Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2133-2143.doi: 10.3724/SP.J.1006.2023.21056

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect

SU Zai-Xing(), HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan()   

  1. Jiangsu Xuhuai Regional Institute of Agricultural Science, Xuzhou 221131, Jiangsu, China
  • Received:2022-08-21 Accepted:2023-02-10 Online:2023-08-12 Published:2023-03-13
  • Contact: YI Yuan E-mail:szaixing@163.com;yvonneyi19890803@163.com
  • Supported by:
    Key Research and Development Program (Modern Agriculture) of Xuzhou(CARS-03);Key Research and Development Program (Modern Agriculture) of Xuzhou(KC21131)

Abstract:

A natural dwarf mutant was discovered in the purification and rejuvenation of Xumai35 (XM35) foundation seeds. After multiple generations of individual selection, the dwarf trait of the mutant named Xu1801 temporarily could be stably inherited. To explore the cause of dwarfing phenotype, agronomic traits, lodging index analysis, gibberellin treatment at seedling stage, and dwarf-related genes detection were carried out. The results showed that the average plant height was 68.16 cm in Xu1801, shorter by24.05% than the wild-type XM35. The dwarfing effect of Xu1801 was manifested in the reduction of internode number and the extremely significant shortening of internode length. Among all internodes, the 5th internode had the largest dwarfing effect (44.16%). Flag leaf width, chlorophyll content, and spikelet density were extremely significantly higher in Xu1801 compared with XM35, and there was no difference in other agronomic traits. Compared with XM35, the grain yield of Xu1801 was lower by 8604.17 kg hm-2, while protein content, wet gluten content, and sedimentation volume of Xu1801 were significantly improved. The stem of Xu1801 was thick, and the internode fullness was extremely significantly higher than that of XM35. The lodging index was 47.73, extremely significantly lower than that of XM35, indicating its outstanding lodging-resistance ability. The detection of dwarfing gene-linked molecular markers revealed that Xu1801 might contain Rht-D1b, Rht4, Rht8, Rht9, and Rht12. Except for WMC317 (Rht4) and BARC102 (Rht5) revealed different amplification bands between Xu1801 and XM35, the amplification bands of other markers were relatively consistent. In conclusion, Xu1801 not only had short plant height and excellent lodging resistance, but also coordinated grain yield and quality characteristics properly, demonstrating the outstanding potential for cultivation. Meanwhile, Xu1801 carried several dwarfing genes and could be utilized as germplasm resources for genetic analysis of wheat plant height.

Key words: wheat, dwarf mutant, lodging index, gibberellin, molecular markers

Table 1

Molecular markers and primer sequences of wheat dwarfing genes"

基因
Gene
引物
Primer name
引物序列
Primer sequence (5'−3')
片段长度
Fragment length (bp)
退火温度
Annealing
temperature (℃)
染色体
Chromosome
参考文献
Reference
Rht-B1b
(Rht1)
BF GGTAGGGAGGCGAGAGGCGAG 237 65 4BS [27]
MR1 CATCCCCATGGCCATCTCGAGCTA
Rht-B1a BF GGTAGGGAGGCGAGAGGCGAG
WR1 CATCCCCATGGCCATCTCGAGCTG
Rht-D1b
(Rht2)
DF CGCGCAATTATTGGCCAGAGATAG 254 63 4DS
MR2 CCCCATGGCCATCTCGAGCTGCTA
Rht-D1a DF2 GGCAAGCAAAAGCTTCGCG 264
WR2 GGCCATCTCGAGCTGCAC
Rht4 WMC317 F TGCTAGCAATGCTCCGGGTAAC 170 58 2BL [28],[29]
WMC317 R TCACGAAACCTTTTCCTCCTCC
Rht5 BARC102 F GGAGAGGACCTGCTAAAATCGAAGACA 200 58 3BS
BARC102 R GCGTTTACGGATCAGTGTTGGAGA
Rht8 WMC503 F GCAATAGTTCCCGCAAGAAAAG 275 55 2DS
WMC503 R ATCAACTACCTCCAGATCCCGT
Xgwm261 F CTCCCTGTACGCCTAAGGC 192 55
Xgwm261 R CTCGCGCTACTAGCCATTG
Rht9 BARC151 F TGAGGAAAATGTCTCTATAGCATCC 220 55 5AL
BARC151 R CGCATAAACACCTTCGCTCTTCCACTC
Rht12 WMC410 F GGACTTGAAAAGGAAGCTTGTGA 114 61 5AL
WMC410 R CATGGATGGCATGCAGTGT
Rht13 WMS577 F ATGGCATAATTTGGTGAAATTG 130 55 7BS
WMS577 R TGTTTCAAGCCCAACTTCTATT

Table 2

Comparison of plant height, internode number and internode length between XM35 and dwarf mutation Xu1801"

性状
Trait
徐麦35
XM35 (cm)
Xu1801
(cm)
矮化值
Shorten value (cm)
矮化效应
Dwarfing effect (%)
株高Plant height 89.74±2.57 68.16±1.60** 21.58 24.05
第1节间长度 1st internode length 27.85±2.26 21.61±1.89** 6.24 22.41
第2节间长度 2nd internode length 16.29±0.77 14.04±0.54** 2.25 13.81
第3节间长度 3rd internode length 12.46±0.78 9.24±0.35** 3.22 25.84
第4节间长度 4th internode length 11.83±0.56 8.10±0.29** 3.74 31.57
第5节间长度 5th internode length 8.90±1.83 4.97±1.96** 3.93 44.16
第6节间长度 6th internode length 3.17±1.51 0.00±0.00

Table 3

Comparison of different agronomic traits between XM35 and dwarf mutation Xu1801"

性状Trait 徐麦35 XM35 Xu1801
旗叶长度Flag leaf length (cm) 18.96±1.53 19.48±2.18
旗叶宽度Flag leaf width (cm) 2.28±0.10 2.48±0.13**
旗叶叶面积Flag leaf area (cm2) 32.59±3.64 36.41±5.37
叶绿素含量Leaf chlorophyll content (SPAD) 53.82±0.35 56.82±0.22**
穗长Spike length (cm) 11.04±0.56 10.58±0.41
每穗小穗数Spikelets number per spike 24.40±1.51 24.90±0.57
不育小穗数Empty spikelet number per spike 1.10±0.32 0.90±0.57
小穗密度Spikelet density 2.21±0.08 2.36±0.07**
芒长Awn length (cm) 3.40±0.35 3.19±0.30
籽粒长度Grain length (mm) 5.73±0.09 5.64±0.03
籽粒宽度Grain width (mm) 3.00±0.07 3.12±0.02

Fig. 1

Phenotype characterization of XM35 and Xu1801 I means 1st internode (peduncle), II-VI mean the 2nd internode to the 6th internode, respectively. XM35: Xumai 35."

Table 4

Comparison of grain yield and quality characteristics between XM35 and dwarf mutation Xu1801"

性状 Trait 徐麦35 XM35 Xu1801
穗数 Spike number (×104 hm-2) 601.45±27.35 523.19±11.16**
穗粒数 Grain number per spike 46.82±0.33 49.61±0.71*
千粒重 1000-grain weight (g) 37.16±0.44 38.60±0.30
产量 Yield (kg hm-2) 9175.60±343.18 8604.17±369.25
容重Volume weight (g L-1) 831.67±4.04 823.33±2.31
蛋白质含量Protein content (%) 9.96±0.33 11.43±0.24*
蛋白质产量Protein yield (kg hm-2) 913.58±30.40 983.17±20.33
湿面筋含量Wet gluten content (%) 21.88±0.53 25.04±0.04*
沉降值Sedimentation volume (mL) 20.67±0.97 24.60±0.44*

Table 5

Fullness of each internode of XM35 and Xu1801"

各节间充实度
The filling degree of internode
徐麦35茎秆
Stem of XM35 (mg cm-1)
Xu1801茎秆
Stem of Xu1801 (mg cm-1)
第1节间 1st internode 11.34±0.61 14.62±1.06**
第2节间 2nd internode 20.82±0.74 28.01±1.09**
第3节间 3rd internode 23.92±1.94 31.71±2.63**
第4节间 4th internode 26.88±0.90 33.70±4.52**
第5节间 5th internode 27.99±1.00 35.35±3.25**

Fig. 2

Lodging index of Xu1801 and XM35 ** indicates significantly different at P < 0.01. XM35: Xumai 35."

Fig. 3

Elongation of the coleoptiles responsed to exogenous GA3 at seedling stage in three wheat varieties (lines) * and ** indicate significantly different under 10 μmol L-1 and 100 μmol L-1 compared with 0 μmol L-1 (CK) at P < 0.05 and P < 0.01, respectively. XM35: Xumai 35; SM3: Sumai 3."

Fig. 4

Detection of Rht1 and Rht2 by agarose gel electrophoresis A: PCR detection of Rht-B1a and Rht-B1b (Rht1) gene; B: PCR detection of Rht-D1a and Rht-D1b (Rht2) gene. CS: Chinese Spring; XY6: Xiaoyan 6 (CK); SN33: Shaannong 33 (CK); XM35: Xumai 35; SM3: Sumai 3; HM20: Huaimai 20. M: marker, B500331-0250 250 Preps 100-600 bp (Sangon Biotech). a: wild type of Rht1 and Rht2; b: mutant of Rht1 and Rht2."

Fig. 5

Detection of genes related wheat dwarf by molecular markers M: marker, B500331-0250 250 Preps 100-600 bp (Sangon Biotech). Line 1-5 indicates Xu1801, XM35, SM3, HM20, and AK58, respectively. Rht8 (503) and Rht8 (261) correspond to molecular marker of WMC503 and Xgwm261, respectively."

[1] Weibel R O, Pendleton J W. Effect of artificial lodging on winter wheat grain yield and quality. Agron J, 1964: 487-488.
[2] Peake A S, Bell K L, Fischer R A, Gardner M, Das B T, Poole N, Mumford M. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: optimising plant growth regulator use, N application timing, row spacing and sowing date. Front Plant Sci, 2020, 11: 401.
doi: 10.3389/fpls.2020.00401 pmid: 32411154
[3] Lyu D Y, Zhang C L, Yv R, Yao J X, Wu J H, Song X P, Jian J T, Song P B, Zhang Z Y, Han D J, Sun D J. Utilization of a Wheat50K SNP microarray-derived high-density genetic map for QTL mapping of plant height and grain traits in wheat. Plants, 2021, 10: 1167.
doi: 10.3390/plants10061167
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价. 作物学报, 2021, 47: 1188-1196.
doi: 10.3724/SP.J.1006.2021.01053
Han Y Z, Zhang Y, Yang Y, Gu Z Z, Wu K, Xie Q, Kong Z X, Jia H Y, Ma Z Q. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat. Acta Agron Sin, 2021, 47: 1188-1196. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01053
[5] Velde K V D, Thomas S G, Heyse F, Kaspar R, Straeten D V D, Rohde A. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat green revolution alleles. Mol Plant, 2021, 14: 679-687.
doi: 10.1016/j.molp.2021.01.002 pmid: 33422695
[6] Guo B J, Jin X M, Chen J C, Xu H Y, Zhang M X, Lu X, Wu R G, Zhao Y, Guo Y, An Y R, Li S S. ATP-dependent DNA helicase (TaDHL), a novel reduced-height (Rht) gene in wheat. Genes, 2022, 13: 979.
doi: 10.3390/genes13060979
[7] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018, 131: 2021-2035.
doi: 10.1007/s00122-018-3130-6
[8] Zhao K, Xiao J, Liu Y, Chen S, Yuan C, Cao A, You F M, Yang D, An S, Wang H, Wang X. 5Dq′) likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness. Theor Appl Genet, 2018, 131: 1825-1834.
doi: 10.1007/s00122-018-3115-5
[9] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
doi: 10.1038/22307
[10] 吕广德, 靳雪梅, 郭营, 赵岩, 钱兆国, 吴科, 李斯深. 小麦株高分子遗传学研究进展. 植物遗传资源学报, 2021, 22: 571-582.
doi: 10.13430/j.cnki.jpgr.20200927001
Lyu G D, Jin X M, Guo Y, Zhao Y, Qian Z G, Wu K, Li S S. Advances in molecular genetics of wheat plant height. J Plant Genet Resour, 2021, 22: 571-582. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.20200927001
[11] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析. 作物学报, 2021, 47: 974-982.
doi: 10.3724/SP.J.1006.2021.01066
He J Y, Yin S Q, Chen Y Q, Xiong J L, Wang W B, Zhou H B, Chen M, Wang M Y, Chen S W. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants. Acta Agron Sin, 2021, 47: 974-982. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01066
[12] 卢媛.普通小麦矮秆突变体NM9的鉴定及突变基因Rht_NM9的定位和效应分析. 南京农业大学博士学位论文, 江苏南京, 2015.
Lu Y.Characterization of a Dwarf Mutant, NM9, and Mapping and Effect Analysis of the Dwarfing Gene, Rht_NM9, in Triticum aestivum. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015. (in Chinese with English abstract)
[13] 刘娟, 张凯, 范胜男, 韩洋, 冯玉梅, 李星岩, 韩冰, 杨燕. 小麦矮秆基因Rht-B1bRht-D1b的检测及其验证. 麦类作物学报, 2021, 41: 816-826.
Liu J, Zhang K, Fan S N, Han Y, Feng Y M, Li X Y, Han B, Yang Y. Molecular detection and verification of dwarfing gene Rht-B1b and Rht-D1b in wheat. J Triticeae Crops, 2021, 41: 816-826. (in Chinese with English abstract)
[14] 唐娜, 李博, 闵红, 胡银岗. 分子标记检测矮秆基因Rht-B1bRht-D1bRht8在我国小麦中的分布. 中国农业大学学报, 2012, 17: 21-26.
Tang N, Li B, Min H, Hu Y G. Distribution of dwarfing genes Rht-B1b, Rht-D1b and Rht8 in Chinese bread wheat cultivars detected by molecular markers. J China Agric Univ, 2012, 17: 21-26. (in Chinese with English abstract)
[15] Worland A J, Sayers E J, Korzun V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 2001, 119: 157-161.
doi: 10.1023/A:1017582122775
[16] Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, Zhang J Z, Wang K, Li X J, Liu L X. Cloning and functional characterization of Rht8, a “green revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
doi: 10.1016/j.molp.2022.01.014
[17] Chai L L, Xin M M, Dong C Q, Chen Z Y, Zhai H J, Zhuang J H, Cheng X J, Wang N J, Geng J, Wang X B, Bian R L, Yao Y Y, Guo W L, Hu Z R, Peng H R, Bai G H, Sun Q X, Su Z Q, Liu J, Ni Z F. A natural variation in ribonuclease H-like gene underlies Rht8 to confer “green revolution” trait in wheat. Mol Plant, 2022, 15: 377-380.
doi: 10.1016/j.molp.2022.01.013
[18] 陈向东, 吴晓军, 胡喜贵, 李淦, 姜小苓, 李笑慧, 李小利, 胡铁柱, 茹振钢. 117份小麦种质中5个矮秆基因的分子检测. 新疆农业科学, 2019, 56: 1373-1381.
doi: 10.6048/j.issn.1001-4330.2019.08.001
Chen X D, Wu X J, Hu X G, Li G, Jiang X L, Li X H, Li X L, Hu T Z, Ru Z G. Molecular detection of five dwarf genes in 117 wheat germplasm resources. Xinjiang Agric Sci, 2019, 56: 1373-1381. (in Chinese with English abstract)
[19] Tian X L, Xia X C, Xu D G, Liu Y Q, Xie L, Hassan M A, Song J, Li F J, Wang D S, Zhang Y, Hao Y F, Li G Y, Chu C C, He Z H, Cao S H. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol, 2022, 233: 738-750.
doi: 10.1111/nph.v233.2
[20] Buss W, Ford B A, Foo E, Schnippenkoetter W, Borrill P, Brooks B, Ashton A R, Chandler P M, Spielmeyer W. Overgrowth mutants determine the causal role of gibberellin GA2 oxidase A13 in Rht12 dwarfism of wheat. J Exp Bot, 2020, 71: 7171-7178.
doi: 10.1093/jxb/eraa443
[21] Sun L H, Yang W L, Li Y F, Shan Q Q, Ye X B, Wang D Z, Yu K, Lu W W, Xin P Y, Pei Z, Guo X L, Liu D C, Sun J Z, Zhan K H, Chu J F, Zhang A M. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J, 2019, 97: 887-900.
doi: 10.1111/tpj.2019.97.issue-5
[22] 赵秋实, 李倩倩, 王超杰, 蒋宏宝, 耿皆飞, 杨媛, 刘录祥, 张小燕, 谢彦周, 王成社. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053-1064.
Zhao Q S, Li Q Q, Wang C J, Jiang H B, Geng J F, Yang Y, Liu L X, Zhang X Y, Xie Y Z, Wang C S.Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053-1064. (in Chinese with English abstract)
[23] Lu Y, Xing L, Xing S, Hu P, Cui C, Zhang M, Xiao J, Wang H, Zhang R, Wang X, Chen P, Cao A. Characterization of a putative new semi-dominant reduced height gene, Rht_NM9, in wheat (Triticum aestivum L.). J Genet Genom, 2015, 42: 685-698.
doi: 10.1016/j.jgg.2015.08.007
[24] 陈晓光, 史春余, 尹燕枰, 王振林, 石玉华, 彭佃亮, 倪英丽, 蔡铁. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011, 37: 1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agron Sin, 2011, 37: 1616-1622. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01616
[25] 刘慧婷, 李瑞奇, 王红光, 李东晓, 李浩然. 密度和施氮量对强筋小麦藁优2018产量和抗倒性的影响. 麦类作物学报, 2017, 37: 1619-1626.
Liu H T, Li R Q, Wang H G, Li D X, Li H R. Effect of planting density and nitrogen fertilization rate on lodging resistance and grain yield of strong gluten wheat Gaoyou 2018. J Triticeae Crops, 2017, 37: 1619-1626. (in Chinese with English abstract)
[26] 柴建芳, 刘旭, 贾继增. 一种适于PCR扩增的小麦基因组DNA快速提取法. 植物遗传资源学报, 2006, 7: 246-248.
Chai J F, Liu X, Jia J Z. A rapid isolation method of wheat DNA suitable for PCR analysis. J Plant Genet Resour, 2006, 7: 246-248. (in Chinese with English abstract)
[27] Ellis M H, Spielmeyer W, Gale K R, Rebetzke G J, Richards R A. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet, 2002, 105: 1038-1042.
doi: 10.1007/s00122-002-1048-4 pmid: 12582931
[28] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423-430.
doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[29] Ellis M H, Bonnett D G, Rebetzke G J. A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica, 2007, 157: 209-214.
doi: 10.1007/s10681-007-9413-7
[30] 苏在兴, 高闰飞, 易媛, 王波, 常勇, 黄忠勤, 周兴根. 小麦穗发芽抗性分析及相关分子标记检测. 麦类作物学报, 2019, 39: 1173-1179.
Su Z X, Gao R F, Yi Y, Wang B, Chang Y, Huang Z Q, Zhou X G. Analysis of pre-harvest sprouting (PHS) resistance and detection on PHS associated molecular markers in wheat (Triticum aestivum L.). J Triticeae Crops, 2019, 39: 1173-1179. (in Chinese with English abstract)
[31] Wen S Z, Zhang M H, Tu K L, Fan C F, Tian S, Bi C, Chen Z L, Zhao H H, Wei C X, Shi X T, Yu J Z, Sun Q X, You M S. A major quantitative trait loci cluster controlling three components of yield and plant height identified on chromosome 4B of common wheat. Front Plant Sci, 2022, 12: 799520.
doi: 10.3389/fpls.2021.799520
[32] Wu Q H, Chen Y X, Xie J Z, Dong L L, Wang Z Z, Lu P, Wang R G, Yuan C G, Zhang Y, Liu Z Y. A36 Mb terminal deletion of chromosome 2BL is responsible for a wheat semi-dwarf mutation. Crop J, 2021, 9: 873-881.
doi: 10.1016/j.cj.2020.06.015
[33] Agarwal P, Balyan H S, Gupta P K. Identification of modifiers of the plant height in wheat using an induced dwarf mutant controlled by RhtB4c allele. Physiol Mol Biol Plants, 2020, 26: 2283-2289.
doi: 10.1007/s12298-020-00904-0
[34] Dreccer M F, Macdonald B, Farnsworth C A, Paccapelo M V, Awasi M A, Condon A G, Forrest K, Lee Long I, McIntyre C L. Multi-donor × elite-based populations reveal QTL for low-lodging wheat. Theor Appl Genet, 2022, 135: 1685-1703.
doi: 10.1007/s00122-022-04063-6
[35] Zhang H J, Li T, Liu H W, Mai C Y, Yu G J, Li H L, Yu L Q, Meng L Z, Jian D W, Yang L, Li H J, Zhou Y. Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River valleys winter wheat zone in China since 1964. J Integr Agric, 2020, 19: 438-448.
doi: 10.1016/S2095-3119(19)62627-4
[36] 卢媛, 崔超凡, 胡平, 陈佩度, 沈雪芳, 韩晴, 王义发, 邢莉萍, 曹爱忠. 矮秆基因Rht_NM9在小麦株高建成中对内源激素含量的影响. 作物学报, 2017, 43: 1272-1279.
doi: 10.3724/SP.J.1006.2017.01272
Lu Y, Cui C F, Hu P, Chen P D, Shen X F, Han Q, Wang Y F, Xing L P, Cao A Z. Effects of dwarf gene Rht_NM9 on contents of endogenous hormone regulating plant height of common wheat. Acta Agron Sin, 2017, 43: 1272-1279. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01272
[37] Si X M, Wang W X, Wang K, Liu Y C, Bai J P, Meng Y X, Zhang X Y, Liu H X. A sheathed spike gene, TaWUS-like inhibits stem elongation in common wheat by regulating hormone levels. Int J Mol Sci, 2021, 22: 11210.
doi: 10.3390/ijms222011210
[38] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位. 作物学报, 2022, 48: 580-589.
doi: 10.3724/SP.J.1006.2022.11015
Fu M Y, Xiong H C, Zhou C Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Xu Y H, Liu L X. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene. Acta Agron Sin, 2022, 48: 580-589. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.11015
[39] 刘晴, 古佳玉, 赵紫伟, 赵林姝, 郭会君, 谢永盾, 宋希云, 刘录祥. 小麦矮秆突变体DC20的转录组分析. 核农学报, 2019, 33: 1451-1458.
doi: 10.11869/j.issn.100-8551.2019.08.1451
Liu Q, Gu J Y, Zhao Z W, Zhao L S, Guo H J, Xie Y D, Song X Y, Liu L X.RNA-Seq analysis of wheat dwarf mutant DC20. J Nucl Agric Sci, 2019, 33: 1451-1458. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2019.08.1451
[40] 曹丽, 钱鹏, 张紫晋, 粟永英, 陈杰明, 刘汉梅, 杜小刚, 陈洋尔, 张怀渝. 航天搭载小麦矮秆突变体DMR88-1矮化效应分析. 核农学报, 2015, 29: 2049-2057.
doi: 10.11869/j.issn.100-8551.2015.11.2049
Cao L, Qian P, Zhang Z J, Su Y Y, Chen J M, Liu H M, Du X G, Chen Y E, Zhang H Y. Analysis of the dwarfing mutagenic effect on a wheat mutant line DMR88-1 by space mutation. J Nucl Agric Sci, 2015, 29: 2049-2057. (in Chinese with English abstract)
[1] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[2] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[3] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[4] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[5] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[6] LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287.
[7] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[8] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[9] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[10] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[11] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[12] FENG Lian-Jie, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat [J]. Acta Agronomica Sinica, 2023, 49(6): 1653-1667.
[13] WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600.
[14] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[15] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .