Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2077-2087.doi: 10.3724/SP.J.1006.2023.23062

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and gene localization of a novel maize nuclear male sterility mutant ms6

WANG Xing-Rong1(), ZHANG Yan-Jun1, TU Qi-Qi2, GONG Dian-Ming2,*(), QIU Fa-Zhan2,*()   

  1. 1 Crops Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2 Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2022-09-23 Accepted:2023-02-21 Online:2023-08-12 Published:2023-03-10
  • Contact: GONG Dian-Ming,QIU Fa-Zhan E-mail:wxr_0618@163.com;gongdianming@mail.hzau.edu.cn;qiufazhan@mail.hzau.edu.cn
  • Supported by:
    Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation(2022021302024852);Research Condition Construction and Achievement Transformation Project of Gansu Academy of Agricultural Sciences(2021GAAS04);Key Talent Project of Gansu Province(Crop Germplasm Resources Protection and Utilization Talent Training). and National Natural Science Foundation of China(31960405)

Abstract:

The localization, cloning, and functional mechanism research of male sterility genes can not only deepen our understanding of the molecular regulation mechanism of male flower growth and development, but also effectively promote the development of male sterility technology system and its application in maize breeding and seed production in maize. In this study, maize inbred line Mo17 was used as the wild-type background material, and a maize male sterile mutant, named male sterile 6 (ms6), was obtained by EMS mutagenesis. Phenotypic identification of ms6 mutant plants showed that they could perform normal tasseling, but the male flower glume could not dehiscence and powder could not disperse normally, and the pollen grains were dry, indicating pollen free sterility. Meanwhile, there were no significant differences between ms6 and Mo17 wild type (WT) in plant architecture, ear-related traits, kernel size, and other related traits, demonstrating that the ms6 gene only affected plant fertility, but did not affect other agronomic traits. Cytological observation revealed that the microspore of ms6 mutant was abnormal at the late stage of microspore development, which showed that tapetal cells were degenerated in advance, and the microspore could not undergo mitosis and gradually split. Scanning electron microscopy demonstrated that the anther epidermis of mutant ms6 were shrunk, and there was no intact pollen or ubisch on the inner surface of anther locule. Genetic analysis revealed that the ms6 phenotype was controlled by a pair of recessive nuclear genes. Combined with phenotypic and genotypic linkage analysis, ms6 was initially located between C6-19 and C6-30 on maize chromosome 6 by using the ms6 × B73 F2 genetic mapping population and about 200 pairs of polymorphic SSR markers in the whole genome, and 10 pairs of newly developed polymorphic markers in the interval were further used. Finally, ms6 was located within the interval of about 480 kb between M13-M14. Gene mapping located the mutation site into a 480 kb interval between M13 and M14. Zm00001d035201 was preliminarily identified as the key candidate gene of ms6 by RNA-Seq combined with qRT-PCR. Zm00001d035201 encoded an acid ribosomal protein. This study provides a solid foundation for further studies on the function of ms6 gene. Meanwhile, as a novel male sterile mutant, ms6 also provides the important material support for the production and application of new maize genetic sterile genes in the future.

Key words: maize, male sterile, ms6, gene mapping, identification of candidate genes

Fig. 1

Phenotypic comparison of wild type (WT) and ms6 mutant A: the tassel of wild-type WT and ms6 mutant during pollen dispersal period. B: the anthers of WT and ms6; bars: 2 mm. The pollen grains of WT (C) and ms6 (D) after I2- KI staining; bars: 0.1 mm."

Fig. 2

Investigation of agronomy traits between ms6 mutant and wild type Comparison of various agronomic traits between ms6 mutant and wild type. HKW: 100-grain weight; EW: ear weight; KRN: kernel row number; KL: kernel length; KW: kernel weight; PH: plant height; EH: ear height; SBN: the number of tassel branches. All data are shown as means ± SDs and significance is estimated by t-test, NS: not significant difference."

Fig. 3

SEM observation of the anther in WT and ms6 mutant A: the pollen grains of the wild-type anthers; B: the shriveled pollen grains of the ms6 mutant anthers; C-D are the wild-type and mutant anther outer walls, respectively; E-F are wild-type and mutant anther inner walls, respectively. Ub: Ubisch. Magnifications are labeled in Fig. 3."

Fig. 4

Paraffin slices analysis of anthers at different developmental stages in WT and ms6 A-F: cytological observation of wild type anthers; G-L: cytological observation of ms6 mutant anthers; A and G: the prosporangium stage; B and H: the dyad stage; C and I: the tetrad stage; D and G: the early stage of mononuclear microspore; E and K: the middle and late stages of mononuclear microspore; F and L: the early stage of trinuclear cell. E: epidermis; En: endothecium; ML: middle layer; T: tapetum; Dy: dyad cell; Tds: tetrads; Msp: microspore; Bp: biceullar pollen; Mp: mature pollen. Bars: 50 μm."

Table 1

Genetic analysis of the ms6 locus"

群体
Population
总株数
Total number
可育株
Fertile plants
不育株
Sterile plants
可育/不育(3:1)
Fertility/sterile (3:1)
χ (3:1) χ20.05
ms6×B73 396 300 96 3.13 0.12 3.84
ms6×Mo17 159 116 43 2.70 0.35

Table 2

Primers used in this study"

引物
Primer name
序列
Primer sequence (5°-3°)
引物
Primer name
序列
Primer sequence (5°-3°)
IN34-F AGCACGGAGAAATGGAGTTG M13-F GAGGCCAAGCACAATGTATG
IN34-R AACAGAAAGCTTGGCGTCAT M13-R TTTCAGGTGGAACCAGCAAT
MY8860-F AATGGCAGGAGCACTACACC C6-11A-F CAACCAGGAGAAGCTGGCTA
MY8860-R GGTCTGCCTGATGCTCTTGT C6-11A-R GAAGAGCGCGTAGAAGATGC
M10-F GTGGAGCCCAGACACATTTT M14-F ACTGCAGCGTGTGAAAACAA
M10-R TTTGTTTATGCTTGGCCGTA M14-R GCGGGAGACTCATACCTGAA
M11-F ATGACCACTCCTGGGTTTTG M17-F GAGTTCTAAATAAGGGGGATGGA
M11-R CTGTAGCCAAGAAGCCTTGC M17-R TTGGTTTCTGTGATGCATTGA
M12-F AATTGGAGGAACCAGCTCAA C6-20-F ATTCGATCTAGGGTTTGGGTTCAG
M12-R ATTTGGAGGGCGGTTTTATC C6-20-R GATGCAGTAGCATGCTGGATGTAG

Fig. 5

Fine mapping of ms6 The red oval represents the centromere."

Table 3

Functional annotation of candidate genes"

基因ID Gene ID 注释 Gene annotation
Zm00001d035199 WPP domain-associated protein
Zm00001d035200 Putative AMP-dependent synthetize and ligase superfamily protein
Zm00001d035201 60S acidic ribosomal protein P0
AC187088.3_FG002 Guanylate kinase/Guanosine monophosphate kinase
Zm00001d035203 Unknown
Zm00001d035204 Unknown
Zm00001d035206 ATP binding protein
Zm00001d035207 Putative uncharacterized protein
Zm00001d035208 BTB/POZ domain-containing protein
Zm00001d035211 Ca(2)-dependent phospholipid-binding protein (Copine) family

Table 4

Gene expression within the interval region in anther of ms6 and WT"

基因ID
Gene ID
表达差异Expression difference
花药发育时期
Anther development stage
ms6 野生型
WT
log2FC P-value 显著性
Significant
Zm00001d035199 四分体时期The tetrad stage 1024 1157 0.18 0.43 NS
双核期The binucleate stage 1069 911 -0.31 0.28 NS
Zm00001d035200 四分体时期The tetrad stage 103 140 0.45 0.38 NS
双核期The binucleate stage 135 75 -0.84 0.26 NS
Zm00001d035201 四分体时期The tetrad stage 9652 8941 -0.11 0.69 NS
双核期The binucleate stage 6690 17205 1.36 0.00018 DOWN
AC187088.3_FG002 四分体时期The tetrad stage NS NS NS NS NS
双核期The binucleate stage NS NS NS NS NS
Zm00001d035203 四分体时期The tetrad stage NS NS NS NS NS
双核期The binucleate stage NS NS NS NS NS
Zm00001d035204 四分体时期The tetrad stage NS NS NS NS NS
双核期The binucleate stage NS NS NS NS NS
Zm00001d035206 四分体时期The tetrad stage 600 943 0.65 0.0035 NS
双核期The binucleate stage 1196 1924 0.69 0.088 NS
Zm00001d035207 四分体时期The tetrad stage 736 819 0.15 0.56 NS
双核期The binucleate stage 763 729 -0.06 0.82 NS
Zm00001d035208 四分体时期The tetrad stage 827 1022 0.31 0.45 NS
双核期The binucleate stage 1184 877 -4.41 0.41 NS
Zm00001d035211 四分体时期The tetrad stage 167 134 -0.31 0.59 NS
双核期The binucleate stage 95 40 -1.06 0.16 DOWN

Fig. 6

Relative expression level of candidate genes by qRT-PCR Ubiquitin was used as an internal control gene and error bars show the SD (n = 3). Anthers of wild-type and mutant at binucleate stage were used for the relative expression level. WT: wild type; ms6: mutant. All data are shown as means ± SDs (n = 3). **: P < 0.01, NS: not significant difference."

[1] 吴锁伟, 张丹凤, 方才臣, 邓联武, 万向元. 玉米高效农杆菌转化体系的研究进展及其影响因素分析. 玉米科学, 2012, 20(5): 59-64.
Wu S W, Zhang D F, Fang C C, Deng L W, Wan X Y. Advances and major influencing factors of high-efficient agrobacterium- mediated genetic transformation in maize. J Maize Sci, 2012, 20(5): 59-64. (in Chinese with English abstract)
[2] 王保明, 陈永忠, 李红波, 莫华, 黄露波. 植物雄性不育的机制及应用研究进展. 河南农业科学, 2019, 48(5): 1-9.
Wang B M, Chen Y Z, Li H B, Mo H, Huang L B. Progress of mechanism of male sterility of plants and its application. J Henan Agric Sci, 2019, 48(5):1-9. (in Chinese with English abstract)
[3] Wasiak M, Niedziela A, Woś H, Pojmaj M, Bednarek P T. Genetic mapping of male sterility and pollen fertility QTLs in triticale with sterilizing Triticum timopheevii cytoplasm. J Appl Genet, 2021, 62: 59-71.
doi: 10.1007/s13353-020-00595-z
[4] 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展. 遗传, 2021, 43: 52-65.
Sun X Y, Wang Y F, Wang Y H, Lin J Y, Li J H, Qiu Y T, Fang X L, Kong F J, Li M N. Progress on genic male sterility gene in soybean. Hereditas, 2021, 43: 52-65. (in Chinese with English abstract)
[5] Goldberg R B, Beals T P, Sanders P M. Anther development: basic principles and practical applications. Plant Cell, 1993, 5: 1217-1229.
doi: 10.1105/tpc.5.10.1217 pmid: 8281038
[6] Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, Li S, Chen H B, Jin W W. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173: 307-325.
doi: 10.1104/pp.16.00629
[7] Zhang D B, Wilson Z A. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3
[8] 田有辉, 万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法. 中国生物工程杂志, 2018, 38(1): 88-89.
Tian Y H, Wang X Y. The methods of cell biology and molecular genetics of maize anther development. Chin J Biotechnol, 2018, 38(1): 88-89. (in Chinese with English abstract)
[9] Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174
[10] Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
doi: 10.1111/pbi.2018.16.issue-2
[11] Nan G L, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144: 163-172.
[12] Moon J, Skibbe D, Timofejeva L, Wang C J, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76: 592-602.
doi: 10.1111/tpj.2013.76.issue-4
[13] Vernoud V, Laigle G, Rozier F, Meeley R B, Perez P, Rogowsky P M. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59: 883-894.
doi: 10.1111/tpj.2009.59.issue-6
[14] Wang D, Adams C M, Fernandes J F, Egger R L, Walbot V.A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. Plant Biotechnol J, 2012, 10: 925-935.
doi: 10.1111/j.1467-7652.2012.00721.x pmid: 22748129
[15] Wang Y B, Liu D C, Tian Y H, Wu S W, An X L, Dong Z Y, Zhang S M, Bao J X, Li Z W, Li J P, Wan X Y. Map-based cloning, phylogenetic, and microsynteny analyses of ZmMs20 gene regulating male fertility in maize. Int J Mol Sci, 2019, 20: 1411.
doi: 10.3390/ijms20061411
[16] Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76: 888-899.
doi: 10.1111/tpj.12335
[17] An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, Hou Q C, Bao J X, Zhang S M, Li Z W, Wang Y B, Yan T W, Sun X J, Zhang Y W, Li J P, Wan X Y. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12: 343-359.
doi: 10.1016/j.molp.2019.01.011
[18] Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y. Map-based cloning and characterization of Zea mays male sterility 33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor Appl Genet, 2018, 131: 1363-1378.
doi: 10.1007/s00122-018-3083-9 pmid: 29546443
[19] Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15: 942-952.
doi: 10.1111/pbi.2017.15.issue-8
[20] Cigan A M, Unger E, Xu R J. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14: 135-142.
doi: 10.1007/s004970100099
[21] Tian Y H, Xiao S L, Liu J, Somaratne Y, Zhang H, Wang M M, Zhang H R, Zhao L, Chen H B. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep, 2017, 7: 16736.
doi: 10.1038/s41598-017-16930-0
[22] Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90: 96-110.
doi: 10.1111/tpj.2017.90.issue-1
[23] Wang C J, Nan G L, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya I N, Harper L, Egger R, Walbot V, Cande W Z. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139: 2594-2603.
doi: 10.1242/dev.077891
[24] 曹双河, 张相岐, 张爱民. 光(温)敏雄性不育的调控机理和分子遗传学研究进展. 植物学通报, 2005, 22: 19-26.
Cao S H, Zhang X Q, Zhang A M. Review of the molecular regulation mechanism and genetics of photoperiod- and/or thermosensitive male sterility. Chin Bull Bot, 2005, 22: 19-26. (in Chinese with English abstract)
[25] 谢潮添, 杨延红, 葛丽丽, 王瑞, 田惠桥. 白菜核雄性不育花药超微结构的研究. 实验生物学报, 2005, 38: 501-512.
Xie C T, Yang Y H, Ge L L, Wang R, Tian H Q. The study on ultrastructure of anther of male sterility in Chinese cabbage. Acta Biol Exp Sin, 2005, 38: 501-512. (in Chinese with English abstract)
[26] Vidakovic M B, Vancetovic J, Vidakovic M. A new search for restorer cytoplasm: the restorer cytoplasm for the gene ms10 most probably does not exist in maize. J Hered, 2002, 93: 444-447.
pmid: 12642646
[27] 王超, 安学丽, 张增为, 杨青, 饶力群, 陈信波, 方才臣, 万向元. 植物隐性核雄性不育基因育种技术体系的研究进展与展望. 植物生物工程杂志, 2013, 33(10): 124-130.
Wang C, An X L, Zhang Z W, Yang Q, Rao L Q, Chen X B, Fang C C, Wan X Y. Research progress and prospect of plant recessive nuclear male sterile gene breeding technology system. Chin J Biotechnol, 2013, 33(10): 124-130. (in Chinese with English abstract)
[28] An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
doi: 10.1073/pnas.2010255117
[1] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[2] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[3] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[4] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[5] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[6] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[7] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[8] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[9] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[10] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[11] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[12] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[13] LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652.
[14] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[15] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .