Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2433-2445.doi: 10.3724/SP.J.1006.2023.23071

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Response of maize transcriptional factor ZmEREB211 to abiotic stress

AI Rong1,2(), ZHANG Chun2(), YUE Man-Fang2, ZOU Hua-Wen1,*(), WU Zhong-Yi2,*()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2022-10-21 Accepted:2023-02-21 Online:2023-09-12 Published:2023-03-01
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(32001430);National Natural Science Foundation of China(32171952);National Natural Science Foundation of China(31971839);Beijing Academy of Agricultural and Forestry Sciences(KJCX20220402)

Abstract:

AP2/ERF (APETALA2/ethylene-responsive factor) transcription factor is one of the largest transcription factor families in plants, which plays an important role in regulating plant growth and development and responding to various stresses. Exploring the function of AP2/ERF family genes in maize (Zea mays L.) will provide the important genetic resources for the creation of new maize germplasm. In this study, ZmEREB211 (Gene ID: 103647485) gene was cloned and its basic characteristics, tissue expression characteristics, and the relative expression patterns in response to stress were analyzed by bioinformatics and qRT-PCR. The transgenic Arabidopsis lines were subjected to corresponding stress treatment and phenotypic identification. The results showed that the gene contained only one exon and the full-length cDNA was 792 bp which encoding 263 amino acids. The ZmEREB211 protein had a molecular weight of 27.9 kD and a theoretical isoelectric point of 6.01. It had a conserved domain unique to the AP2/ERF family. The relative expression level of ZmEREB211 gene was the highest in maize root system and the relative expression level in young roots was higher than mature roots. At the same time, the gene had different degrees of induced expression under dehydration, high salt, drought, and low temperature treatment conditions. On 1/2 MS medium containing different concentrations of NaCl, mannitol, and jasmonic acid (JA), root length of ZmEREB211 transgenic Arabidopsis lines was significantly longer than wild type. Under drought and high salt treatments, transgenic Arabidopsis lines had stronger tolerance than wild type, and the number of green leaves at seedling stage was significantly higher than wild type and the peroxidase (POD) activity and chlorophyll content were significantly higher than wild type. ZmEREB211 may be involved in the regulation of root growth and development in maize, and can play a positive regulatory role in high salt, drought, osmotic stress, and JA hormone treatments. This study provides an important reference for further analysis of the biological function of ZmEREB211 in maize.

Key words: maize, ZmEREB211, transcription factor, heterologous expression, root system, adversity stress

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
pZmEREB211-F CTGAAATCACCAGTCGGTACCATGACCAAGAAGCTCATCT (Kpn I)
pZmEREB211-R GCCCTTGCTCACCATGGTACCTCAAAAACTAGACGCGGCG (Kpn I)
pZmEREB211RT-F AGGAGGACGCCATCATCGT
pZmEREB211RT-R GGTACATGTTCCTGTTCCTACG
Actin-F
Actin-R
TACGAGATGCCTGATGGTCAGGTCA
TGGAGTTGTACGTGGCCTCATGGAC
pGAPDHRT-F
pGAPDHRT-R
CCCTTCATCACCACGGACTAC
AACCTTCTTGGCACCACCCT

Fig. 1

Bioinformatics analysis of ZmEREB211 A: the conserved domain analysis; B: the transmembrane structure prediction; C: protein tertiary structure prediction; D: the analysis of cis-acting elements in promoter region."

Fig. 2

Relative expression level of ZmEREB211 genes in different maize tissues Different lowercase letters are significantly different at the 0.05 probability level."

Fig. 3

Relative expression level of ZmEREB211 genes in different abiotic stress A-D: the relative expression level of ZmEREB211 genes after dehydration, high salt, osmotic, and low temperature treatments."

Fig. 4

Relative expression level of ZmEREB211 genes after different phytohormone treatments *: P < 0.05; **: P < 0.01."

Fig. 5

PCR detection and relative expression level of T4 generation Arabidopsis A: PCR detection of T4 generation Arabidopsis; B: qPCR detection of T4 generation Arabidopsis; M: DL2000 marker; N: negative control; W: water control; WT: wild-type Arabidopsis; L-1-L-6: T4 transgenic Arabidopsis lines; *: P < 0.05; **: P < 0.01."

Fig. 6

Root length of transgenic Arabidopsis lines on gradient NaCl concentrations A-D indicate the seedling growth under the NaCl concentrations of 0, 0.1, 0.15, and 0.18 mol L-1, respectively. E: the average main root length of Arabidopsis under different salt concentrations; WT: wild type; L-3, L-4, and L-5: ZmEREB211 transgenic Arabidopsis lines; Bar: 1.5 cm; *: P < 0.05; **: P < 0.01."

Fig. 7

Root length of transgenic Arabidopsis lines on gradient mannitol concentrations A-D indicate the seedling growth under the mannitol concentrations of 0, 0.15, 0.2, and 0.3 mol L-1, respectively. E: the average main root length of Arabidopsis under different mannitol concentrations. Abbreviations are the same as those given in Fig. 6; Bar: 1.5 cm; *: P < 0.05; **: P < 0.01."

Fig. 8

Root length of transgenic Arabidopsis lines on gradient JA and ABA concentrations A: growth under 0, 50, 75, and 100 μmol L-1 JA treatment; B: the average main root length of Arabidopsis under different JA concentrations; C: growth under 0, 10, 25, and 50 μmol L-1 ABA treatment; D: the average main root length of Arabidopsis under different ABA concentrations. Abbreviations are the same as those given in Fig. 6; Bar: 1.5 cm; *: P < 0.05; **: P < 0.01."

Fig. 9

Phenotypic analysis of Arabidopsis lines under drought treatment in soil A: the phenotype of Arabidopsis; B: the rate of green leaves after drought treatment; C: the rate of green leaves after re-water treatment; D: the determination of POD activity; E: the determination of chlorophyll content. Abbreviations are the same as those given in Fig. 6; *: P < 0.05; **: P < 0.01."

Fig. 10

Phenotypic analysis of Arabidopsis lines under high salt treatment in soil A: the phenotype of Arabidopsis; B: the rate of green leaves after high salt treatment; C: the determination of POD activity; D: the determination of chlorophyll content. Abbreviations are the same as those given in Fig. 6; *: P < 0.05; **: P < 0.01."

[1] 仇焕广, 李新海, 余嘉玲. 中国玉米产业: 发展趋势与政策建议. 农业经济问题, 2021, (7): 4-16.
Qiu H G, Li X H, Yu J L. China’s corn industry development trends and policy recommendations. Iss Agric Econ 2021, (7): 4-16. (in Chinese)
[2] Osmond C B, Austin M P, Berry J A, Billings W D, Boyer J, Dacey J W H, Nobel P S, Smith S D, Winner W E. Stress physiology and the distribution of plants: the survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 1987, 37: 38-48.
doi: 10.2307/1310176
[3] 张雪莹, 刘欣. 转录因子与叶片发育的研究进展. 植物生理学报, 2022, 58(1): 91-100.
Zhang X Y, Liu X. Research progress of transcription factors and leaf development. Plant Phys J, 2022, 58(1): 91-100. (in Chinese with English abstract)
[4] 葛宝宇, 林轶, 侯和胜. ERF类转录因子的结构与功能. 安徽农学通报, 2007, (20): 32-35.
Ge B Y, Lin Y, Hou H S. Structure and function of ERF transcription factors. AnHui Agric Sci Bull, 2007, (20): 32-35. (in Chinese with English abstract)
[5] 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用. 科学通报, 2000, 45: 1465-1474.
Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors. Chin Sci Bull, 2000, 45: 1465-1474. (in Chinese)
doi: 10.1360/csb2000-45-14-1465
[6] 张艳馥, 沙伟. 转录因子概述. 生物学教学, 2009, 34(10): 7-8.
Zhang Y F, Sha W. Overview of transcription factors. Biol Teach, 2009, 34(10): 7-8. (in Chinese)
[7] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展. 生物技术通报, 2022, 38(12): 11-26.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0432
Yue M F, Zhang C, Wu Z Y. Advances in the structure and function of plant transcription factor AP2/ERF family proteins. Biotechnol Bull, 2022, 38(12): 11-26 (in Chinese with English abstract).
[8] Ng D W K, Abeysinghe J K, Kamali M. Regulating the regulators: the control of transcription factors in plant defense signaling. Int J Mol Sci, 2018, 19: 3737.
doi: 10.3390/ijms19123737
[9] Allen M D, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17: 5484-5496.
doi: 10.1093/emboj/17.18.5484 pmid: 9736626
[10] Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013, 199: 639-649.
doi: 10.1111/nph.12291 pmid: 24010138
[11] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998-1009.
doi: 10.1006/bbrc.2001.6299
[12] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell, 1995, 7: 173-182.
doi: 10.1105/tpc.7.2.173 pmid: 7756828
[13] Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol, 1996, 30: 679-684.
doi: 10.1007/BF00049344 pmid: 8605318
[14] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648
[15] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
doi: 10.1104/pp.105.073783
[16] Lu L L, Qanmber G, Li J, Pu M L, Chen G Q, Li S D, Liu L, Qin W Q, Ma S Y, Wang Y, Chen Q J, Liu Z. Identification and characterization of the ERF subfamily B3 group revealed GhERF13.12 improves salt tolerance in upland cotton. Front Plant Sci, 2021, 12: 705883.
doi: 10.3389/fpls.2021.705883
[17] Tang M J, Sun J W, Liu Y, Chen F, Shen S H. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas. Plant Mol Biol, 2007, 63: 419-428.
doi: 10.1007/s11103-006-9098-7
[18] Xie Z L, Nolan T, Jiang H, Tang B Y, Zhang M C, Li Z H, Yin Y H. The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. Plant Cell, 2019, 31: 1788-1806.
doi: 10.1105/tpc.18.00918
[19] Zhang G Y, Chen M, Chen X P, Xu Z S, Li L C, Guo J M, Ma Y Z. Isolation and characterization of a novel EAR-motif-containing gene GmERF4 from soybean (Glycine max L.). Mol Biol Rep, 2010, 37: 809-818.
doi: 10.1007/s11033-009-9616-1
[20] Zhai Y, Wang Y, Li Y J, Lei T T, Yan F, Su L T, Li X W, Zhao Y, Sun X, Li J W, Wang Q Y. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 2013, 513: 174-183.
doi: 10.1016/j.gene.2012.10.018
[21] Tang Y H, Qin S S, Guo Y L, Chen Y B, Wu P Z, Chen Y P, Li M R, Jiang H W, Wu G J. Genome-wide analysis of the AP2/ERF gene family in physic nut and overexpression of the JcERF011 gene in rice increased its sensitivity to salinity stress. PLoS One, 2016, 11: e0150879.
doi: 10.1371/journal.pone.0150879
[22] Jung S E, Bang S W, Kim S H, Seo J S, Yoon H B, Kim Y S, Kim J K. Overexpression of OsERF83, a vascular tissue-specific transcription factor gene, confers drought tolerance in rice. Int J Mol Sci, 2021, 22: 7656.
doi: 10.3390/ijms22147656
[23] Şahin-Çevik M, Moore G A. Two AP2 domain containing genes isolated from the cold-hardy citrus relative Poncirus trifoliata are induced in response to cold. Funct Plant Biol, 2006, 33: 863-875.
doi: 10.1071/FP06005 pmid: 32689297
[24] Zhang J, Liao J Y, Ling Q Q, Xi Y, Qian Y X. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance. BMC Genomics, 2022, 23: 125.
doi: 10.1186/s12864-022-08345-7 pmid: 35151253
[25] Hao L D, Shi S B, Guo H B, Li M, Hu P, Wei Y D, Feng Y F. Genome-wide identification and expression profiles of ERF subfamily transcription factors in Zea mays. PeerJ, 2020, 8: e9551.
doi: 10.7717/peerj.9551
[26] Wang Z Y, Zhao X, Ren Z Z, Abou-Elwafa SF, Pu X Y, Zhu Y F, Dou D D, Su H H, Cheng H Y, Liu Z X, Chen Y H, Wang E, Shao R X, Ku L X. ZmERF21directly regulates hormone signaling and stress-responsive gene expression to influence drought tolerance in maize seedlings. Plant Cell Environ, 2022, 45: 312-328.
doi: 10.1111/pce.v45.2
[27] Zhang C, Li X L, Wang Z P, Zhang Z B, Wu Z Y. Identifying key regulatory genes of maize root growth and development by RNA sequencing. Genomics, 2020, 112: 5157-5169.
doi: 10.1016/j.ygeno.2020.09.030 pmid: 32961281
[28] 王莉, 王作平, 张中保, 白玲, 吴忠义. 玉米早期籽粒中强表达启动子的筛选. 作物杂志, 2020, (4): 114-120.
Wang L, Wang Z P, Zhang Z B, Bai L, Wu Z Y. Screening of strong expression promoters in early kernels of maize. Crops, 2020, (4): 114-120. (in Chinese with English abstract)
[29] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079
[30] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究. 作物学报, 2020, 46: 2008-2016.
doi: 10.3724/SP.J.1006.2020.03022
Yang M T, Zhang C, Wang Z P, Zou H W, Wu Z Y. Cloning and functional analysis of ZmbHLH161 gene in maize. Acta Agron Sin, 2020, 46: 2008-2016. (in Chinese with English abstract)
[31] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答. 作物学报, 2022, 48: 3004-3017.
doi: 10.3724/SP.J.1006.2022.13060
Yue M F, Zhang C, Zheng D Y, Zou H W, Wu Z Y. Response of maize transcriptional factor ZmbHLH91 to abiotic stress. Acta Agron Sin, 2022, 48: 3004-3017 (in Chinese with English abstract).
[32] Wang Y Q, Xia D N, Li W Q, Cao X Y, Ma F, Wang Q Q, Zhan X Q, Hu T X. Overexpression of a tomato AP2/ERF transcription factor SlERF.B1 increases sensitivity to salt and drought stresses. Sci Hortic, 2022, 304: 111332.
doi: 10.1016/j.scienta.2022.111332
[33] Peng X J, Ma X Y, Fan W H, Su M, Cheng L Q, Alam I, Lee B H, Qi D M, Shen S H, Liu G S. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep, 2011, 30: 1493-1502.
doi: 10.1007/s00299-011-1058-2
[34] Qu Y J, Nong Q D, Jian S G, Lu H F, Zhang M Y, Xia K F. An AP2/ERF gene, HuERF1, from pitaya (Hylocereus undatus) positively regulates salt tolerance. Int J Mol Sci, 2020, 21: 4586.
doi: 10.3390/ijms21134586
[35] Cai X T, Xu P, Zhao P X, Liu R, Yu L H, Xiang C B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nat Commun, 2014, 5: 5833.
doi: 10.1038/ncomms6833
[1] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[2] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[3] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[4] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[5] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[6] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[7] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[8] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[9] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[10] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[11] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[12] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[13] LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652.
[14] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[15] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .