Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1455-1465.doi: 10.3724/SP.J.1006.2023.21048

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of specific oligonucleotide probe library of Aegilops comosa and construction of oligo-FISH karyotype

SHI Pei-Yao(), CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, WANG Hai-Yan*()   

  1. National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Cytogenetics Institute/Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Received:2022-07-06 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-21
  • Contact: *E-mail: hywang@njau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2020YFE0202900);Fundamental Research Funds for the Central University(KYZZ2022003);Jiangsu Province Modern Agricultural Industry Technology System(JATS[2021]463);Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]006);Seed Industry Revitalization Project of Jiangsu Province(013);Seed Industry Revitalization Project of Jiangsu Province(047)

Abstract:

Ae. comosa (Aegilops comosa, 2n=2x=14, MM) is a tertiary gene bank for wheat improvement. In order to accurately identify the chromosomes of Ae. comosa M genome or the chromosome segments transferred into wheat, the next-generation sequencing information of Ae. comosa M genome were obtained. Based on the next-generation sequencing information of Ae. comosa M genome, 12 oligonucleotide probes were designed for oligo-FISH analysis according to the 16 possible specific satellite repeats identified. The oligo-FISH results showed that ten of the probes could produce obvious hybridization signals on the chromosomes of Ae. comosa. The probe specificity analysis revealed that the five probes generated hybridization signals on the chromosomes of Ae. comosa, but there was no obvious hybridization signal on the chromosomes in wheat, which used as the specific probes to identify the chromosomes or chromosome segments of M genome in wheat background. Three probes (oligo-pAc89, oligo-pAc148, and oligo-pAc225) with abundant signal distribution on the chromosomes of Ae. comosa were selected to form a probe set named ONPS#AC1. Combined with the oligonucleotide probe library developed according to wheat D sub genome, the oligo-FISH karyotype of Ae. comosa was constructed, which can accurately identify each chromosome of the M genome, providing an important molecular cytogenetic basis for mining, transferring, and utilizing the excellent genes of Ae. comosa.

Key words: Aegilops comosa, second-generation sequencing, satellite repeats, Oligo nucleotide probe, fluorescence in situ hybridization

Table 1

Sequence information of 12 oligo nucleotide probes developed in this study"

序列名称
Sequence name
在M基因组
中占比
Percentage in M genome
基序长度
Consensus
length (bp)
探针名称
Probe name
探针长度
Probe length
(bp)
探针序列
Probe sequence (5′-3′)
CL89 0.35 73 oligo-pAc89 59 AATCCTACCGAGTGGTGAGCAATCCTCCCACTCGGGGGCTTAGCTGCAGTCCAGTGCTC
CL105 0.28 637 oligo-pAc105 59 TAGGAGTCACATAATATTTAGTAGTTTTTGTCTCTTATTGCCGGGGAGACGCCTACGCG
CL146 0.1 553 oligo-pAc146 59 CTGGATAATAAAGTACATAACACATCATCCTCATTATGTTCATGCACACGAAAAATTAT
CL148 0.1 118 oligo-pAc148 59 ACGGGCCATCGAAATCGTGCCCTGACCCCAAA
ACAGTGTGCTATAGCCCACGAAAATGG
CL149 0.1 663 oligo-pAc149 59 ATGGCAAACAATGTTGCCTAAGGAAGTTTTCATTTTCTTTGGACGAAAAAACCATTTTC
CL198 0.042 509 oligo-pAc198 59 ACACACCCCTCACAAACCGGAGCAACTCACTAGAAGGCTCGTGGTTCCGAGAGGGAACA
CL217 0.03 49 oligo-pAc217 49 CCACCTAAGCCTAACCATTAGGGTTTACGGTGCCTCGGGGTCGACGGAG
CL225 0.028 46 oligo-pAc225 46 GAGTGGTGATGAGGTGACCAACCGAGTGGCGACGCGCGGGGCGGCC
CL238 0.025 369 oligo-pAc238 59 ATATGAGATCCAATTACTTGTAGGGAAATGCAAGAGACCTCAGTTATGATGATGCACTA
CL259 0.02 108 oligo-pAc259 59 AGTACCGAAATTAGTGATATACAACTAAGTCTGGTGATCATGGTGCTGTTTTTCAGTAC
CL263 0.02 119 oligo-pAc263 59 AGCTAGCTAAGCATATTGAGTCATTCTGGAGGAAAAAATGCCAAGTATAGGTCATTTTA
CL301 0.0015 90 oligo-pAc301 59 AGGCGGACGTCGTCGCGGTAGCGACGACGGACGCCGAGACGAGCACGTGACACCACTGC

Fig. 1

oligo-FISH of five oligo probes on root tip metaphase chromosomes of Ae. comosa (PI542176) and T. aestivum cv Chinese Spring A1, A2: probe oligo-pAc105; B1, B2: probe oligo-pAc259; C1, C2: probe oligo-pAc149; D1, D2: probe oligo-pAc217; E1, E2: probe oligo-pAc148. Chromosomes were counterstained with DAPI (blue); five oligo probes were modified with 5′TAMRA (red). Bar: 10 μm."

Fig. 2

oligo-FISH of five oligo probes on root tip metaphase chromosomes of Ae. comosa (PI542176) and Chinese Spring A1, A2: probe oligo-pAc263; B1, B2: probe oligo-pAc225; C1, C2: probe oligo-pAc238; D1, D2: probe oligo-pAc301; E1, E2: probe oligo-pAc89. Chromosomes were counterstained with DAPI (blue); oligo probes oligo-pAc225, oligo-pAc238, and oligo-pAc263 were modified with 5′TAMRA (red), and oligo-pAc89 and oligo-pAc301 were modified with 5′FAM (green). Bar: 10 μm."

Fig. 3

oligo-FISH of five oligo probes in seven diploid relative species of wheat A1-A7: probe oligo-pAc105; B1-B7: probe oligo-pAc148; C1-C7: probe oligo-pAc149; D1-D7: probe oligo-pAc217; E1-E7: probe oligo-pAc259. Chromosomes were counterstained with DAPI (blue); five oligo probes were modified with 5′TAMRA (red). Bar: 10 μm."

Fig. 4

oligo-FISH karyotype of Ae. comosa A: the merged signals of chromosome 1M-7M using oligo-painting of sub-genome D chromosome specific oligo-painting probes (red) and oligo-FISH using ONPS#AC1 (green), white arrow points to the painted chromosome with oligonucleotide probe; B: the merged figures of 1 M-7M cutting from (A); C: the oligo-painting FISH signals digitally separated from (B); D: the oligo-FISH using ONPS#AC1 signals digitally separated from (B); E: the oligo-FISH karyotype of Ae. comosa. Bars: 10 μm."

Fig. 5

oligo-FISH on metaphase chromosomes of Ae. comosa (PI542176) using combining probes including five oligo probes and ONPS#AC1, respectively. A: probe oligo-pAc105; B: probe oligo-pAc148; C: probe oligo-pAc149; D: probe oligo-pAc217; E: probe oligo-pAc259. Chromosomes were counterstained with DAPI (blue); five oligo probes were modified with 5’TAMRA (red). ONPS#AC1 probe was modified with 5’FAM (green). Bars: 10 μm."

[1] Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One, 2013, 8: e70844.
doi: 10.1371/journal.pone.0070844
[2] Said M, Holušová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele M M, Kalapos B, Bartoš J, Friebe B, Doležel J, Molnár I. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front Plant Sci, 2021, 12: 689031.
doi: 10.3389/fpls.2021.689031
[3] Riley R, Chapman V, Johnson R O Y. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 1968, 217: 383-384.
doi: 10.1038/217383a0
[4] Riley R, Chapman V, Johnson R J. The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis. Genet Res, 1968, 12: 199-219.
doi: 10.1017/S0016672300011800
[5] Bouhssini M E, Nachit M M, Valkoun J, Abdalla O, Rihawi F. Sources of resistance to Hessian fly (Diptera: Cecidomyiidae) in syria identified among Aegilops species and synthetic derived bread wheat lines. Genet Resour Crop Evol, 2008, 55: 1215-1219.
doi: 10.1007/s10722-008-9321-2
[6] Xu X, Monneveux P, Damania A B, Zahavieva M. Evaluation for salt tolerance in genetic resources of Triticum and Aegilops species. Bull Ressour Genet Veget, 1993, 96: 11-16.
[7] Liu C, Gong W, Han R, Guo J, Li G R, Li H S, Song J M, Liu A F, Cao X Y, Zhai S N, Cheng D G, Li G Y, Zhao Z D, Yang Z J, Liu J J, Reader S M. Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Sci Rep, 2019, 9: 4773.
doi: 10.1038/s41598-019-41219-9 pmid: 30886203
[8] Zuo Y Y, Dai S F, Song Z P, Xiang Q, Li W, J Liu G, Li J, Xu D H, Yan Z H. Identification and characterization of wheat-Aegilops comosa 7M (7A) disomic substitution lines with stripe rust and powdery mildew resistance. Plant Dis, 2022, 106: 2663-2671.
doi: 10.1094/PDIS-11-21-2485-RE
[9] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91:1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007
[10] Heng Q, Li B, Mu S, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49: 1109-1114.
doi: 10.1139/g06-073
[11] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93-103.
doi: 10.1139/gen-2016-0095
[12] 王秀娥, 赵彦, 张清平, 王苏玲, 周波, 陈佩度, 刘大钧. 利用PCR技术初步鉴定小麦加州野大麦异染色体系. 南京农业大学学报, 2004, 27(4): 1-5.
Wang X E, Zhao Y, Zhang Q P, Wang S L, Zhou B, Chen P D, Liu D J. Preliminary identification of Triticum aestivum L.- Hordeum californicum alien chromosome lines by PCR technique. J Nanjing Agric Univ, 2004, 27(4): 1-5. (in Chinese with English abstract)
[13] Ma H H, Zhang J P, Zhang J, Zhou S H, Han H M, Liu W H, Yang X M, Li X Q, Li L H. Development of P genome-specific SNPs and their application in tracing Agropyron cristatum introgressions in common wheat. Crop J, 2019, 2: 151-162.
[14] 宫文萍, 韩冉, 宋健民, 刘建军, 李豪圣, 刘爱峰, 曹新有, 敦公, 赵振东, 刘成. 顶芒和无芒山羊草育种价值及细胞学标记. 核农学报, 2017, 31: 1889-1895.
doi: 10.11869/j.issn.100-8551.2017.10.1889
Gong W P, Han R, Song J M, Liu J J, Li H S, Liu A F, Cao X Y, Cheng D G, Zhao Z D, Liu C. Breeding value and cytogenetic markers of Aegilops comosa and Aegilops mutica. J Nucl Agric Sci, 2017, 31: 1889-1895. (in Chinese with English abstract)
[15] Parisod C, Badaeva E D. Chromosome restructuring among hybridizing wild wheats. New Phytol, 2020, 226: 1263-1273.
doi: 10.1111/nph.16415 pmid: 31913521
[16] Song Z P, Dai S F, Bao T Y, Zuo Y Y, Xiang Q, Li J, Liu G, Yan Z H. Analysis of structural genomic diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by fluorescence in situ hybridization karyotyping. Front Plant Sci, 2020, 11: 710.
[17] Yu F, Zhao X W, Chai J, Ding X E, Li X T, Huang Y J, Wang X H, Wu J Y, Zhang M Q, Yang Q H, Deng Z H, Jiang J M. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol, 2022, 233: 1953-1965.
doi: 10.1111/nph.v233.4
[18] He L, Zhao H N, He J, Yang Z J, Guan B, Chen K L, Hong Q B, Wang J H, Liu J J, Jiang J M. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome- specific painting. Plant J, 2020, 103: 2225-2235.
doi: 10.1111/tpj.v103.6
[19] Hou L L, Xu M, Zhang T, Xu Z H, Wang W Y, Zhang J X, Yu M M, Ji W, Zhu C W, Gong Z Y, Gu M H, Jiang J M, Yu H X. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol, 2018, 18: 110.
doi: 10.1186/s12870-018-1325-2 pmid: 29879904
[20] Xin H Y, Zhang T, Wu Y F, Zhang W L, Zhang P D, Xi M L, Jiang J M. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J, 2020, 101: 253-264.
doi: 10.1111/tpj.v101.2
[21] Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 2015, 200: 771-779.
doi: 10.1534/genetics.115.177642 pmid: 25971668
[22] Song X Y, Song R R, Zhou J W, Yan W K, Zhang T, Sun H J, Xiao J, Wu Y F, Xi M L, Lou Q F, Wang H Y, Wang X E. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chrom Res, 2020, 28: 171-182.
doi: 10.1007/s10577-020-09627-0
[23] Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J, 2021, 105: 978-993.
doi: 10.1111/tpj.v105.4
[24] Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177-178.
doi: 10.1007/BF02774246
[25] 程梦豪, Karafiátová M, 孙昊杰, Holušová K, Doležel J, 宋新颖, 王海燕, 王秀娥. 基于纤毛鹅观草特异的卫星重复序列开发寡核苷酸探针. 南京农业大学学报, 2022, 45: 1-14.
Cheng M H, Karafiátová M, Sun H J, Holušová K, Doležel J, Song X Y, Wang H Y, Wang X E. Development of oligonucleotide probes specific to Roegneria ciliaris chromosomes based on satellite repeats. J Nanjing Agric Univ, 2022, 45: 1-14. (in Chinese with English abstract)
[26] Rychlik W. OLIGO 7 primer analysis software 402.In:Yuryev A ed.ed. PCR Primer Design. Methods in Molecular Biology, 402, Humana Press, Totowa, New Jersey, USA, 2007. pp 35-59.
[27] Lei J, Zhou J W, Sun H J, Wan W T, Xiao J, Yuan C X, Karafiátová M, Doležel J, Wang H Y, Wang X E. Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. Crop J, 2020, 8: 676-681.
doi: 10.1016/j.cj.2020.02.008
[28] Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 2019, 249: 663-675.
doi: 10.1007/s00425-018-3033-4 pmid: 30357506
[29] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93-103.
doi: 10.1139/gen-2016-0095
[30] Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5: 10552.
doi: 10.1038/srep10552 pmid: 25994088
[31] Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 12:118.
doi: 10.3390/genes12010118
[32] Jiang J M. Fluorescence in situ hybridization in plants: recent developments and future applications. Chrom Res, 2019, 27: 153-165.
doi: 10.1007/s10577-019-09607-z
[33] Danilova T V, Friebe B, Gill B S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet, 2014, 127: 715-730.
doi: 10.1007/s00122-013-2253-z pmid: 24408375
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .