Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2077-2087.doi: 10.3724/SP.J.1006.2023.23062
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
WANG Xing-Rong1(), ZHANG Yan-Jun1, TU Qi-Qi2, GONG Dian-Ming2,*(), QIU Fa-Zhan2,*()
[1] | 吴锁伟, 张丹凤, 方才臣, 邓联武, 万向元. 玉米高效农杆菌转化体系的研究进展及其影响因素分析. 玉米科学, 2012, 20(5): 59-64. |
Wu S W, Zhang D F, Fang C C, Deng L W, Wan X Y. Advances and major influencing factors of high-efficient agrobacterium- mediated genetic transformation in maize. J Maize Sci, 2012, 20(5): 59-64. (in Chinese with English abstract) | |
[2] | 王保明, 陈永忠, 李红波, 莫华, 黄露波. 植物雄性不育的机制及应用研究进展. 河南农业科学, 2019, 48(5): 1-9. |
Wang B M, Chen Y Z, Li H B, Mo H, Huang L B. Progress of mechanism of male sterility of plants and its application. J Henan Agric Sci, 2019, 48(5):1-9. (in Chinese with English abstract) | |
[3] |
Wasiak M, Niedziela A, Woś H, Pojmaj M, Bednarek P T. Genetic mapping of male sterility and pollen fertility QTLs in triticale with sterilizing Triticum timopheevii cytoplasm. J Appl Genet, 2021, 62: 59-71.
doi: 10.1007/s13353-020-00595-z |
[4] | 孙小媛, 王一帆, 王韫慧, 蔺佳雨, 李金红, 丘远涛, 方小龙, 孔凡江, 李美娜. 大豆细胞核雄性不育基因研究进展. 遗传, 2021, 43: 52-65. |
Sun X Y, Wang Y F, Wang Y H, Lin J Y, Li J H, Qiu Y T, Fang X L, Kong F J, Li M N. Progress on genic male sterility gene in soybean. Hereditas, 2021, 43: 52-65. (in Chinese with English abstract) | |
[5] |
Goldberg R B, Beals T P, Sanders P M. Anther development: basic principles and practical applications. Plant Cell, 1993, 5: 1217-1229.
doi: 10.1105/tpc.5.10.1217 pmid: 8281038 |
[6] |
Chen X Y, Zhang H, Sun H Y, Luo H B, Zhao L, Dong Z B, Yan S S, Zhao C, Liu R Y, Xu C Y, Li S, Chen H B, Jin W W. IRREGULAR POLLEN EXINE1 is a novel factor in anther cuticle and pollen exine formation. Plant Physiol, 2017, 173: 307-325.
doi: 10.1104/pp.16.00629 |
[7] |
Zhang D B, Wilson Z A. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3 |
[8] | 田有辉, 万向元. 玉米花药发育的细胞生物学与分子遗传学的研究方法. 中国生物工程杂志, 2018, 38(1): 88-89. |
Tian Y H, Wang X Y. The methods of cell biology and molecular genetics of maize anther development. Chin J Biotechnol, 2018, 38(1): 88-89. (in Chinese with English abstract) | |
[9] |
Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174 |
[10] |
Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
doi: 10.1111/pbi.2018.16.issue-2 |
[11] | Nan G L, Zhai J, Arikit S, Morrow D, Fernandes J, Mai L, Nguyen N, Meyers B C, Walbot V. MS23, a master basic helix-loop-helix factor, regulates the specification and development of the tapetum in maize. Development, 2017, 144: 163-172. |
[12] |
Moon J, Skibbe D, Timofejeva L, Wang C J, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76: 592-602.
doi: 10.1111/tpj.2013.76.issue-4 |
[13] |
Vernoud V, Laigle G, Rozier F, Meeley R B, Perez P, Rogowsky P M. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J, 2009, 59: 883-894.
doi: 10.1111/tpj.2009.59.issue-6 |
[14] |
Wang D, Adams C M, Fernandes J F, Egger R L, Walbot V.A low molecular weight proteome comparison of fertile and male sterile 8 anthers of Zea mays. Plant Biotechnol J, 2012, 10: 925-935.
doi: 10.1111/j.1467-7652.2012.00721.x pmid: 22748129 |
[15] |
Wang Y B, Liu D C, Tian Y H, Wu S W, An X L, Dong Z Y, Zhang S M, Bao J X, Li Z W, Li J P, Wan X Y. Map-based cloning, phylogenetic, and microsynteny analyses of ZmMs20 gene regulating male fertility in maize. Int J Mol Sci, 2019, 20: 1411.
doi: 10.3390/ijms20061411 |
[16] |
Djukanovic V, Smith J, Lowe K, Yang M Z, Gao H R, Jones S, Nicholson M G, West A, Lape J, Bidney D, Carl Falco S, Jantz D, Alexander Lyznik L. Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J, 2013, 76: 888-899.
doi: 10.1111/tpj.12335 |
[17] |
An X L, Dong Z Y, Tian Y H, Xie K, Wu S W, Zhu T T, Zhang D F, Zhou Y, Niu C F, Ma B, Hou Q C, Bao J X, Zhang S M, Li Z W, Wang Y B, Yan T W, Sun X J, Zhang Y W, Li J P, Wan X Y. ZmMs30 encoding a novel GDSL lipase is essential for male fertility and valuable for hybrid breeding in maize. Mol Plant, 2019, 12: 343-359.
doi: 10.1016/j.molp.2019.01.011 |
[18] |
Xie K, Wu S W, Li Z W, Zhou Y, Zhang D F, Dong Z Y, An X L, Zhu T T, Zhang S M, Liu S S, Li J P, Wan X Y. Map-based cloning and characterization of Zea mays male sterility 33 (ZmMs33) gene, encoding a glycerol-3-phosphate acyltransferase. Theor Appl Genet, 2018, 131: 1363-1378.
doi: 10.1007/s00122-018-3083-9 pmid: 29546443 |
[19] |
Fox T, DeBruin J, Haug Collet K, Trimnell M, Clapp J, Leonard A, Li B, Scolaro E, Collinson S, Glassman K, Miller M, Schussler J, Dolan D, Liu L, Gho C, Albertsen M, Loussaert D, Shen B. A single point mutation in Ms44 results in dominant male sterility and improves nitrogen use efficiency in maize. Plant Biotechnol J, 2017, 15: 942-952.
doi: 10.1111/pbi.2017.15.issue-8 |
[20] |
Cigan A M, Unger E, Xu R J. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14: 135-142.
doi: 10.1007/s004970100099 |
[21] |
Tian Y H, Xiao S L, Liu J, Somaratne Y, Zhang H, Wang M M, Zhang H R, Zhao L, Chen H B. MALE STERILE6021 (MS6021) is required for the development of anther cuticle and pollen exine in maize. Sci Rep, 2017, 7: 16736.
doi: 10.1038/s41598-017-16930-0 |
[22] |
Somaratne Y, Tian Y H, Zhang H, Wang M M, Huo Y Q, Cao F G, Zhao L, Chen H B. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. Plant J, 2017, 90: 96-110.
doi: 10.1111/tpj.2017.90.issue-1 |
[23] |
Wang C J, Nan G L, Kelliher T, Timofejeva L, Vernoud V, Golubovskaya I N, Harper L, Egger R, Walbot V, Cande W Z. Maize multiple archesporial cells 1 (mac1), an ortholog of rice TDL1A, modulates cell proliferation and identity in early anther development. Development, 2012, 139: 2594-2603.
doi: 10.1242/dev.077891 |
[24] | 曹双河, 张相岐, 张爱民. 光(温)敏雄性不育的调控机理和分子遗传学研究进展. 植物学通报, 2005, 22: 19-26. |
Cao S H, Zhang X Q, Zhang A M. Review of the molecular regulation mechanism and genetics of photoperiod- and/or thermosensitive male sterility. Chin Bull Bot, 2005, 22: 19-26. (in Chinese with English abstract) | |
[25] | 谢潮添, 杨延红, 葛丽丽, 王瑞, 田惠桥. 白菜核雄性不育花药超微结构的研究. 实验生物学报, 2005, 38: 501-512. |
Xie C T, Yang Y H, Ge L L, Wang R, Tian H Q. The study on ultrastructure of anther of male sterility in Chinese cabbage. Acta Biol Exp Sin, 2005, 38: 501-512. (in Chinese with English abstract) | |
[26] |
Vidakovic M B, Vancetovic J, Vidakovic M. A new search for restorer cytoplasm: the restorer cytoplasm for the gene ms10 most probably does not exist in maize. J Hered, 2002, 93: 444-447.
pmid: 12642646 |
[27] | 王超, 安学丽, 张增为, 杨青, 饶力群, 陈信波, 方才臣, 万向元. 植物隐性核雄性不育基因育种技术体系的研究进展与展望. 植物生物工程杂志, 2013, 33(10): 124-130. |
Wang C, An X L, Zhang Z W, Yang Q, Rao L Q, Chen X B, Fang C C, Wan X Y. Research progress and prospect of plant recessive nuclear male sterile gene breeding technology system. Chin J Biotechnol, 2013, 33(10): 124-130. (in Chinese with English abstract) | |
[28] |
An X L, Ma B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
doi: 10.1073/pnas.2010255117 |
[1] | AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445. |
[2] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[3] | YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330. |
[4] | TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038. |
[5] | BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076. |
[6] | WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096. |
[7] | WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929. |
[8] | LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022. |
[9] | MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757. |
[10] | CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828. |
[11] | LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707. |
[12] | ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629. |
[13] | LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652. |
[14] | WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362. |
[15] | LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304. |
|