Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1843-1859.doi: 10.3724/SP.J.1006.2023.24173


Genome-wide association analysis of geraniol primrose glycoside abundance in tender tea shoots

WANG Rang-Jian1,2,*(), YANG Jun1,2, ZHANG Li-Lan1,2, GAO Xiang-Feng1,2   

  1. 1Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 355012, Fujian, China
    2Fujian Branch, National Center for Tea Improvement, Fuzhou 355012, Fujian, China
  • Received:2022-08-01 Accepted:2022-11-25 Online:2023-07-12 Published:2023-01-17
  • Contact: *E-mail: wangrj@faas.cn E-mail:wangrj@faas.cn
  • Supported by:
    The National Key Research and Development Program of China(2019YFD1001601);The “5511” Collaborative Innovation Project between Fujian Province and Chinese Academy of Agricultural Sciences(XTCXGC2021004);The Natural Science Foundation of Fujian Province(2020J011366)


Geraniol is an important volatile monoterpene alcohol contained in tea plant, which plays an important role in the interaction between tea plant and environment and constitutes one of key aroma components in tea. Geraniol from tea plant tender shoots mainly exists in the form of geranyl β-primeveroside. Explore SNP loci and candidate genes significantly associated with geranyl β-primeveroside content is of great significance for the the genetic regulation mechanism of geranyl β-primeveroside content and tea plant genetic improvement. Regarding 169 tea germplasms as the research materials, the geranyl β-primeveroside content of tea plant tender shoots was identified for three consecutive years (three environments), and the SNP markers were developed based on SLAF-seq technology. Then, the geranyl β-primeveroside content of tea plant tender shoots was analyzed by genome-wide association analysis (GWAS) using general linear model (GLM). The candidate genes were further screened based on the SNP loci significantly with the geranyl β-primeveroside content. Ultimately, the base differences of candidate gene coding regions and their upstream cis acting elements among the extreme geranyl β-primeveroside content were analyzed. Results showed that the variation coefficient of geranyl β-primeveroside content in three environments ranged from 77.6% to 81.8%, and the broad heritability was 62.6%. The geranyl β-primeveroside content was significant differences among the genotypes and environments, and the variation was mainly affected by heredity. A total of 340 SNP markers significantly correlated with the geranyl β-primeveroside content were detected under three environments, in which 65 SNP markers were detected repeatedly under 2 environments. Based on the tea plant reference genome and linkage disequilibrium decay distance, a total of 88 genes within 100 kb on both sides of the repeated 65 SNP markers were obtained, including signal proteins, kinases, phosphatases, ion transporters, transcription factors, heat shock proteins, hormone related proteins, resistance proteins, terpene metabolic enzymes, glycosyltransferases, and glycosidases. 10 candidate genes were preliminary screened out. SNP nonsynonymous mutations in the coding region sequences of 10 candidate genes between two extreme geranyl β-primeveroside content materials, and different numbers of cis acting elements related to environmental stress and hormones in the upstream 2 kb regions of most candidate genes were discovered. This study provides a new perspective for clarifying the genetic regulation mechanism of geranyl β-primeveroside content in tea plant tender shoots, and also provides the markers and gene resources for molecular marker assisted selection of new tea varieties.

Key words: tea (Camellia sinensis L.), geranyl β-primeveroside, genome-wide association analysis (GWAS), single nucleotide polymorphism (SNP), candidate genes

Table 1

Phenotypic variation of geranyl β-primeveroside content"

Mean value
Standard deviation
Coefficient of variation (%)
Ryan-Joiner test
2018 0.3585 0.2809 78.4 r=0.917, P<0.01
2019 0.2674 0.2187 81.8 r=0.914, P<0.01
2020 0.3581 0.2779 77.6 r=0.855, P<0.01

Table 2

Variance analysis of geranyl β-primeveroside content"

Heritability h2 (%)
基因 Genotype 168 34.1299 0.2032 6.12** 62.6
环境 Environment 2 0.9318 0.4659 14.04**
误差 Error 336 11.3233 0.0337

Table 3

Statistics of SNP marker types in the population"

Main types
Maximum number
Minimum number
Average number
基因间区Intergenic 1,595,407 513,424 1,062,687
内含子Intron 53,116 21,509 41,091
基因上游(5 kb内) Upstream in 5 kb 46,686 17,538 37,335
基因下游(5 kb内) Downstream in 5 kb 42,110 16,067 32,681
同义突变Synonymous 5004 2161 3537
非同义突变Nonsynonymous 6703 2931 4911
其他Other 2899 1161 2030

Fig. 1

Analysis of genetic structure and linkage disequilibrium A: the genetic structure analysis; B: the principal component analysis; C: the linkage disequilibrium analysis."

Table 4

SNP sites related to geranyl β-primeveroside content"

SNP location
SNP variation
Functional area
Contribution rate (%)
2018 2019 2020
Scaffold106 940,480 C/T 间区Intergenic 19.3 4.25E-09 7.89E-08
940,538 A/G 间区Intergenic 18.1 1.01E-08 1.41E-07
Scaffold1262 982,460 G/A 间区Intergenic 18.2 5.56E-09 6.45E-08
982,581 A/T 间区Intergenic 18.2 5.56E-09 6.45E-08
Scaffold1318 1,188,898 C/A 间区Intergenic 20.7 2.70E-08 9.11E-10
Scaffold1611 610,786 C/T 间区Intergenic 20.7 1.60E-07 9.52E-09
Scaffold1671 583,382 C/T 内含子Intron 18.4 4.92E-09 7.52E-08
583,566 G/A 内含子Intron 18.2 6.24E-09 8.42E-08
Scaffold209 336,614 G/A 间区Intergenic 22.6 1.88E-09 6.50E-08
Scaffold211 1,175,079 G/A 间区Intergenic 19.2 1.56E-07 8.21E-09
1,175,109 T/A 间区Intergenic 19.2 1.56E-07 8.21E-09
1,175,111 C/T 间区Intergenic 19.2 1.56E-07 8.21E-09
1,175,135 C/T 间区Intergenic 19.2 1.56E-07 8.21E-09
1,175,177 C/T 间区Intergenic 19.2 1.55E-07 8.32E-09
Scaffold2268 2,777,884 G/A 间区Intergenic 19.4 1.33E-07 1.43E-08
2,777,990 G/A 间区Intergenic 20.4 1.26E-07 4.63E-09
Scaffold2311 361,209 C/T 间区Intergenic 18.5 1.00E-07 3.44E-09
Scaffold2800 1,171,675 A/T 间区Intergenic 19.8 8.69E-08 6.93E-09
Scaffold2942 113,797 G/A 间区Intergenic 20.0 1.15E-07 1.00E-08
113,806 C/T 间区Intergenic 20.0 1.15E-07 1.00E-08
Scaffold30 1,872,412 G/T 间区Intergenic 20.2 6.24E-09 7.68E-08
Scaffold3229 195,605 C/A 间区Intergenic 17.1 1.56E-08 1.53E-07
1,193,442 C/T 间区Intergenic 20.7 2.28E-09 3.86E-09
Scaffold3317 78,232 C/A 内含子Intron 23.9 2.35E-10 7.93E-10
78,432 G/A 内含子Intron 21.8 2.12E-09 1.47E-09
Scaffold3395 141,462 C/T 间区Intergenic 20.4 8.41E-09 3.16E-10
141,471 G/A 间区Intergenic 20.4 8.41E-09 3.16E-10
141,479 G/A 间区Intergenic 20.4 8.41E-09 3.16E-10
141,537 G/A 间区Intergenic 20.4 8.41E-09 3.16E-10
Scaffold349 3,542,803 G/A 间区Intergenic 21.5 8.21E-09 4.86E-10
3,543,009 G/A 间区Intergenic 22.0 4.03E-09 3.10E-10
3,543,014 G/A 间区Intergenic 21.0 6.06E-09 9.46E-10
3,543,021 G/T 间区Intergenic 20.8 8.62E-09 1.16E-09
3,543,061 C/T 间区Intergenic 21.0 7.19E-09 9.75E-10
3,543,082 G/A 间区Intergenic 21.0 6.52E-09 9.75E-10
Scaffold3611 1,622,374 A/C 间区Intergenic 18.7 9.80E-09 8.04E-08
1,622,376 A/G 间区Intergenic 18.7 9.80E-09 8.04E-08
Scaffold4122 389,378 G/A 间区Intergenic 19.5 2.34E-09 9.22E-10
444,511 C/T 间区Intergenic 18.8 2.51E-09 7.63E-10
444,749 C/A 间区Intergenic 18.8 2.51E-09 7.63E-10
444,760 G/A 间区Intergenic 19.4 2.37E-09 7.33E-10
Scaffold4659 1,061,780 G/A 间区Intergenic 19.0 3.62E-08 2.72E-09
Scaffold4817 276,251 C/T 间区Intergenic 17.8 6.68E-08 5.92E-09
Scaffold522 69,932 T/C 内含子Intron 20.2 8.67E-08 6.37E-09
69,936 T/C 内含子Intron 20.2 8.67E-08 6.37E-09
Scaffold708 2,098,580 G/A 间区Intergenic 19.8 7.24E-09 1.21E-07
2,098,607 G/A 间区Intergenic 20.4 4.00E-09 6.13E-08
2,098,614 C/T 间区Intergenic 19.9 7.01E-09 1.20E-07
2,098,617 G/A 间区Intergenic 19.8 7.24E-09 1.21E-07
2,098,661 A/G 间区Intergenic 19.5 8.39E-10 1.67E-08
2,098,666 G/C 间区Intergenic 18.0 4.86E-09 5.84E-08
2,098,674 G/A 间区Intergenic 18.0 4.86E-09 5.84E-08
2,098,695 T/C 间区Intergenic 18.0 4.86E-09 5.84E-08
Scaffold7165 292,911 A/T 下游Downstream 22.7 9.53E-09 7.52E-10
Scaffold8160 383,511 C/T 内含子Intron 18.6 8.16E-08 5.10E-09
Scaffold8614 526,707 A/G 间区Intergenic 20.8 7.33E-08 3.20E-09
526,802 C/T 间区Intergenic 19.0 1.36E-09 5.85-08
Scaffold8631 103,446 G/A 间区Intergenic 21.9 1.29E-09 2.71E-08
103,448 T/C 间区Intergenic 21.7 1.73E-09 3.43E-08
103,743 G/A 间区Intergenic 21.9 1.29E-09 2.71E-08
Scaffold877 1,740,414 C/T 间区Intergenic 19.8 1.01E-08 1.39E-07
1,740,416 G/A 间区Intergenic 22.0 1.00E-09 2.50E-08
1,740,418 G/A 间区Intergenic 21.2 2.37E-09 2.12E-08
Scaffold89 2,029,626 A/G 内含子 Intron 19.1 7.64E-09 1.18E-07
Scaffold9179 390,469 A/T 内含子 Intron 19.4 9.31E-09 1.22E-07

Table 5

Candidate gene information"

SNP location
Distance (kb)
Candidate gene
Function annotation
Scaffold106 940,480-940,538 5°-37.4 TEA029079.1 MYB转录因子MYB Transcription factor
5°-65.0 TEA029081.1 丝氨酸/苏氨酸蛋白磷酸酶Serine/threonine-protein kinase
5°-76.2 TEA029085.1 脱落酸受体PYL2 Abscisic acid receptor PYL2
Scaffold1262 982,460-982,581 3°-29.7 TEA016845.1 MYB转录因子MYB Transcription factor
Scaffold1318 1,188,898 5°-73.4 TEA023905.1 PTB 调控因子PTB Regulation factor
5°-58.4 TEA023908.1 亮氨酸重复受体蛋白激酶
Leucine-rich repeat receptor-like protein kinase
5°-68.5 TEA023909.1 亮氨酸重复受体蛋白激酶
Leucine-rich repeat receptor-like protein kinase
5°-11.7 TEA023910.1 莽草酸邻羟基肉桂酰转移酶
Shikimate O-hydroxy cinnamoyl transferase
Scaffold1611 610,716-610,786 5°-17.0 TEA001327.1 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase
Scaffold1671 583,382-583,566 5°-47.6 TEA026622.1 抗病蛋白Disease resistance protein
3°-87.8 TEA026619.1 乙烯反应转录因子
Ethylene-responsive transcription factor ERF
5°-53.1 TEA026637.1 抗病蛋白Disease resistance protein
Scaffold209 336,614 5°-99.2 TEA015065.1 半乳糖醛酸转移酶Galacturonosyltransferase
5°-44.9 TEA015072.1 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase
Scaffold211 1,175,079-1,175,177 3°-66.4 TEA033378.1 糖基转移酶Glycosyltransferase
5°-37.2 TEA033379.1 细胞色素P450 Cytochrome P450
3°-12.1 TEA033380.1 未知蛋白Uncharacterized protein
3°-21.8 TEA033381.1 MOR1 蛋白MOR1 Protein
3°-6.6 TEA033375.1 未知蛋白Uncharacterized protein
Scaffold2268 2,777,884-2,777,990 5°-53.5 TEA021079.1 抗病蛋白Disease resistance protein
5°-59.0 TEA021105.1 亮氨酸重复受体蛋白激酶
Leucine-rich repeat receptor-like protein kinase
5°-95.5 TEA021068.1 TMV抗性蛋白TMV Resistance protein
Scaffold2311 361,209 5°-79.8 TEA030505.1 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase
5°-42.6 TEA030506.1 未知蛋白Uncharacterized protein
5°-7.7 TEA030509.1 未知蛋白Uncharacterized protein
Scaffold2800 1,171,675 3°-23.5 TEA002738.1 钙转运ATP酶Calcium-transporting ATPase
5°-1.6 TEA002761.1 信号蛋白Signalling protein
5°-7.7 TEA002758.1 信号蛋白Signalling protein
5°-67.9 TEA002766.1 抗性蛋白Resistance protein
5°-19.5 TEA002755.1 丝氨酸羧肽酶Serine carboxypeptidase
Scaffold2942 113,797-113,806 5°-94.2 TEA018613.1 F-盒子调控蛋白F-box protein
Scaffold30 1,872,412 5°-32.2 TEA009798.1 淀粉合成酶Starch synthase
5°-71.1 TEA009811.1 淀粉合成酶Starch synthase
3°-74.6 TEA009793.1 叶绿素结合蛋白Chlorophyll a-b binding protein
Scaffold3229 1,195,605 3°-15.3 TEA007727.1 微管结合蛋白Microtubule binding protein
3°-84.1 TEA007735.1 微管结合蛋白Microtubule binding protein
5°-36.8 TEA007726.1 dof 转录因子dof transcription factor
Scaffold3317 78,232-78,432 5°-18.7 TEA014251.1 赤霉素氧化酶Gibberellin oxidase
5°-43.8 TEA014250.1 膜相关激酶调节器Membrane-associated kinase regulator
Scaffold3395 141,462-141,537 5°-29.2 TEA023356.1 未知蛋白Uncharacterized protein
3°-44.7 TEA023352.1 热激蛋白Heat shock 70 kD protein
Scaffold349 3,542,803-3,543,082 5°-8.6 TEA023826.1 异戊烯基二磷酸合酶/异戊烯基转移酶
Isoprenyl diphosphate synthase/prenyltransferase
5°-10.9 TEA023811.1 核糖体蛋白Ribosomal protein
5°-33.9 TEA023806.1 翻译起始因子Translation initiation factor
5°-85.8 TEA023801.1 RNA聚合酶II转录亚基
RNA Polymerase II transcription subunit
3°-89.3 TEA023809.1 RNA聚合酶II转录亚基
RNA Polymerase II transcription subunit
Scaffold3611 1,622,374-1,622,376 5°-4.5 TEA013393.1 WRKY转录因子WRKY Transcription factor
3°-14.9 TEA013410.1 UDP-糖基转移酶 92A1 UDP-glycosyltransferase 92A1
Scaffold4122 444,511-444,760 3°-56.3 TEA027152.1 F-盒子调控蛋白F-box protein
3°-69.0 TEA027153.1 F-盒子调控蛋白F-box protein
Scaffold4659 1,061,780 3°-30.6 TEA001887.1 细胞壁相关受体激酶Wall-associated receptor kinase
5°-87.4 TEA001888.1 Beta-1,3-葡聚糖酶Beta-1,3-glucanase
Scaffold4817 276,251 3°-71.7 TEA006075.1 富含亮氨酸重复序列的蛋白激酶
Leucine-rich receptor-like protein kinase
5°-86.7 TEA006076.1 抗病蛋白RPM1 Disease resistance protein RPM1
5°-30.9 TEA006078.1 线粒体蛋白Mitochondria protein
Scaffold522 69,932-69,936 3°-11.3 TEA004895.1 抗病蛋白Disease resistance protein
3°-50.6 TEA004897.1 转录因子ORG2 Transcription factor ORG2
3°-12.1 TEA004887.1 未知蛋白Uncharacterized protein
Scaffold708 2,098,580-2,098,695 3°-40.7 TEA027473.1 MLO蛋白MLO-like protein
5°-19.6 TEA027474.1 果胶酯酶/果胶酯酶抑制剂
Pectinesterase/pectinesterase inhibitor
3°-92.8 TEA027481.1 果胶酯酶抑制剂Pectinesterase inhibitor
3°-58.4 TEA027489.1 未知蛋白Uncharacterized protein
5°-54.2 TEA027491.1 肽基脯氨酰顺反异构酶
Peptidylprolyl cis/trans isomerase
5°-65.8 TEA027494.1 uncharacterized protein
3°-74.6 TEA027468.1 转录激活因子Transcriptional activator
5°-66.7 TEA027497.1 未知蛋白Uncharacterized protein
Scaffold7165 292,911 3°-4.3 TEA009868.1 钙转运ATP酶Calcium-transporting ATPase
5°-4.5 TEA009869.1 ADP核糖基化因子ADP-ribosylation factor
Scaffold8160 383,511 3°-21.1 TEA009860.1 富含脯氨酸受体样蛋白激酶
Proline-rich receptor-like protein kinase
3°-89.4 TEA009862.1 阳离子逆向转运蛋白Cation/H(+) antiporter
5°-26.1 TEA009861.1 抗病蛋白Disease resistance protein
3°-15.9 TEA009863.1 未知蛋白Uncharacterized protein
3°-12.9 TEA009864.1 核糖体蛋白Ribosomal protein
3°-14.1 TEA009865.1 亚硫酸盐输出蛋白Sulfite exporter protein
Scaffold8614 526,707-526,802 5°-49.9 TEA004103.1 钙调素结合蛋白Calmodulin-binding protein
Scaffold8631 103,446-103,743 3°-8.8 TEA006901.1 Ras相关蛋白Ras-related protein
5°-8.5 TEA006902.1 Ras相关蛋白Ras-related protein
3°-70.9 TEA006898.1 未知蛋白Uncharacterized protein
Scaffold877 1,740,414-1,740,418 3°-12.5 TEA030188.1 铜离子转运蛋白Copper transporter
3°-46.8 TEA030196.1 阳离子/钙交换剂Cation/calcium exchanger
5°-45.1 TEA030182.1 鸟嘌呤核苷酸结合蛋白Guanine nucleotide-binding protein
3°-61.6 TEA030186.1 枯草杆菌蛋白酶Subtilisin-like protease
3°-47.5 TEA030202.1 阳离子/钙交换剂Cation/calcium exchanger
5°-8.7 TEA030204.1 未知蛋白Uncharacterized protein
3°-86.2 TEA030207.1 蛋白酶体亚基Proteasome subunit
Scaffold89 2,029,626 5°-86.0 TEA018925.1 Beta-1,3-葡聚糖酶Beta-1,3-glucanase
Scaffold9179 390,469 3°-36.5 TEA027247.1 丝氨酸/苏氨酸蛋白激酶Serine/threonine-protein kinase
3°-89.2 TEA027245.1 醛酮还原酶Aldo-keto reductase

Fig. 2

Differentially expressed genes A: 409 vs 1605 significantly up regulated; B: 409 vs 1605 significantly down regulated."

Fig. 3

GO functional analysis of differentially expressed genes A: 409 vs 1605 significantly up regulated; B: 409 vs 1605 significantly down regulated."

Fig. 4

KEGG functional analysis of differentially expressed genes A: 409 vs 1605 significantly up regulated; B: 409 vs 1605 significantly down regulated."

Table 6

Prediction of candidate genes of geranyl β-primeveroside contents"

Candidate gene
Gene annotation
每百万比对数目Counts per million
409 1605 悦茗香*
Fuyun 6*
Scaffold1318 TEA023908.1 富含亮氨酸重复类受体蛋白激酶
Leucine-rich repeat receptor-like protein kinase
7.09 2.31 16.88 1.22
Scaffold4817 TEA006075.1 富含亮氨酸重复类受体蛋白激酶
Leucine-rich repea treceptor-like protein kinase
2.73 0.23 3.89 0.31
Scaffold106 TEA029081.1 丝氨酸/苏氨酸蛋白激酶
Serine/threonine-protein kinase
20.21 8.70 17.13 6.32
Scaffold9179 TEA027247.1 丝氨酸/苏氨酸蛋白激酶
Serine/threonine-protein kinase
11.93 5.26 22.37 4.63
Scaffold349 TEA023811.1 核糖体蛋白
Ribosomal protein
12.40 4.89 21.10 5.69
Scaffold8160 TEA009864.1 核糖体蛋白
Ribosomal protein
65.70 24.41 109.79 33.77
Scaffold349 TEA023801.1 RNA聚合酶II转录亚基
RNA polymerase II transcription subunit
139.33 70.50 147.46 59.41
Scaffold4659 TEA001888.1 Beta-1,3-葡聚糖酶
7.65 1.09 8.94 1.92
Scaffold89 TEA018925.1 Beta-1,3-葡聚糖酶
236.17 130.12 190.25 150.34
Scaffold4817 TEA006076.1 抗病蛋白RPM1
Disease resistance protein RPM1
12.33 0.85 13.07 1.31

Table 7

Sequence variation of differential gene coding region in two extreme germplasms"

Candidate gene
SNP location
409 DNA序列
409 DNA sequence
1605 DNA序列
1605 DNA sequence
409 amino acid sequence
1605 amino acid sequence
TEA006075.1 348,400 T/A T Lys/Ter Lys
348,421 C/G C Glu/Gln Glu
348,436 G/C G Leu/Val Leu
348,467 G/A G Ala/Val Ala
348,488 A/G A Met/Thr Met
348,524 C/T C Gly/Glu Gly
348,764 C/T C Ser/Asn Ser
348,797 C/T C Cys/Tyr Cys
348,830 G/A G Ser/Phe Ser
349,130 G/A G Ser/Phe Ser
349,248 A/T A Tyr/Ter Tyr
349,283 G/A G Ser/Phe Ser
349,370 T/A T His/Leu His
349,421 T/C T Ter/Trp Ter
349,536 G/C G Phe/Leu Phe
349,550 A/T A Ile/Lys Ile
349,625 C/T C Trp/Ter Trp
TEA006075.1 349,633 T/G T Asn/His Asn
350,501 C/T C Trp/Ter Trp
350,647 G/A G Thr/Ile Thr
TEA023908.1 1,127,395 A G Ile Thr
1,127,410 G G/A Ala Ala/Val
1,127,793 C/G C Gln Glu
1,127,867 T/A T Ser Arg
1,127,989 C/T C Asn Ser
1,128,205 A/G A Ala Val
1,128,366 G G/C Gln Gln/Glu
1,128,407 G G/T Phe Phe/Leu
1,128,445 A A/G Ile Ile/Thr
1,128,890 T T/C Ile Ile/Met
1,129,004 G/T T His/Gln Gln
1,130,137 A A/G Ile Ile/Thr
1,130,398 A/G A Ile/Thr Ile
TEA029081.1 867,063 A/G A Leu/Ser Leu
867,147 C/T T Ser/Asn Asn
867,194 G C Pro Ala
867,221 C A Val Leu
867,354 A/G A Leu/Ser Leu
869,008 C G Arg Thr
869,038 T/A T His/Leu His
874,334 T G Lys Gln
TEA006076.1 187,415 C/A C Leu/Phe Leu
187,442 G/T G Cys/Ter Cys
189,274 C/G C Cys/Ser Cys
189,283 T/C T Gln/Arg Gln
TEA023801.1 3,449,354 G/C C Tyr/Ter Ter
3,453,357 A A/G Leu Leu/Pro
TEA023811.1 3,531,058 T T/A Lys Lys/Ter
TEA001888.1 1,154,774 T T/G Met Met/Leu
TEA009864.1 370,433 G/A A Ala/Val Val
TEA027247.1 358,366 A A/T Phe Phe/Ile
TEA018925.1 1,943,138 C A Arg Ser

Table 8

Prediction of environmental related cis-elements in the upstream regions of candidate genes for tea geraniol primrose glycoside"

Candidate gene
激素响应元件 Hormone responsive elements 环境胁迫相关元件 Environmental stress-related elements
TEA029081.1 2 2 1 3 2
TEA023908.1 1 2 2 1 2
TEA023801.1 1 1
TEA023811.1 2 4 1
TEA001888.1 1 1 1 1 4
TEA006075.1 2 1 5 4 1 1 5
TEA006076.1 1 1 1 4 1
TEA018925.1 1 2 2 1 2 1 1
TEA027247.1 3 4 1 3 2

Fig. 5

Schematic diagram of candidate genes Numbers in brackets indicate the number of genes. Signal transduction: TEA023908.1, TEA006075.1, TEA029081.1, TEA027247.1; Gene transcription: TEA023801.1; Protein translation: TEA023811.1, TEA009864.1; Resistant protein: TEA006076.1; Glucose metabolism: TEA001888.1, TEA018925.1."

[1] Inouye S, Takizawa T, Yamaguchi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemoth, 2001, 47: 565-573.
doi: 10.1093/jac/47.5.565 pmid: 11328766
[2] Wei S, Reuveny H, Bravdo B A, Shoseyov O. Hydrolysis of glycosidically bound volatiles from apple leaves (cv. Anna) by Aspergillus niger β-glucosidase affects the behavior of codling moth (Cydia pomonella L.). J Agric Food Chem, 2004, 52: 6212-6216.
doi: 10.1021/jf0495789
[3] Magnard J, Roccia A, Caissard J, Vergne P, Sun P, Hecquet R, Dubois A, Oyant L, Jullien F, Nicole F, Raymond O, Huguet S, Baltenweck R, Meyer S, Claudel P, Jeauffre J, Rohmer M, Foucher F, Hugueneyp P, Bendahmane M, Baudino S. Biosynthesis of monoterpene scent compounds in roses. Science, 2015, 349: 81-83.
doi: 10.1126/science.aab0696
[4] Zhao M Y, Wang L, Wang J M, Jin J Y, Zhang N, Lei L, Gao T, Jing T T, Zhang S R, Wu Y, Wu B, Hu Y Q, Wan X C, Schwab W, Song C K. Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J Integr Plant Biol, 2020, 62: 1461-1468.
doi: 10.1111/jipb.12937
[5] Wang D M, Yoshimura T, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: I. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. J Agric Food Chem, 2000, 48: 5411-5418.
doi: 10.1021/jf000443m
[6] Mizutani M, Nakanishi H, Ema J, Ma S, Noguchi E, Inohara-ochiiai M, Fukachimizutani F, Nakao M, Sakata K. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol, 2002, 130: 2164-2176.
doi: 10.1104/pp.102.011023
[7] Sarry J, Gunata Z. Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem, 2004, 87: 509-521.
doi: 10.1016/j.foodchem.2004.01.003
[8] Bock K W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem Pharmacol, 2015, 99: 11-17.
doi: 10.1016/j.bcp.2015.10.001
[9] Stahlbiskup E, Intert F, Holthuijzen J, Stengele M, Schulz G.Glycosidically bound volatiles-a review 1986-1991. Flavour Frag J, 1993, 8: 61-80.
doi: 10.1002/(ISSN)1099-1026
[10] Guo W, Hosoi R, Sakata K, Watanabe N, Yagi A, Ina K, Luo S. (S)-linalyl,2-phenylethyl, and benzyl disaccharide glycosides isolated as aroma precursors from oolong tea leaves. Biosci Biotechnol Biochem, 1994, 58: 1532-1534.
doi: 10.1271/bbb.58.1532
[11] Candela L, Formato M, Crescente G, Piccolella S, Pacifico S. Coumaroyl flavonol glycosides and more in marketed green teas: an intrinsic value beyond much-lauded catechins. Molecules, 2020, 25: 1765.
doi: 10.3390/molecules25081765
[12] Gu X G, Yao C C, Zhang Z Z, Wan X C, Ning J M, Shao W F. GC-ECD method for determination of glucosidically bound aroma precursors in fresh tea leaves. Chromatographia, 2011, 73: 189-193.
doi: 10.1007/s10337-010-1816-2
[13] Ogawa K, Moon J H, Guo W F, Yagi A, Watanabe N, Sakata K. A study on tea aroma formation mechanism: alcoholic aroma precursor amounts and glycosidase activity in parts of the tea plant. Zeitschrift Fur Naturforsch Sect C-J Biosci, 1995, 50: 493-498.
[14] Wang D M, Kurasawa E, Yamaguchi Y, Kubota K, Kobayashi A. Analysis of glycosidically bound aroma precursors in tea leaves: II. Changes in glycoside contents and glycosidase activities in tea leaves during the black tea manufacturing process. J Agric Food Chem, 2001, 49: 1900-1903.
doi: 10.1021/jf001077+
[15] Dai W D, Tan J F, Lu M L, Xie D C, Li P L, Lyu H P, Zhu Y, Guo L, Zhang Y, Peng Q H, Lin Z. Nontargeted modification-specific metabolomics investigation of glycosylated secondary metabolites in tea (Camellia sinensis L.) based on liquid chromatography-high resolution mass spectrometry. J Agric Food Chem, 2016, 64: 6783-6790.
doi: 10.1021/acs.jafc.6b02411
[16] Rawat R, Gulati A. Seasonal and clonal variations in some major glycosidic bound volatiles in Kangra tea (Camellia sinensis (L.) O. Kuntze). Eur Food Res Technol, 2008, 226: 1241-1249.
doi: 10.1007/s00217-007-0753-2
[17] Cui J L, Katsuno T, Totsuka K, Ohnishi T, Takemoto H, Mase N, Toda M, Narumi T, Sato K, Matsuo T, Mizutani K, Yang Z Y, Watanabe N, Tong H R. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. J Agric Food Chem, 2016, 64: 1151-1157.
doi: 10.1021/acs.jafc.5b05072
[18] Ohgami S, Ono E, Horikawa M, Murata J, Totsuka K, Toyonaga H, Ohba Y, Dohra H, Asai T, Matsui K, Mizutani M, Watanabe N, Ohnishi T. Volatile glycosylation in tea plants: sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases. Plant Physiol, 2015, 168: 464-477.
doi: 10.1104/pp.15.00403 pmid: 25922059
[19] Carl S R, Stephen G W. Glycosidase mechanisms. Curr Opin Plant Biol, 2000, 4: 573-580.
[20] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选. 作物学报, 2022, 48: 1813-1821.
doi: 10.3724/SP.J.1006.2022.12047
Yang F, Zhang Z F, Nan B, Xiao B Z. Genome-wide association analysis and candidate gene selection of yield related traits in rice. Acta Agron Sin, 2022, 48: 1813-1821. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12047
[21] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析. 作物学报, 2021, 47: 1891-1902.
doi: 10.3724/SP.J.1006.2021.01078
Xie L, Ren Y, Zhang X Z, Wang J Q, Zhang Z H, Shi S B, Geng H W. Genome-wide association study of pre-harvest sprouting traits in wheat. Acta Agron Sin, 2021, 47: 1891-1902. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.01078
[22] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构. 作物学报, 2022, 48: 304-319.
doi: 10.3724/SP.J.1006.2022.13002
Qu J Z, Feng W H, Zhang X H, Xu S T, Xue J Q. Dissecting the genetic architecture of maize kernel size based on genome-wide association study. Acta Agron Sin, 2022, 48: 304-319. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13002
[23] Wang L, Yang Y M, Zhang S Y, Che Z J, Yuan W J, Yu D Y. GWAS reveals two novel loci for photosynthesis-related traits in soybean. Mol Genet Genomics, 2020, 295: 705-716.
doi: 10.1007/s00438-020-01661-1 pmid: 32166500
[24] Wang R J, Gao X F, Yang J, Kong X R. Genome-wide association study to identify favorable SNP allelic variations and candidate genes that control the timing of spring bud flush of tea (Camellia sinensis) using SLAF-seq. J Agric Food Chem, 2019, 67: 10380-10391.
doi: 10.1021/acs.jafc.9b03330
[25] Fang K X, Xia Z Q, Li H J, Jiang X H, Qin D D, Wang Q S, Wang Q, Pan C D, Li B, Wu H L. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Hortic Res, 2021, 8: 42.
doi: 10.1038/s41438-021-00477-3
[26] 王让剑, 苏德森, 吴建衍, 黄崇耀, 陈立松. 超高效液相色谱-串联质谱法测定茶树新梢中两种香叶醇糖苷含量. 茶叶学报, 2020, 61(3): 114-119.
Wang R J, Su D S, Wu J Y, Huang C Y, Chen L S. UHPLC MS/MS determination of geraniol glycosides in tea shoots. Acta Tea Sin, 2020, 61(3): 114-119 ( in Chinese with English abstract).
[27] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25: 1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[28] Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, Depristo A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20: 1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[29] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[30] Alexander D H, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res, 2009, 19: 1655-1664.
doi: 10.1101/gr.094052.109 pmid: 19648217
[31] Alkes L P, Nick J P, Robert M P, Michael E W, Nancy A S, David R. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet, 2006, 38: 904-909.
doi: 10.1038/ng1847 pmid: 16862161
[32] Purcell S, Neale B, Todd-brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, Bakker P, Daly M J. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet, 2007, 81: 559-575.
doi: 10.1086/519795 pmid: 17701901
[33] Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829
[34] Robinson M D, Mccarthy D J, Smyth G K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010, 26: 139-140.
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
[35] 王愿, 王晓坤, 戈海曼, 杨磊. 拟南芥富含亮氨酸重复序列类受体激酶AtLRR78A的定位及其分选序列研究. 植物生理学报, 2017, 53: 477-486.
Wang Y, Wang X K, Ge H M, Yang L. The localization and trafficking mechanism of AtLRR78A, a leucine-rich repeat receptor-like kinase (LRR-RLK) in Arabidopsis. J Plant Physiol, 2017, 53: 477-486. (in Chinese with English abstract)
[36] Klauser D, Desurmont G A, Glauser G, Vallat A, Flury P, Boller T, Turlings T C J, Bartels S. The Arabidopsis Pep-PEPR system is induced by herbivore feeding and contributes to JA-mediated plant defence against herbivory. J Exp Bot, 2015, 66: 5327-5336.
doi: 10.1093/jxb/erv250
[37] Gou X, Li J. Paired receptor and coreceptor kinases perceive extracellular signals to control plant development. Plant Physiol, 2020, 182: 1667-1681.
doi: 10.1104/pp.19.01343 pmid: 32144125
[38] Peng H, Zhang Q, Li Y D, Lei C L, Zhai Y, Sun X H, Sun D Y, Sun Y, Lu T G. A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance. Planta, 2009, 230: 377-385.
doi: 10.1007/s00425-009-0951-1 pmid: 19468748
[39] Hu L, Ye M, Kuai P, Ye M, Erb M, Liu Y. OsLRRRLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. New Phytol, 2018, 219: 1097-1111.
doi: 10.1111/nph.2018.219.issue-3
[40] Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J, 1993, 3: 363-369.
pmid: 8220448
[41] Jung E H, Jung H W, Lee S C, Sang W H, Heu S, Hwang B K. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicun annuum. Biochim Biophys Acta, 2004, 1676: 211-222.
[42] Hasegawa P M, Brseean R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol, 2000, 51: 463-499.
[43] Xie Y R, Raruang Y, Chen Z Y, Brown R L, Cleveland T E. ZmGns, a maize class I β-1,3-glucanase, is induced by biotic stresses and possesses strong antimicrobial activity. J Integr Plant Biol, 2015, 57: 271-283.
doi: 10.1111/jipb.12286
[44] McFadden H G, Chapple R, Feyter R D E, Dennis E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119-131.
[45] Jongedijk E, Tigelaar H, Vanroekel J S C, Bresvloemans S A, Dekker I, Vandenelzen P J M, Cornelissen B J C, Melchers L S. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85: 173-180.
doi: 10.1007/BF00023946
[46] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444: 323-329.
doi: 10.1038/nature05286
[47] Yuan X, Wang Z Y, Huang J Z, Xuan H, Gao Z Y. Phospholipidase Dδnegatively regulates the function of resistance to Pseudomonas syringae pv. Maculicola 1 (RPM1). Front Plant Sci, 2019, 9: 1991
doi: 10.3389/fpls.2018.01991
[48] Aharoni A, Jongsma M A, Bouwmeester H J. Volatile science? Metabolic engineering of terpenoids in plant. Trends Plant Sci, 2005, 10: 594-602.
doi: 10.1016/j.tplants.2005.10.005 pmid: 16290212
[1] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[2] LI Xing, YANG Hui, LUO Lu, LI Hua-Dong, ZHANG Kun, ZHANG Xiu-Rong, LI Yu-Ying, YU Hai-Yang, WANG Tian-Yu, LIU Jia-Qi, WANG Yao, LIU Feng-Zhen, WAN Yong-Shan. QTLs mapping for single-seed weight of cultivated peanut [J]. Acta Agronomica Sinica, 2023, 49(8): 2160-2170.
[3] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[4] ZHANG Chao, YANG Bo, ZHANG Li-Yuan, XIAO Zhong-Chun, LIU Jing-Sen, MA Jin-Qi, LU Kun, LI Jia-Na. Mining harvest index loci based on QTL mapping and genome-wide association study in rapessed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2180-2195.
[5] YANG Fei, ZHANG Zheng-Feng, NAN Bo, XIAO Ben-Ze. Genome-wide association analysis and candidate gene selection of yield related traits in rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1813-1821.
[6] GE Tian-Li, TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui, QIU Li-Juan. QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map [J]. Acta Agronomica Sinica, 2022, 48(12): 2978-2986.
[7] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[8] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[9] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] WU Hai-Tao, ZHANG Yong, SU Bo-Hong, Lamlom F Sobhi, QIU Li-Juan. Development of molecular markers and fine mapping of qBN-18 locus related to branch number in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1667-1677.
[12] JIAN Hong-Ju, HUO Qiang, GAO Yu-Min, LI Yang-Yang, XIE Ling, WEI Li-Juan, LIU Lie-Zhao, LU Kun, LI Jia-Na. Selection of candidate genes for chlorophyll content in leaves of Brassica napus using genome-wide association analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1557-1565.
[13] Cun-Min QU,Guo-Qiang MA,Mei-Chen ZHU,Xiao-Hu HUANG,Le-Dong JIA,Shu-Xian WANG,Hui-Yan ZHAO,Xin-Fu XU,Kun LU,Jia-Na LI,Rui WANG. Genome-wide association of roots, hypocotyls and fresh weight at germination stage under as stress in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 175-187.
[14] Yang-Yang LI,Rong-Rong JING,Rong-Rong LYU,Peng-Cheng SHI,Xin LI,Qin WANG,Dan WU,Qing-Yuan ZHOU,Jia-Na LI,Zhang-Lin TANG. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(12): 1806-1821.
[15] WANG Hui-Mei,CHEN Jie,SHI Yong-Feng,PAN Gang,SHEN Hai-Chao,WU Jian-Li. Development and Validation of CAPS Markers for Marker-Assisted Selection of Rice Blast Resistance Gene Pi25 [J]. Acta Agron Sin, 2012, 38(11): 1960-1968.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .