. Past, now and future of corn seed industry. China Anim Ind, 2021, (19): 26-32. (in Chinese)
[6] 孙世贤. 我国杂交玉米品种推广与成效. 作物杂志, 2010, (3): 121-124.
Sun S X. Popularization and effect of hybrid maize varieties in my country. Crops, 2010, (3): 121-124. (in Chinese)
[7] 孙世贤. “九五”期间我国玉米品种已基本实现一次更换. 种子科技, 2000, (6): 30-32.
Sun S X. During the “Ninth Five-Year Plan” period, my country’s corn varieties have basically achieved one replacement. Seed Sci Tech, 2000, (6): 30-32. (in Chinese)
[8] 马文慧, 郑淑波, 李岩, 路明. 吉林省玉米单产发展历程与提升路径分析. 中国农业科技导报, 2021, 23(12): 13-19.
Ma W H, Zheng S B, Li Y, Lu M. Analysis on the development process promotion path of maize yield in Jilin province. J Agric Sci Technol, 2021, 23(12): 13-19 (in Chinese with English abstract).
[9] Wang T Y, Ma X L, Li Y, Bai D P, Liu C, Liu Z Z, Tan X J, Shi Y S, Song Y C, Carlone M, Bubeck D, Bhardwaj H, Jones E, Wright K, Smith S.Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2001. Crop Sci, 2011, 51: 512-525.
doi: 10.2135/cropsci2010.06.0383
[10] Ci X K, Li M S, Xu J S, Lu Z Y, Bai P F, Ru G L, Liang X L, Zhang D G, Li X H, Bai L, Xie C X, Hao Z F, Zhang S H, Dong S T. Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica, 2012, 185: 395-406.
doi: 10.1007/s10681-011-0560-5
[11] Li Y X, Li Y, Ma X L, Liu C, Shi Y S, Song Y C, Zhang D F, Smith S, Wang T Y. Genetically mediated changes in the grain quality of single-cross maize hybrids grown in China. Crop Sci, 2015, 56: 132-142.
doi: 10.2135/cropsci2015.05.0301
[12] 胡昌浩, 董树亭, 王空军, 孙庆泉. 我国不同年代玉米品种生育特性演进规律研究: I. 产量性状的演进. 玉米科学, 1998, 6(2): 44-48.
Hu C H, Dong S T, Wang K J, Sun Q Q.Study on the evolution law of growth characteristics of maize varieties in different ages in my country: I. Evolution of yield characters. J Maize Sci, 1998, 6(2): 44-48. (in Chinese)
[13] 丰光, 刘志芳, 李妍妍, 景希强, 邢锦丰, 黄长玲. 中国不同时期玉米单交种产量变化的研究. 中国农业科学, 2010, 43: 277-285.
Feng G, Liu Z F, Li Y Y, Jing X Q, Xing J F, Huang C L. Study on trends in yield change for different period maize single cross hybrids in China. Sci Agric Sin, 2010, 43: 277-285. (in Chinese with English abstract)
[14] 张海燕, 孙琦, 张德贵, 石红良, 慈晓科, 李新海, 白丽, 陈岩, 周志强, 董树亭, 李明顺. 低氮胁迫下我国不同年代玉米品种产量及产量构成因子变化趋势研究. 玉米科学, 2013, 21(5): 13-17.
Zhang H Y, Sun Q, Zhang D G, Shi H L, Ci X K, Li X H, Bai L, Cheng Y, Zhou Z Q, Dong S T, Li M S. Trends of grain yield and component factor under low nitrogen in Chinese maize cultivars from different eras. J Maize Sci, 2013, 21(5): 13-17. (in Chinese with English abstract)
[15] 王晓东, 傅迎军, 孙殷会, 张庆娜, 王晓梅, 侯国强, 徐德海, 李凤海, 史振声. 我国北方玉米品种更替过程中产量杂种优势的演变. 玉米科学, 2017, 25(1): 24-28.
Wang X D, Fu Y J, Sun Y H, Zhang Q N, Wang X M, Hou G Q, Xu D H, Li F H, Shi Z S, Evolution of yield heterosis in the process of maize variety replacement in north China. J Maize Sci, 2017, 25(1): 24-28. (in Chinese with English abstract)
[16] 卢实, 李穆, 高婷婷, 王敏, 孟令聪, 郑淑波, 路明, 刘文国. 1999-2018年间国审玉米品种遗传产量增益及产量潜力分析. 中国农学通报, 2021, 37(21): 1-7.
doi: 10.11924/j.issn.1000-6850.casb2020-0357
Lu S, Li M, Gao T T, Wang M, Meng L C, Zheng S B, Lu M, Liu W G. National certified maize varieties during 1999-2018: analysis of genetic yield gain and yield potential. Chin Agric Sci Bull. 2021, 37(21): 1-7. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0357
[17] 王空军, 董树亭, 胡昌浩, 刘开昌, 孙庆泉. 我国1950s-1990s推广的玉米品种叶片光合特性演进规律研究. 植物生态学报, 2001, 25: 247-251.
Wang K J, Dong S T, Hu C H, Liu K C, Sun Q Q. Improvement in photosynthetic characteristics among maize varieties in China from the 1950s to the 1990s. Acta Phytoecol Sin, 2001, 25: 247-251. (in Chinese with English abstract)
[18] 王空军, 郑洪建, 刘开昌, 张吉旺, 董树亭, 胡昌浩. 我国玉米品种更替过程中根系时空分布特性的演变. 植物生态学报, 2001, 25: 472-475.
Wang K J, Zheng H J, Liu K C, Zhang J W, Dong S T, Hu C H. Evolution of maize root distribution in space-time during maize varieties replacing in China. Acta Phytoecol Sin, 2001, 25: 472-475. (in Chinese with English abstract)
[19] 王空军, 董树亭, 胡昌浩, 刘开昌, 张吉旺. 我国玉米品种更替过程中根系生理特性的演进: I. 根系活性与ATPase活性的变化. 作物学报, 2002, 28: 185-189.
Wang K J, Dong S T, Hu C H, Liu K C, Zhang J W. The Evolution of physiological characteristics of maize root during varieties replacing in China, 1950s to 1990s: I. Changes of root vigor & ATPase activity. Acta Agron Sin, 2002, 28: 185-189. (in Chinese with English abstract)
[20] 王空军, 董树亭, 胡昌浩, 刘开昌, 张吉旺. 我国玉米品种更替过程中根系生理特性的演进: II. 根系保护酶活性及膜脂过氧化作用的变化. 作物学报, 2002, 28: 384-388.
Wang K J, Dong S T, Hu C H, Liu K C, Zhang J W. The evolution of physiological characteristics of maize root during varietal replace in China, 1950s to 1990s: II. Changes of the protective enzyme activities and lipid peroxidation. Acta Agron Sin, 2002, 28: 384-388. (in Chinese with English abstract)
[21] 孙庆泉, 胡昌浩, 董树亭, 王空军. 我国不同年代玉米品种生育全程根系特性演化的研究. 作物学报, 2003, 29: 641-645.
Sun Q Q, Hu C H, Dong S T, Wang K J, Evolution of root characters during all growth stage of maize cultivars in different eras in China. Acta Agron Sin, 2003, 29: 641-645. (in Chinese with English abstract)
[22] 孙琦, 张世煌, 慈晓科, 张德贵, 李新海, 郝转芳, 翁建峰, 白丽, 李明顺. 干旱条件下我国不同年代玉米品种保绿性比较. 玉米科学, 2013, 21(2): 71-77.
Sun Q, Zhang S H, Ci X K, Zhang D G, Li X H, Hao Z F, Weng J F, Bai L, Li M S. Comparison of leaf stay-green trait Chinese different era maize cultivars in drought environment. J Maize Sci, 2013, 21(2): 71-77. (in Chinese with English abstract)
[23] 刘艳秋, 李明顺, 李新海, 雍洪军, 颜娜, 周志强, 张晓星, 夏仁培, 张德贵, 郝转芳, 翁建峰, 白丽, 史振声, 张世煌. 1970s-2000s玉米主栽品种灌浆与脱水速率研究. 玉米科学, 2015, 23(1): 85-91.
Liu Y Q, Li M S, Li X H, Yong H J, Yan N, Zhou Z Q, Zhang X X, Xia R P, Zhang D G, Hao Z F, Weng J F, Bai L, Shi Z S, Zhang S H. Preliminary study on grain filling and dehydration rate of maize hybrids used predominantly in 1970s-2000s. J Maize Sci, 2015, 23(1): 85-91. (in Chinese with English abstract)
[24] 刘志铭, 张晓龙, 兰进好, 李广群, 刘光耀, 白雯斌, 王琴娣, 热依兰·阿布都米吉提, 王永军, 杨今胜. 1979-2020年我国玉米品种审定情况回顾与展望. 玉米科学, 2021, 29(2): 1-7.
Liu Z M, Zhang X L, Lan J H, Li G Q, Liu G Y, Bai W B, Wang Q D, Zeylan A, Wang Y J, Yang J S. Review and prospect of approved maize varieties in China from 1979 to 2020. J Maize Sci, 2021, 29(2): 1-7. (in Chinese with English abstract)
[25] 宋新莉. 农作物大品种成因分析. 中国种业, 2021, (6): 7-9.
Song X L. Analysis on the causes of large varieties of crops. Chin Seed Ind, 2021, (6): 7-9. (in Chinese)
[26] 黎裕, 王天宇. 我国玉米育种种质基础与骨干亲本的形成. 玉米科学, 2010, 18(5): 1-8.
Li Y, Wang T Y. Germplasm base of maize breeding in China and Formation of Foundation Parents. J Maize Sci, 2010, 18(5): 1-8. (in Chinese with English abstract)
[27] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47: 1843-1853.
doi: 10.3724/SP.J.1006.2021.13012
Zhou B Y, Ge J Z, Sun X F, Han Y L, Ma W, Ding Z S, Li C F, Zhao M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agron Sin, 2021, 47: 1843-1853. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.13012
[28] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44: 137-143.
doi: 10.3724/SP.J.1006.2018.00137
Ren B Z, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agron Sin, 2018, 44: 137-143. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00137
[29] 白彩云, 李少昆, 张厚宝, 柏军华, 谢瑞芝, 孟磊. 郑单958在东北春玉米区生态适应性研究. 作物学报, 2010, 36: 296-302.
doi: 10.3724/SP.J.1006.2010.00296
Bai C Y, Li S K, Zhang H B, Bai J H, Xie R Z, Meng L. Ecological adaptability of Zhengdan 958 hybrid in Northeast of China. Acta Agron Sin, 2010, 36: 296-302 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2010.00296
[30] 李海明, 胡瑞法, 张世煌. 外来种质对中国玉米生产的遗传贡献. 中国农业科学, 2005, 38: 2189-2197.
Li H M, Hu R F, Zhang S H. The impacts of US and CGIAR’s germplasm on maize production in China. Sci Agric Sin, 2005, 38: 2189-2197. (in Chinese with English abstract)
[31] 许启凤. 优质、高产玉米新品种农大108的选育与推广. 中国农业大学学报, 2003, 8(1): 25-26.
Xu Q F. Breeding and popularization of new maize variety Nongda 108 with high quality and high yield. J China Agric Univ, 2003, 8(1): 25-26. (in Chinese with English abstract)
[32] 吴纪昌, 张铁一, 陈刚.丹玉13. 作物杂志, 1986, (2): 36.
Wu J C, Zhang T Y, Chen G. DanYu No.13. Crops, 1986, (2): 36. (in Chinese)
[33] 吴晋源, 侯有良, 卢保红, 魏荣业, 张广峰, 杜如姗, 钟改荣. 先玉335应用对我国玉米产业技术的影响. 山西农业科学, 2013, 41: 304-306.
Wu J Y, Hou Y L, Lu B H, Wei R Y, Zhang G F, Du R S, Zhong G R. Effect of Xianyu 335 application on maize industrial technology system in China. Shanxi Agric Sci, 2013, 41: 304-306.
[34] 樊伟民. 早熟品种德美亚1号对黑龙江省玉米产业的影响. 中国种业, 2015, (10): 43-44.
Fan W M. The impact of the early-maturing variety Demeiya 1 on the corn industry in Heilongjiang province. Chin Seed Ind, 2015, (10): 43-44. (in Chinese)
[35] 孙世贤. 国家玉米品种区域试验改革思路探讨. 种子科技, 1999, (1): 3-4.
Sun S X. Discussion on the reform thinking of national maize variety regional test. Seed Sci Tech, 1999, (1): 3-4. (in Chinese)
[36] 佟屏亚. 横亘20年郑单958依然市场唱主角. 种子科技, 2020, 38(21): 1-2.
Tong P Y. After 20 years, Zhengdan 958 still plays the leading role in the market. Seed Sci Tech, 2020, 38(21): 1-2. (in Chinese)
doi: 10.15258/sst
[37] 费继飞, 王行川, 陈瑞杰, 张长征, 高飞, 王爱芬, 原志强, 刘青培, 刘东胜, 王义波. 玉米新品种‘裕丰303’的商业育种问题讨论. 中国农学通报, 2020, 36(27): 26-32.
doi: 10.11924/j.issn.1000-6850.casb20190900641
Fei J F, Wang X C, Chen R J, Zhang C Z, Gao F, Wang A F, Yuan Z Q, Liu Q P, Liu D S, Wang Y B. Maize new variety ‘Yufeng 303’ commercial breeding. Chin Agric Sci Bull, 2020, 36(27): 26-32. (in Chinese with English abstract)
[38] 费继飞, 孙招, 王行川, 高飞, 刘青培, 王爱芬, 原志强, 陈瑞杰, 刘东胜, 王义波. 玉米新品种‘中科玉505’的选育及相关商业育种问题探讨. 中国农学通报, 2021, 37(18): 6-13.
doi: 10.11924/j.issn.1000-6850.casb2020-0841
Fei J F, Sun Z, Wang X C, Gao F, Liu Q P, Wang A F, Yuan Z Q, Chen R J, Liu D S, Wang Y B. The breeding of corn hybrid ‘Zhongkeyu 505’ and its implication for commercial breeding. Chin Agric Sci Bull, 2021, 37(18): 6-13. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb2020-0841
[39] 覃志豪, 唐华俊, 李文娟, 赵书河. 气候变化对农业和粮食生产影响的研究进展与发展方向. 中国农业资源与区划, 2013, 34(5): 1-7.
Qin Z H, Tang H J, Li W J, Zhao S H. Progress and directions in studying the impacts of climate change on agriculture and grain production in China. Chin J Agric Resour Region Plan, 2013, 34(5): 1-7. (in Chinese with English abstract)
[40] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响. 作物学报, 2022, 48: 1537-1545.
doi: 10.3724/SP.J.1006.2022.03061
Li Y W, Lyu H Q. Effect of agricultural meteorological disasters on the production corn in the northeast China. Acta Agron Sin, 2022, 48: 1537-1545. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03061
[41] 赵海燕, 张文千, 邹旭恺, 张强, 沈子琦, 梅平. 气候变化背景下中国农业干旱时空变化特征分析. 中国农业气象, 2021, 42: 69-79.
Zhao H Y, Zhang W Q, Zou X K, Zhang Q, Shen Z Q, Mei P. Temporal and spatial characteristics of drought in China under climate change. Chin J Agron, 2021, 42: 69-79. (in Chinese with English abstract)
[42] 高江波, 刘路路, 郭灵辉, 孙东琪, 刘婉露, 侯文娟, 吴绍洪. 气候变化和物候变动对东北黑土区农业生产的协同作用及未来粮食生产风险. 地理学报, 2022, 77: 1681-1700.
doi: 10.11821/dlxb202207008
Gao J B, Liu L L, Guo L H, Sun D Q, Liu W L, Hou W J, Wu S H. The synergistic effect of climate change and phenological change on agricultural production in the black soil region of northeast China and the risk of future food production. Acta Geogr Sin, 2022, 77: 1681-1700. (in Chinese with English abstract)
[43] 毛喜玲, 殷淑燕, 刘海红. 1960-2020年华北地区玉米单产对气候变化的响应. 干旱区资源与环境, 2022, 36(10): 193-200.
Mao X L, Yin S Y, Liu H H. Response of maize yield to climate change in north China from 1960 to 2020. J Arid Land Res Environ, 2022, 36(10): 193-200. (in Chinese with English abstract)
[44] 陈翔, 鲍杨俊, 李庆, 丁井魁, 杨明珠, 王冬阳, 曹祖航, 贺亮, 宋有洪. 黄淮海夏玉米花期高温发生特点、危害机理与防控措施综述. 安徽农业大学学报, 2020, 47: 304-308.
Chen X, Bao Q J, Li Q, Ding J K, Yang M Z, Wang D Y, Cao Z H, He L, Song Y H. Review on characteristics of high temperature and its damage, and prevention measures of summer maize in Huang-Huai-Hai area. J Anhui Agric Univ, 2020, 47: 304-308. (in Chinese with English abstract)
[45] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49: 167-176.
doi: 10.3724/SP.J.1006.2023.23007
Shang M F, Shi X Y, Zhao J C, Li S, Chu Q Q. Spatiotemporal variation of high temperature stress in different regions of China under climate change. Acta Agron Sin, 2023, 49: 167-176. (in Chinese with English abstract)
[46] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响. 作物学报, 2022, 48: 1537-1545.
doi: 10.3724/SP.J.1006.2022.03061
Li Y J, Lyu H Q. Effect of agricultural meteorological disasters on the production corn in the Northeast China. Acta Agron Sin, 2022, 48: 1537-1545. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.03061
[47] 李新海, 谷晓峰, 马有志, 邱丽娟, 黎裕, 万建民. 农作物基因设计育种发展现状与展望. 中国农业科技导报, 2020, 22(8): 1-4.
doi: 10.13304/j.nykjdb.2020.0636
Li X H, Gu X F, Ma Y Z, Qiu L J, Li Y, Wan J M. Current status and perspectives in the development of crop genomic design breeding. J Agric Sci Technol, 2020, 22(8): 1-4. (in Chinese with English abstract)
[48] 汪海, 赖锦盛, 王海洋, 李新海. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制. 中国农业科技导报, 2022, 24(6): 1-8.
doi: 10.13304/j.nykjdb.2022.0391
Wang H, Lai J S, Wang H Y, Li X H. Bipartite intelligent design of crops—intelligent combination of natural variation and intelligent creation of artificial variation. J Agric Sci Technol, 2022, 24(6): 1-8. (in Chinese with English abstract)
[1] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[2] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[3] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[4] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[5] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[6] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[7] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[8] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[9] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[10] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[11] LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652.
[12] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[13] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[14] ZHANG Jun-Jie, CHEN Jin-Ping, TANG Yu-Lou, ZHANG Rui, CAO Hong-Zhang, WANG Li-Juan, MA Meng-Jin, WANG Hao, WANG Yong-Chao, GUO Jia-Meng, KRISHNA SV Jagadish, YANG Qing-Hua, SHAO Rui-Xin. Effects of drought stress before and after anthesis on photosynthetic characteristics and yield of summer maize after re-watering [J]. Acta Agronomica Sinica, 2023, 49(5): 1397-1409.
[15] YUE Hai-Wang, HAN Xuan, WEI Jian-Wei, ZHENG Shu-Hong, XIE Jun-Liang, CHEN Shu-Ping, PENG Hai-Cheng, BU Jun-Zhou. Comprehensive evaluation of maize hybrids tested in Huang-Huai-Hai summer maize regional trial based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1231-1248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .