Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (9): 2398-2411.doi: 10.3724/SP.J.1006.2023.22059
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
LIU Kai1(), CHEN Ji-Jin1, LIU Shuai2, CHEN Xu1, ZHAO Xin-Ru2, SUN Shang2, XUE Chao2, GONG Zhi-Yun1,2,*()
[1] |
Zhou Y, Simpson S, Holloway A F, Charlesworth J, van der Mei I, Taylor B V. The potential role of epigenetic modifications in the heritability of multiple sclerosis. Mult Scler, 2014, 20: 135-140.
doi: 10.1177/1352458514520911 |
[2] |
Peach S E, Rudomin E L, Udeshi N D, Carr S A, Jaffe J D. Quantitative assessment of chromatin immunoprecipitation grade antibodies directed against histone modifications reveals patterns of co-occurring marks on histone protein molecules. Mol Cell Proteomics, 2012, 11: 128-137.
doi: 10.1074/mcp.M111.015941 pmid: 22442256 |
[3] |
Kouzarides T. Chromatin modifications and their function. Cell, 2007, 128: 693-705.
doi: 10.1016/j.cell.2007.02.005 pmid: 17320507 |
[4] | 薛超. 水稻盐胁迫下组蛋白乙酰化修饰特征及HATs相关基因的功能研究. 扬州大学博士学位论文, 江苏扬州, 2018. |
Xue C. Characteristic Analysis of Histone Acetylation Dynamics under Salt Stress and Functional Analysis of HATs in Rice. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2018. (in Chinese with English abstract) | |
[5] |
Bao X C, Wang Y, Li X, Li X M, Liu Z, Yang T P, Wong C F, Zhang J W, Hao Q, Li X D. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. eLife, 2014, 3: e02999.
doi: 10.7554/eLife.02999 |
[6] | Tan M J, Luo H, Lee S, Jin F L, Yang J S, Montellier E, Buchou T, Cheng Z Y, Rousseaux S, Rajagopal N, Lu Z K, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y M. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146: 1015-1027. |
[7] |
Sabari B R, Tang Z Y, Huang H, Yong-Gonzalez V, Molina H, Kong H E, Dai L Z, Shimada M, Cross J R, Zhao Y M, Roeder R G, Allis C D. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell, 2015, 58: 203-215.
doi: 10.1016/j.molcel.2015.02.029 pmid: 25818647 |
[8] |
Sun H J, Liu X W, Li F F, Li W, Zhang J, Xiao Z X, Shen L L, Li Y, Wang F L, Yang J G. First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Sci Rep, 2017, 7: 3013.
doi: 10.1038/s41598-017-03369-6 |
[9] |
Liu K D, Yuan C C, Li H L, Chen K Y, Lu L S, Shen C J, Zheng X L. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep, 2018, 8: 8230.
doi: 10.1038/s41598-018-26676-y |
[10] |
Sun J H, Qiu C, Qian W J, Wang Y, Sun L T, Li Y S, Ding Z T. Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genomics, 2019, 20: 340.
doi: 10.1186/s12864-019-5716-z pmid: 31060518 |
[11] |
Dong Y B, Chen C. Comprehensive profiling of paper mulberry (Broussonetia papyrifera) crotonylome reveals the significance of lysine crotonylation in young leaves. Int J Mol Sci, 2022, 23: 1173.
doi: 10.3390/ijms23031173 |
[12] | Xu M L, Luo J D, Li Y, Shen L L, Zhang X, Yu J, Guo Z Q, Wu J X, Chi Y C, Yang J G. First comprehensive proteomics analysis of lysine crotonylation in leaves of peanut (Arachis hypogaea L.). Proteomics, 2021, 21: e2000156. |
[13] |
Liu S, Xue C, Fang Y, Chen G, Peng X J, Zhou Y, Chen C, Liu G Q, Gu M H, Wang K, Zhang W L, Wu Y F, Gong Z Y. Global involvement of lysine crotonylation in protein modification and transcription regulation in rice. Mol Cell Proteomics, 2018, 17: 1922-1936.
doi: 10.1074/mcp.RA118.000640 pmid: 30021883 |
[14] |
Yuan L Y, Liu X C, Luo M, Yang S G, Wu K Q. Involvement of histone modifications in plant abiotic stress responses. J Integr Plant Biol, 2013, 55: 892-901.
doi: 10.1111/jipb.12060 |
[15] |
Li H, Yan S H, Zhao L, Tan J J, Zhang Q, Gao F, Wang P, Hou H L, Li L J. Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol, 2014, 14: 105.
doi: 10.1186/1471-2229-14-105 pmid: 24758373 |
[16] |
Kim J M, To T K, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol, 2008, 49: 1580-1588.
doi: 10.1093/pcp/pcn133 |
[17] |
Van D K, Ding Y, Malkaram S, Riethoven J J M, Liu R, Yang J Y, Laczko P, Chen H, Xia Y N, Ladunga I, Avramova Z, Fromm M. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol, 2010, 10: 238.
doi: 10.1186/1471-2229-10-238 |
[18] |
Vlachonasios K E, Thomashow M F, Triezenberg S J. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell, 2003, 15: 626-638.
doi: 10.1105/tpc.007922 |
[19] |
Kwon C S, Lee D, Choi G, Chung W I. Histone occupancy- dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J, 2009, 60: 112-121.
doi: 10.1111/tpj.2009.60.issue-1 |
[20] | Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S. Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress. PLoS One, 2014, 9: e100343. |
[21] |
Zheng D Y, Wang L, Chen L F, Pan X C, Lin K D, Fang Y, Wang X E, Zhang W L. Salt-responsive genes are differentially regulated at the chromatin levels between seedlings and roots in rice. Plant Cell Physiol, 2019, 60: 1790-1803.
doi: 10.1093/pcp/pcz095 pmid: 31111914 |
[22] |
Lu Y, Xu Q T, Liu Y, Yu Y, Cheng Z Y, Zhao Y, Zhou D X. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biol, 2018, 19: 144.
doi: 10.1186/s13059-018-1533-y pmid: 30253806 |
[23] |
徐青山, 黄晶, 孙爱军, 洪小智, 朱练峰, 曹小闯, 孔亚丽, 金千瑜, 朱春权, 张均华. 低温影响水稻发育机理及调控途径研究进展. 中国水稻科学, 2022, 36: 118-130.
doi: 10.16819/j.1001-7216.2022.210602 |
Xu Q S, Huang J, Sun A J, Hong X Z, Zhu L F, Cao X C, Kong Y L, Jin Q Y, Quan C, Zhang J H. Effects of low temperature on the growth and development of rice plants and the advance of regulation pathways: a review. Chin J Rice Sci, 2022, 36: 118-130. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2022.210602 |
|
[24] |
Hu Y F, Zhu N, Wang X M, Yi Q P, Zhu D Y, Lai Y, Zhao Y. Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation. Plant Physiol Biochem, 2013, 70: 33-42.
doi: 10.1016/j.plaphy.2013.05.001 |
[25] |
Sharma R, Singh R K M, Malik G, Deveshwar P, Tyagi A K, Kapoor S, Kapoor M. Rice cytosine DNA methyltransferases: gene expression profiling during reproductive development and abiotic stress. FEBS J, 2009, 276: 6301-6311.
doi: 10.1111/j.1742-4658.2009.07338.x pmid: 19788421 |
[26] |
Xue C, Liu S, Chen C, Zhu J, Yang X B, Zhou Y, Guo R, Liu X Y, Gong Z Y. Global proteome analysis links lysine acetylation to diverse functions in Oryza sativa. Proteomics, 2018, 18: 1700036.
doi: 10.1002/pmic.v18.1 |
[27] |
Nagaki K, Talbert P B, Zhong C X, Dawe R K, Henikoff S, Jiang J M. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics, 2003, 163: 1221-1225.
doi: 10.1093/genetics/163.3.1221 |
[28] |
Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 2006, 47: 141-153.
doi: 10.1093/pcp/pci230 pmid: 16284406 |
[29] |
Mao D H, Chen C Y. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One, 2012, 7: e47275.
doi: 10.1371/journal.pone.0047275 |
[30] |
Huang L, Hong Y B, Zhang H J, Li D Y, Song F M. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance. BMC Plant Biol, 2016, 16: 203.
doi: 10.1186/s12870-016-0897-y pmid: 27646344 |
[31] |
Liu H J, Li Q Z, Yang F, Zhu F Y, Sun Y, Tao Y Z, Lo C. Differential regulation of protochlorophyllide oxidoreductase abundances by VIRESCENT 5A (OsV5A) and VIRESCENT 5B (OsV5B) in rice seedlings. Plant Cell Physiol, 2016, 57: 2392-2402.
pmid: 27565208 |
[32] |
He S, Tan L L, Hu Z L, Chen G P, Wang G X, Hu T Z. Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Mol Genet Genomics, 2012, 287: 39-54.
doi: 10.1007/s00438-011-0660-x |
[33] |
Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, 2011, 234: 1007-1018.
doi: 10.1007/s00425-011-1458-0 |
[34] |
Yu C Y, Su S, Xu Y C, Zhao Y Q, Yan A, Huang L L, Ali I, Gan Y B. The effects of fluctuations in the nutrient supply on the expression of five members of the AGL17 clade of MADS-Box genes in rice. PLoS One, 2014, 9: e105597.
doi: 10.1371/journal.pone.0105597 |
[35] |
Su C F, Wang Y C, Hsieh T H, Lu C A, Tseng T H, Yu S M. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol, 2010, 153: 145-158.
doi: 10.1104/pp.110.153015 |
[36] |
Jin J P, Tian F, Yang D C, Meng Y Q, Kong L, Luo J C, Gao G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, 2017, 45: D1040-D1045.
doi: 10.1093/nar/gkw982 |
[37] |
Tripathi A K, Pareek A, Sopory S K, Singla-Pareek S L. Narrowing down the targets for yield improvement in rice under normal and abiotic stress conditions via expression profiling of yield- related genes. Rice, 2012, 5: 37.
doi: 10.1186/1939-8433-5-37 pmid: 24280046 |
[38] |
Qi W W, Sun F, Wang Q J, Chen M L, Huang Y Q, Feng Y Q, Luo X J, Yang J S. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol, 2011, 157: 216-228.
doi: 10.1104/pp.111.179945 |
[39] |
Wan L Y, Zhang J F, Zhang H W, Zhang Z J, Quan R D, Zhou S R, Huang R F. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One, 2011, 6: e25216.
doi: 10.1371/journal.pone.0025216 |
[40] |
Zhang X, Long Y, Chen X X, Zhang B L, Xin Y F, Li L Y, Cao S L, Liu F H, Wang Z G, Huang H, Zhou D G, Xia J X. A NAC transcription factor OsNAC3 positively regulates ABA response and salt tolerance in rice. BMC Plant Biol, 2021, 21: 546.
doi: 10.1186/s12870-021-03333-7 pmid: 34800972 |
[41] |
Redillas M C F R, Jeong J S, Kim Y S, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol J, 2012, 10: 792-805.
doi: 10.1111/j.1467-7652.2012.00697.x pmid: 22551450 |
[42] | Um T, Choi J, Park T, Chung P J, Jung S E, Shim J S, Kim Y S, Choi I Y, Park S C, Oh S J, Seo J S, Kim J K. Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant Direct, 2022, 6: e374. |
[43] | 刘兰兰. 水稻OsBBX基因响应热胁迫的初步研究. 湖南农业大学硕士学位论文, 湖南长沙, 2015. |
Liu L L. Preliminary Study on OsBBX Genes under Heat Stress in Rice. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2015. (in Chinese with English abstract) | |
[44] |
刘焱, 邢立静, 李俊华, 戴绍军. 水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应. 植物学报, 2012, 47: 366-378.
doi: 10.3724/SP.J.1259.2012.00366 |
Liu Y, Xing L J, Li J H, Dai S J. Rice B-box zinc finger protein OsBBX25 is involved in the abiotic response. Chin Bull Bot, 2012, 47: 366-378. (in Chinese with English abstract) | |
[45] |
Iwamoto M, Higo K, Takano M. Circadian clock- and phytochrome-regulated Dof-like gene, Rdd1, is associated with grain size in rice. Plant Cell Environ, 2009, 32: 592-603.
doi: 10.1111/pce.2009.32.issue-5 |
[46] |
Gandass N, Kajal, Salvi P. Intrinsically disordered protein, DNA binding with one finger transcription factor (OsDOF27) implicates thermotolerance in yeast and rice. Front Plant Sci, 2022, 13: 956299.
doi: 10.3389/fpls.2022.956299 |
[47] |
Kim S K, Yun C H, Lee J H, Jang Y H, Park H Y, Kim J K. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta, 2008, 228: 355-365.
doi: 10.1007/s00425-008-0742-0 |
[48] | Lee Y S, Jeong D H, Lee D Y, Yi J, Ryu C H, Kim S L, Jeong H J, Choi S C, Jin P, Yang J, Cho L H, Choi H, An G. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J, 2010, 63: 18-30. |
[49] |
Zhang S X, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B F. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012, 80: 571-585.
doi: 10.1007/s11103-012-9967-1 |
[50] |
Sun L, Di D W, Li G, Kronzucker H J, Wu X, Shi W. Endogenous ABA alleviates rice ammonium toxicity by reducing ROS and free ammonium via regulation of the SAPK9-bZIP20 pathway. J Exp Bot, 2020, 71: 4562-4577.
doi: 10.1093/jxb/eraa076 pmid: 32064504 |
[51] |
Wang B X, Xu B, Liu Y, Li J F, Sun Z G, Chi M, Xing Y G, Yang B, Li J, Liu J B, Chen T M, Fang Z W, Lu B G, Xu D Y, Bello B K. A novel mechanisms of the signaling cascade associated with the SAPK10-bZIP20-NHX1 synergistic interaction to enhance tolerance of plant to abiotic stress in rice (Oryza sativa L.). Plant Sci, 2022, 323: 111393.
doi: 10.1016/j.plantsci.2022.111393 |
[52] |
Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A. Heat shock factor gene family in rice: Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem, 2009, 47: 785-795.
doi: 10.1016/j.plaphy.2009.05.003 |
[53] |
Ogawa S, Miyamoto K, Nemoto K, Sawasaki T, Yamane H, Nojiri H, Okada K. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci Rep, 2017, 7: 40175.
doi: 10.1038/srep40175 pmid: 28067270 |
[54] | 李梦琪. 转录因子OsbHLH111抑制水稻幼苗生长机理的初步研究. 河南农业大学硕士学位论文, 河南郑州, 2018. |
Li M Q. Preminary Study on the Mechanism for Rice Seedling Growth-inhibition of bHLH111. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract) | |
[55] |
Tian Q X, Luan J X, Guo C X, Shi X Y, Deng P, Zhou Z Z, Zhang W H, Shen L K. A bHLH protein, OsBIM1, positively regulates rice leaf angle by promoting brassinosteroid signaling. Biochem Biophys Res Commun, 2021, 578: 129-135.
doi: 10.1016/j.bbrc.2021.09.035 |
[56] |
Yin X, Cui Y, Wang M, Xia X. Overexpression of a novel MYB-related transcription factor, OsMYBR1, confers improved drought tolerance and decreased ABA sensitivity in rice. Biochem Biophys Res Commun, 2017, 490: 1355-1361.
doi: 10.1016/j.bbrc.2017.07.029 |
[57] | Rongjun C. Isolation of a novel MYB transcription factor OsMyb1R from rice and analysis of the response of this gene to abiotic stresses. Afr J Biotechnol, 2012, 11: 3731-3737. |
[58] |
Jha U C, Bohra A, Jha R, Parida S K. Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep, 2019, 38: 255-277.
doi: 10.1007/s00299-019-02374-5 |
[59] |
Zeng Z X, Zhang W L, Marand A P, Zhu B, Buell C R, Jiang J M. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol, 2019, 20: 123.
doi: 10.1186/s13059-019-1731-2 pmid: 31208436 |
[60] |
Sun L, Song G S, Guo W J, Wang W X, Zhao H K, Gao T T, Lyu Q X, Yang X, Xu F, Dong Y S, Pu L. Dynamic changes in genome-wide histone3 lysine27 trimethylation and gene expression of soybean roots in response to salt stress. Front Plant Sci, 2019, 10: 1031.
doi: 10.3389/fpls.2019.01031 pmid: 31552061 |
[61] |
Lee H G, Seo P J. MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun, 2019, 10: 1713.
doi: 10.1038/s41467-019-09417-1 |
[62] |
Ding Y, Avramova Z, Fromm M. The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J, 2011, 66: 735-744.
doi: 10.1111/j.1365-313X.2011.04534.x |
[63] |
Pien S, Fleury D, Mylne J S, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U. ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell, 2008, 20: 580-588.
doi: 10.1105/tpc.108.058172 |
[64] |
Ullah F, Xu Q, Zhao Y, Zhou D X. Histone deacetylase HDA710 controls salt tolerance by regulating ABA signaling in rice. J Integr Plant Biol, 2021, 63: 451-467.
doi: 10.1111/jipb.13042 |
[65] |
Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol, 2009, 149: 88-95.
doi: 10.1104/pp.108.129791 pmid: 19126699 |
[66] |
陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展. 作物学报, 2022, 48: 781-790.
doi: 10.3724/SP.J.1006.2022.12026 |
Chen Y, Sun M Z, Jia B W, Leng Y, Sun X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response. Acta Agron Sin, 2022, 48: 781-790. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.12026 |
|
[67] |
Zheng Y, Ge J, Bao C, Chang W, Liu J, Shao J, Liu X, Su L, Pan L, Zhou D X. Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response. Mol Plant, 2020, 13: 598-611.
doi: S1674-2052(19)30408-3 pmid: 31891777 |
[68] |
Lamke J, Brzezinka K, Altmann S, Baurle I. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J, 2016, 35: 162-175.
doi: 10.15252/embj.201592593 pmid: 26657708 |
[69] | Mao Y, Pavangadkar K A, Thomashow M F, Triezenberg S J. Physical and functional interactions of Arabidopsis ADA 2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochim Biophys Acta, 2006, 1759: 69-79. |
[70] |
Zong W, Yang J, Fu J, Xiong L. Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice. J Integr Plant Biol, 2020, 62: 723-729.
doi: 10.1111/jipb.12850 |
[71] |
Huang Q X, Liao X Q, Yang X H, Luo Y C, Lin P, Zeng Q H, Bai H R, Jiang B B, Pan Y Z, Zhang F, Zhang L, Jia Y, Liu Q L. Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum. Plant Biotechnol J, 2021, 19: 1125-1140.
doi: 10.1111/pbi.13533 pmid: 33368971 |
[1] | XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571. |
[2] | HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372. |
[3] | TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038. |
[4] | SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050. |
[5] | WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159. |
[6] | CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239. |
[7] | JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295. |
[8] | DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784. |
[9] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
[10] | DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941. |
[11] | XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746. |
[12] | LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707. |
[13] | XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642. |
[14] | DING Jie-Rong, MA Ya-Mei, PAN Fa-Zhi, JIANG Li-Qun, HUANG Wen-Jie, SUN Bing-Rui, ZHANG Jing, LYU Shu-Wei, MAO Xing-Xue, YU Hang, LI Chen, LIU Qing. Ubiquitin receptor protein OsDSK2b plays a negative role in rice leaf blast resistance and osmotic stress tolerance [J]. Acta Agronomica Sinica, 2023, 49(6): 1466-1479. |
[15] | HE Yong-Ming, ZHANG Fang. Study of regulating effect of auxin on floret opening in rice [J]. Acta Agronomica Sinica, 2023, 49(6): 1690-1698. |
|