Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1455-1465.doi: 10.3724/SP.J.1006.2023.21048
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
SHI Pei-Yao(), CHEN Li-Juan, SUN Hao-Jie, CHENG Meng-Hao, XIAO Jin, YUAN Chun-Xia, WANG Xiu-E, WANG Hai-Yan*()
[1] |
Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, Farkas A, Doležel J, Molnár-Láng M, Griffiths S. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One, 2013, 8: e70844.
doi: 10.1371/journal.pone.0070844 |
[2] |
Said M, Holušová K, Farkas A, Ivanizs L, Gaál E, Cápal P, Abrouk M, Martis-Thiele M M, Kalapos B, Bartoš J, Friebe B, Doležel J, Molnár I. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front Plant Sci, 2021, 12: 689031.
doi: 10.3389/fpls.2021.689031 |
[3] |
Riley R, Chapman V, Johnson R O Y. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 1968, 217: 383-384.
doi: 10.1038/217383a0 |
[4] |
Riley R, Chapman V, Johnson R J. The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis. Genet Res, 1968, 12: 199-219.
doi: 10.1017/S0016672300011800 |
[5] |
Bouhssini M E, Nachit M M, Valkoun J, Abdalla O, Rihawi F. Sources of resistance to Hessian fly (Diptera: Cecidomyiidae) in syria identified among Aegilops species and synthetic derived bread wheat lines. Genet Resour Crop Evol, 2008, 55: 1215-1219.
doi: 10.1007/s10722-008-9321-2 |
[6] | Xu X, Monneveux P, Damania A B, Zahavieva M. Evaluation for salt tolerance in genetic resources of Triticum and Aegilops species. Bull Ressour Genet Veget, 1993, 96: 11-16. |
[7] |
Liu C, Gong W, Han R, Guo J, Li G R, Li H S, Song J M, Liu A F, Cao X Y, Zhai S N, Cheng D G, Li G Y, Zhao Z D, Yang Z J, Liu J J, Reader S M. Characterization, identification and evaluation of a set of wheat-Aegilops comosa chromosome lines. Sci Rep, 2019, 9: 4773.
doi: 10.1038/s41598-019-41219-9 pmid: 30886203 |
[8] |
Zuo Y Y, Dai S F, Song Z P, Xiang Q, Li W, J Liu G, Li J, Xu D H, Yan Z H. Identification and characterization of wheat-Aegilops comosa 7M (7A) disomic substitution lines with stripe rust and powdery mildew resistance. Plant Dis, 2022, 106: 2663-2671.
doi: 10.1094/PDIS-11-21-2485-RE |
[9] |
Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91:1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007 |
[10] |
Heng Q, Li B, Mu S, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49: 1109-1114.
doi: 10.1139/g06-073 |
[11] |
Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93-103.
doi: 10.1139/gen-2016-0095 |
[12] | 王秀娥, 赵彦, 张清平, 王苏玲, 周波, 陈佩度, 刘大钧. 利用PCR技术初步鉴定小麦加州野大麦异染色体系. 南京农业大学学报, 2004, 27(4): 1-5. |
Wang X E, Zhao Y, Zhang Q P, Wang S L, Zhou B, Chen P D, Liu D J. Preliminary identification of Triticum aestivum L.- Hordeum californicum alien chromosome lines by PCR technique. J Nanjing Agric Univ, 2004, 27(4): 1-5. (in Chinese with English abstract) | |
[13] | Ma H H, Zhang J P, Zhang J, Zhou S H, Han H M, Liu W H, Yang X M, Li X Q, Li L H. Development of P genome-specific SNPs and their application in tracing Agropyron cristatum introgressions in common wheat. Crop J, 2019, 2: 151-162. |
[14] |
宫文萍, 韩冉, 宋健民, 刘建军, 李豪圣, 刘爱峰, 曹新有, 敦公, 赵振东, 刘成. 顶芒和无芒山羊草育种价值及细胞学标记. 核农学报, 2017, 31: 1889-1895.
doi: 10.11869/j.issn.100-8551.2017.10.1889 |
Gong W P, Han R, Song J M, Liu J J, Li H S, Liu A F, Cao X Y, Cheng D G, Zhao Z D, Liu C. Breeding value and cytogenetic markers of Aegilops comosa and Aegilops mutica. J Nucl Agric Sci, 2017, 31: 1889-1895. (in Chinese with English abstract) | |
[15] |
Parisod C, Badaeva E D. Chromosome restructuring among hybridizing wild wheats. New Phytol, 2020, 226: 1263-1273.
doi: 10.1111/nph.16415 pmid: 31913521 |
[16] | Song Z P, Dai S F, Bao T Y, Zuo Y Y, Xiang Q, Li J, Liu G, Yan Z H. Analysis of structural genomic diversity in Aegilops umbellulata, Ae. markgrafii, Ae. comosa, and Ae. uniaristata by fluorescence in situ hybridization karyotyping. Front Plant Sci, 2020, 11: 710. |
[17] |
Yu F, Zhao X W, Chai J, Ding X E, Li X T, Huang Y J, Wang X H, Wu J Y, Zhang M Q, Yang Q H, Deng Z H, Jiang J M. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. New Phytol, 2022, 233: 1953-1965.
doi: 10.1111/nph.v233.4 |
[18] |
He L, Zhao H N, He J, Yang Z J, Guan B, Chen K L, Hong Q B, Wang J H, Liu J J, Jiang J M. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome- specific painting. Plant J, 2020, 103: 2225-2235.
doi: 10.1111/tpj.v103.6 |
[19] |
Hou L L, Xu M, Zhang T, Xu Z H, Wang W Y, Zhang J X, Yu M M, Ji W, Zhu C W, Gong Z Y, Gu M H, Jiang J M, Yu H X. Chromosome painting and its applications in cultivated and wild rice. BMC Plant Biol, 2018, 18: 110.
doi: 10.1186/s12870-018-1325-2 pmid: 29879904 |
[20] |
Xin H Y, Zhang T, Wu Y F, Zhang W L, Zhang P D, Xi M L, Jiang J M. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J, 2020, 101: 253-264.
doi: 10.1111/tpj.v101.2 |
[21] |
Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 2015, 200: 771-779.
doi: 10.1534/genetics.115.177642 pmid: 25971668 |
[22] |
Song X Y, Song R R, Zhou J W, Yan W K, Zhang T, Sun H J, Xiao J, Wu Y F, Xi M L, Lou Q F, Wang H Y, Wang X E. Development and application of oligonucleotide-based chromosome painting for chromosome 4D of Triticum aestivum L. Chrom Res, 2020, 28: 171-182.
doi: 10.1007/s10577-020-09627-0 |
[23] |
Li G R, Zhang T, Yu Z H, Wang H J, Yang E N, Yang Z J. An efficient oligo-FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J, 2021, 105: 978-993.
doi: 10.1111/tpj.v105.4 |
[24] |
Cheng Y J, Guo W W, Yi H L, Pang X M, Deng X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep, 2003, 21: 177-178.
doi: 10.1007/BF02774246 |
[25] | 程梦豪, Karafiátová M, 孙昊杰, Holušová K, Doležel J, 宋新颖, 王海燕, 王秀娥. 基于纤毛鹅观草特异的卫星重复序列开发寡核苷酸探针. 南京农业大学学报, 2022, 45: 1-14. |
Cheng M H, Karafiátová M, Sun H J, Holušová K, Doležel J, Song X Y, Wang H Y, Wang X E. Development of oligonucleotide probes specific to Roegneria ciliaris chromosomes based on satellite repeats. J Nanjing Agric Univ, 2022, 45: 1-14. (in Chinese with English abstract) | |
[26] | Rychlik W. OLIGO 7 primer analysis software 402.In:Yuryev A ed.ed. PCR Primer Design. Methods in Molecular Biology, 402, Humana Press, Totowa, New Jersey, USA, 2007. pp 35-59. |
[27] |
Lei J, Zhou J W, Sun H J, Wan W T, Xiao J, Yuan C X, Karafiátová M, Doležel J, Wang H Y, Wang X E. Development of oligonucleotide probes for FISH karyotyping in Haynaldia villosa, a wild relative of common wheat. Crop J, 2020, 8: 676-681.
doi: 10.1016/j.cj.2020.02.008 |
[28] |
Lang T, Li G R, Wang H J, Yu Z H, Chen Q H, Yang E N, Fu S L, Tang Z X, Yang Z J. Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 2019, 249: 663-675.
doi: 10.1007/s00425-018-3033-4 pmid: 30357506 |
[29] |
Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup D, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93-103.
doi: 10.1139/gen-2016-0095 |
[30] |
Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5: 10552.
doi: 10.1038/srep10552 pmid: 25994088 |
[31] |
Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 12:118.
doi: 10.3390/genes12010118 |
[32] |
Jiang J M. Fluorescence in situ hybridization in plants: recent developments and future applications. Chrom Res, 2019, 27: 153-165.
doi: 10.1007/s10577-019-09607-z |
[33] |
Danilova T V, Friebe B, Gill B S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet, 2014, 127: 715-730.
doi: 10.1007/s00122-013-2253-z pmid: 24408375 |
No related articles found! |
|