Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2051-2063.doi: 10.3724/SP.J.1006.2023.24208

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Haplotype analysis of soybean leaf type regulator gene Ln and its homologous genes

LI Gang1,3(), ZHOU Yan-Chen1, XIONG Ya-Jun1, CHEN Yi-Jie1, GUO Qing-Yuan1, GAO Jie1, SONG Jian2, WANG Jun1,*(), LI Ying-Hui3,*(), QIU Li-Juan3,*()   

  1. 1 College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2 College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
    3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-09-10 Accepted:2023-02-21 Online:2023-08-12 Published:2023-03-01
  • Contact: WANG Jun,LI Ying-Hui,QIU Li-Juan E-mail:1073855911@qq.com;wangjagri@yangtzeu.edu.cn;liyinghui@caas.cn;qiulijuan@caas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Key Science and Technology Project of Yunnan Province(202202AE090014)

Abstract:

Soybean leaf type is an important component of ideal plant type, which is of great significance for the breeding of soybean varieties. In this study, we analyzed the haplotype of Ln and its homologous gene (Glyma.10G273800) in 598 materials from different regions of China. Ln gene and homologous gene contained three haplotypes (Hap1-Hap3), respectively. There was no significant difference in leaf length between the three haplotypes of Ln gene, and Hap2 was significantly different from Hap1/Hap3 in leaf width, leaf area, and leaf length width ratio. There were significant differences between Hap3 and Hap2 of Ln homologous gene in different leaf types. There was no difference in the ratio of leaf length to width between Hap1 and Hap2. There was no significant difference in leaf width phenotype at the 4th leaf site, and Hap1 at the 5th leaf site was significantly lower than Hap2. Leaf length, leaf area, and leaf circumference Hap1 were significantly lower than Hap2. In terms of geographical distribution, Hap2 of Ln gene was mainly distributed in high latitude and high altitude regions, and no obvious regional bias was detected in the distribution of the three haplotypes of its homologous genes. Genetic analysis showed that only D9H of Hap2 in Ln gene had artificial selection signal, while the other two mutation sites in Ln gene and two mutation sites in homologous gene had no artificial selection signal. This study provides the theoretical basis for soybean leaf type breeding and has positive significance for increasing soybean yield.

Key words: soybean, leaf type, haplotype, Ln gene

Table 1

Origin, classification, and geographic information of 598 soybean germplasm"

来源
Origin
数量
Number
改良品种
Improved
地方品种
Landrace
经度
Longitude
纬度
Latitude
安徽Anhui 21 6 15 117.17E 31.52N
北京Beijing 25 22 3 116.28E 39.54N
福建Fujian 6 2 4 118.04E 24.26N
广东Guangdong 11 1 10 113.18E 23.10N
甘肃Gansu 6 0 6 103.50E 36.03N
广西Guangxi 10 1 9 108.21E 22.47N
贵州Guizhou 33 0 33 106.72E 26.57N
海南Hainan 1 0 1 111.10E 20.03N
河北Hebei 48 7 41 114.26E 38.03N
河南Henan 24 11 13 113.40E 34.46N
黑龙Heilongjiang 76 59 17 126.64E 45.76N
湖北Hubei 28 5 23 115.32E 30.52N
湖南Hunan 15 3 12 112.59E 28.12N
吉林Jilin 45 17 28 125.18E 43.55N
江苏Jiangsu 27 10 17 118.75E 32.04N
江西Jiangxi 6 0 6 115.53E 28.42N
辽宁Liaoning 39 12 27 123.23E 41.48N
内蒙古Inner Mongolia 6 2 4 111.65E 40.82N
宁夏Ningxia 3 0 3 106.13E 38.28N
陕西Shaanxi 18 0 18 108.55E 34.15N
四川Sichuan 44 3 41 104.06E 30.67N
山东Shandong 29 9 20 120.18E 36.03N
上海Shanghai 2 0 2 121.43E 34.50N
山西Shanxi 56 11 45 112.33E 37.51N
台湾Taiwan 1 1 0 121.31E 25.02N
新疆Xinjiang 1 1 0 87.36E 43.46N
云南Yunnan 11 0 11 102.42E 25.03N
浙江Zhejiang 6 4 2 120.10E 30.15N

Table 2

Descriptive statistics of different leaf type traits in 598 germplasms"

性状
Trait
节点
Node
均值
Mean
标准差
SD
最小值
Min.
最大值
Max.
正态性检验显著性a
Normality test for significance a
叶面积Leaf area (cm2) 4 42.517 13.851 13.329 80.056 <0.001
5 45.803 13.486 16.780 81.826 <0.001
叶长Leaf length (cm) 4 10.206 1.421 6.294 14.009 >0.100
5 10.405 1.331 6.562 13.879 >0.100
叶长宽比Leaf length to width ratio 4 1.808 0.266 1.243 2.876 <0.001
5 1.685 0.279 1.130 2.634 <0.001
叶周长Leaf perimeter (cm) 4 27.817 4.161 16.584 40.053 >0.100
5 28.698 3.990 16.992 39.039 >0.100
叶宽Leaf width (cm) 4 5.950 1.346 3.077 9.693 <0.001
5 6.324 1.337 3.132 10.139 <0.001

Table 3

Correlation analysis of different leaf type traits"

性状
Trait
叶面积
Leaf area
叶长
Leaf length
叶长宽比
Leaf length to width ratio
叶周长
Leaf perimeter
叶宽
Leaf width
叶面积Leaf area 1
叶长Leaf length 0.777*** 1
叶长宽比Leaf length to width ratio -0.463*** 0.003 1
叶周长Leaf perimeter 0.801*** 0.772*** -0.231*** 1
叶宽Leaf width 0.956*** 0.612*** -0.654** 0.721*** 1

Fig. 1

Gene structure of Glyma.20G116200 and Glyma.10G273800"

Table 4

Frequency of different haplotypes of Ln (Glyma.20g116200) and its homologous genes (Glyma.10G273800) in germplasm resources"

基因
Gene name
单倍型
Haplotype
类型
Class
基因型
Genotype
频率
Frequency
改良品种
Improved
地方品种
Landrace
Glyma.20G116200 Hap1 参考Reference GTA 429 92 337
Hap2 特定Specific CTA 59 55 4
Hap3 特定Specific GGT 92 34 58
Glyma.10G273800 Hap1 特定Specific TG 253 92 161
Hap2 参考Reference GG 206 82 124
Hap3 特定Specific GT 116 11 105

Fig. 2

Haplotype analysis of Ln gene A: haplotype inference network; B: mutation type and site; C-F: the LLWR of middle leaves (C), and side leaf (D) on the fourth node, LLWR of middle leaves (E), and side leaf (F) on the fifth node. Significance was estimated by K-W test, P < 0.01 and P < 0.001 indicate different significance and extremely significance, respectively; G: geographical distribution of Ln gene haplotypes."

Fig. S1

Comparison of leaf type traits among different haplotypes based on Ln genes A-D: the leaf length of middle leaves (A), and side leaf (B) on the fourth node, leaf length of middle leaves (C), and side leaf (D) on the fifth node; E-H: the leaf width of middle leaves (E), and side leaf (F) on the fourth node, leaf width of middle leaves (G), and side leaf (H) on the fifth node; I-L: the leaf area of middle leaves (I), and side leaf (J) on the fourth node, leaf area of middle leaves (K), and side leaf (L) on the fifth node; M-P: the leaf perimeter of middle leaves (M), and side leaf (N) on the fourth node, leaf perimeter of middle leaves (O), and side leaf (P) on the fifth node."

Fig. 3

Haplotype analysis of Glyma.10G273800 gene A: haplotype inference network; B: mutation type and site; C-F: the LLWR of middle leaves (C), and side leaf (D) on the fourth node, LLWR of middle leaves (E), and side leaf (F) on the fifth node. Significance was estimated by K-W test, P < 0.01 and P < 0.001 indicate different significance and extremely significance, respectively; G: geographical distribution of Ln gene haplotypes."

Fig. S2

Comparison of leaf type traits among different haplotypes based on Ln genes A-D: the leaf length of middle leaves (A), and side leaf (B) on the fourth node, leaf lengtth of middle leaves (C), and side leaf (D) on the fifth node; E-H: the leaf width of middle leaves (E), and side leaf (F) on the fourth node, leaf width of middle leaves (G), and side leaf (H) on the fifth node; I-L: the leaf area of middle leaves (I), and side leaf (J) on the fourth node, leaf area of middle leaves (K), and side leaf (L) on the fifth node; M-P: the leaf perimeter of middle leaves (M), and side leaf (N) on the fourth node, leaf perimeter of middle leaves (O), and side leaf (P) on the fifth node."

Fig. 4

Genetic differentiation analysis of Ln gene and homologous genes A: genetic differentiation index between populations based on Ln gene: B: the neutral test based on Ln gene: C: the analysis of nucleotide diversity in population based on Ln gene; D: the genetic differentiation index between populations based on Glyma.10g273800; E: the neutral test based on Glyma.10g273800; F: the analysis of nucleotide diversity in population based on Glyma.10g273800. Fst: genetic differentiation index between populations; Tajima’s D: neutral test; π: the analysis of nucleotide diversity in population."

[1] Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance. Ann Bot (London) 1938, 2: 811-818.
doi: 10.1093/oxfordjournals.aob.a084036
[2] Board J E, Harville B G. Explanations for greater light interception in narrow-vs. wide-row. Crop Sci, 1992, 32: 198-202.
doi: 10.2135/cropsci1992.0011183X003200010041x
[3] Srinivasan V, Kumar P, Long S P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biol, 2017, 23: 1626-1635.
doi: 10.1111/gcb.13526 pmid: 27860122
[4] 陈磊.大豆叶形调控基因的图位克隆与功能分析. 南京农业大学博士学位论文, 江苏南京, 2014.
Chen L.Atlas Cloning and Functional Analysis of Soybean Leaf Shape Regulatory Genes. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014. (in Chinese with English abstract)
[5] Baldocchi D D, Verma S B, Rosenberg N J, Blad B L, Specht J E. Microclimate-plant architectural interactions: influence of leaf width on the mass and energy exchange of a soybean canopy. Agric Forest Meteorol, 1985, 35: 1-20.
doi: 10.1016/0168-1923(85)90070-X
[6] Takahashi N. Linkage relation between the genes for the forms of leaves and the number of seeds per pod of soybeans. Jpn J Genet, 1934, 9: 208-225.
doi: 10.1266/jjg.9.208
[7] Johnson H W, Bernard R L. Soybean genetics and breeding. Adv Agron, 1962, 14: 149-221.
[8] Jeong N, Moon J K, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122: 865-874.
doi: 10.1007/s00122-010-1492-5 pmid: 21104397
[9] Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A, Ishimoto M. Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed Sci, 2017: 16201.
[10] Mandl F A, Buss G R. Comparison of narrow and broad leaflet isolines of soybean. Crop Sci, 1981, 21: 25-27.
doi: 10.2135/cropsci1981.0011183X002100010007x
[11] Robinson J M. Leaflet photosynthesis rate and carbon metabolite accumulation patterns in nitrogen-limited, vegetative soybean plants. Photosynth Res, 1996, 50: 133-148.
doi: 10.1007/BF00014884
[12] Sung F J M, Chen J J. Changes in photosynthesis and other chloroplast traits in lanceolate leaflet isoline of soybean. Plant Physiol, 1989, 90: 773-777.
doi: 10.1104/pp.90.2.773 pmid: 16666842
[13] 田佩占. 大豆育种的叶形问题. 遗传学报, 1977, 4: 22-30.
Tian P Z. Leaf shape problems in soybean breeding. Acta Genet Sin, 1977, 4: 22-30. (in Chinese with English abstract)
[14] 游明安, 马国荣, 刘佑斌, 盖钧镒, 邱家驯. 大豆叶形、短叶柄近等基因系的选育与利用. 中国油料, 1995, 17(4): 7-9.
You A M, Ma G R, Liu Y B, Gai J Y, Qiu J X. Selection and utilization of soybean leaf-shaped, short petiole proximal and other gene lines. Chin J Oil Crop Sci, 1995, 17(4): 7-9. (in Chinese with English abstract)
[15] 周勋波, 吴海燕. 关于大豆理想株型的探讨. 大豆通报, 2002, (5): 4-5.
Zhou X B, Wu H Y. Discussion on the ideal plant type of soybean. Soybean Sci Technol, 2002, (5): 4-5. (in Chinese with English abstract)
[16] Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72.
doi: 10.1093/dnares/8.2.61 pmid: 11347903
[17] Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582-589.
doi: 10.1111/pbr.2005.124.issue-6
[18] Jun T H, Freewalt K, Michel A P, Mian R. Identification of novel QTL for leaf traits in soybean. Plant Breed, 2014, 133: 61-66.
doi: 10.1111/pbr.2014.133.issue-1
[19] Vieira A J D, Oliveira D A, Soares T C B, Schuster I, Piovesan N D, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290.
doi: 10.1590/S1677-04202006000200004
[20] Mian M A R, Ashley D A, Boerma H R. An additional QTL for water use efficiency in soybean. Crop Sci, 1998, 38: 390-393.
doi: 10.2135/cropsci1998.0011183X003800020020x
[21] Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G.Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[22] Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907-913.
doi: 10.1007/BF00211040 pmid: 24193996
[23] Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336.
doi: 10.2135/cropsci1996.0011183X003600050042x
[24] Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039
[25] Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan C P, Shan C Y, Hu G H. QTL analysis of major agronomic traits in soybean. Agric Sci China, 2007, 6: 399-405.
doi: 10.1016/S1671-2927(07)60062-5
[26] Bernard R L, Weiss M G. Qualitative genetics. In: Boerma H R, Specht J E, eds. Soybeans: Improvement, Production, and Uses. Madison: American Society of Agronomy, 1973. pp 117-154.
[27] Jeong N, Suh S J, Kim M H, Lee S, Moon J K, Kim H S, Jeong S C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell, 2012, 24: 4807-4818.
doi: 10.1105/tpc.112.104968
[28] Fang C, Li W Y, Li G Q, Wang Z, Zhou Z K, Ma Y M, Shen Y T, Li C C, Wu Y W, Zhu B G, Yang W C, Tian Z X. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics, 2013, 40: 93-96.
doi: 10.1016/j.jgg.2013.01.002
[29] Li Y H, Qin C, Wang L, Jiao C Z, Hong H L, Tian Y, Li Y F, Xing G N, Wang J, Gu Y Z, Gao X P, Li D L, Li H Y, Liu Z X, Jing X, Feng B B, Zhao T, Guan R X, Guo Y, Liu J, Yan Z, Zhang L J, Ge T L, Li X K, Wang X B, Qiu H M, Zhang W H, Luan X Y, Han Y P, Han D Z, Chang R Z, Guo Y L, Reif J C, Jackson S A, Liu B, Tian S L, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci China Life Sci, 2022, 66: 350-365.
doi: 10.1007/s11427-022-2158-7
[30] Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten, D L, Song Q J, Telen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183.
doi: 10.1038/nature08670
[31] 张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦 TaPK7 基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537-1543.
doi: 10.3724/SP.J.1006.2008.01537
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between single nucleotide polymorphisms and drought resistance in TaPK7 gene in wheat. Acta Agron Sin, 2008, 34: 1537-1543. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01537
[32] Stephens J C, Schneider J A, Tanguay D A, Choi J, Acharya T, Stanley S E, Jiang R, Messer C J, Chew A, Han J H, Duan J, Carr J L, Lee M S, Koshy B, Kumar A M, Zhang G, Newell W R, Windemuth A, Xu C B, Kalbflesch T S, Shaner S L, Arnold K, Schulz V, Drysdale C M, Nandabalan K, Judson R S, Ruano G, Vovis G F. Haplotype variation and linkage disequilibrium in 313 human genes. Science, 2001, 293: 489-493.
doi: 10.1126/science.1059431 pmid: 11452081
[33] 张乐, 李英慧, 刘章雄, 邱丽娟. 栽培大豆(G. max)和野生大豆(G. soja)的Glyma13g21630基因多样性. 作物学报, 2011, 37: 1724-1734.
doi: 10.3724/SP.J.1006.2011.01724
Zhang L, Li Y H, Liu Z X, Qiu L J. Glyma13g21630 genetic diversity of cultivated soybeans (G. max) and wild soybeans (G. soja). Acta Agron Sin, 2001 37: 1724-1734. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01724
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541.
[3] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[4] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[5] ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916.
[6] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[7] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[8] YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320.
[9] WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118.
[10] LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35.
[11] BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187.
[12] XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96.
[13] QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72.
[14] DING Pu-Yang, ZHOU Jie-Guang, ZHAO Cong-Hao, TANG Hua-Ping, MU Yang, TANG Li-Wei, DENG Mei, WEI Yu-Ming, LAN Xiu-Jin, MA Jian. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2196-2209.
[15] LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .