Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2051-2063.doi: 10.3724/SP.J.1006.2023.24208
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles Next Articles
LI Gang1,3(), ZHOU Yan-Chen1, XIONG Ya-Jun1, CHEN Yi-Jie1, GUO Qing-Yuan1, GAO Jie1, SONG Jian2, WANG Jun1,*(), LI Ying-Hui3,*(), QIU Li-Juan3,*()
[1] |
Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance. Ann Bot (London) 1938, 2: 811-818.
doi: 10.1093/oxfordjournals.aob.a084036 |
[2] |
Board J E, Harville B G. Explanations for greater light interception in narrow-vs. wide-row. Crop Sci, 1992, 32: 198-202.
doi: 10.2135/cropsci1992.0011183X003200010041x |
[3] |
Srinivasan V, Kumar P, Long S P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global Change Biol, 2017, 23: 1626-1635.
doi: 10.1111/gcb.13526 pmid: 27860122 |
[4] | 陈磊.大豆叶形调控基因的图位克隆与功能分析. 南京农业大学博士学位论文, 江苏南京, 2014. |
Chen L.Atlas Cloning and Functional Analysis of Soybean Leaf Shape Regulatory Genes. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014. (in Chinese with English abstract) | |
[5] |
Baldocchi D D, Verma S B, Rosenberg N J, Blad B L, Specht J E. Microclimate-plant architectural interactions: influence of leaf width on the mass and energy exchange of a soybean canopy. Agric Forest Meteorol, 1985, 35: 1-20.
doi: 10.1016/0168-1923(85)90070-X |
[6] |
Takahashi N. Linkage relation between the genes for the forms of leaves and the number of seeds per pod of soybeans. Jpn J Genet, 1934, 9: 208-225.
doi: 10.1266/jjg.9.208 |
[7] | Johnson H W, Bernard R L. Soybean genetics and breeding. Adv Agron, 1962, 14: 149-221. |
[8] |
Jeong N, Moon J K, Kim H S, Kim C G, Jeong S C. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet, 2011, 122: 865-874.
doi: 10.1007/s00122-010-1492-5 pmid: 21104397 |
[9] | Sayama T, Tanabata T, Saruta M, Yamada T, Anai T, Kaga A, Ishimoto M. Confirmation of the pleiotropic control of leaflet shape and number of seeds per pod by the Ln gene in induced soybean mutants. Breed Sci, 2017: 16201. |
[10] |
Mandl F A, Buss G R. Comparison of narrow and broad leaflet isolines of soybean. Crop Sci, 1981, 21: 25-27.
doi: 10.2135/cropsci1981.0011183X002100010007x |
[11] |
Robinson J M. Leaflet photosynthesis rate and carbon metabolite accumulation patterns in nitrogen-limited, vegetative soybean plants. Photosynth Res, 1996, 50: 133-148.
doi: 10.1007/BF00014884 |
[12] |
Sung F J M, Chen J J. Changes in photosynthesis and other chloroplast traits in lanceolate leaflet isoline of soybean. Plant Physiol, 1989, 90: 773-777.
doi: 10.1104/pp.90.2.773 pmid: 16666842 |
[13] | 田佩占. 大豆育种的叶形问题. 遗传学报, 1977, 4: 22-30. |
Tian P Z. Leaf shape problems in soybean breeding. Acta Genet Sin, 1977, 4: 22-30. (in Chinese with English abstract) | |
[14] | 游明安, 马国荣, 刘佑斌, 盖钧镒, 邱家驯. 大豆叶形、短叶柄近等基因系的选育与利用. 中国油料, 1995, 17(4): 7-9. |
You A M, Ma G R, Liu Y B, Gai J Y, Qiu J X. Selection and utilization of soybean leaf-shaped, short petiole proximal and other gene lines. Chin J Oil Crop Sci, 1995, 17(4): 7-9. (in Chinese with English abstract) | |
[15] | 周勋波, 吴海燕. 关于大豆理想株型的探讨. 大豆通报, 2002, (5): 4-5. |
Zhou X B, Wu H Y. Discussion on the ideal plant type of soybean. Soybean Sci Technol, 2002, (5): 4-5. (in Chinese with English abstract) | |
[16] |
Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72.
doi: 10.1093/dnares/8.2.61 pmid: 11347903 |
[17] |
Kim H K, Kang S T, Suh D Y. Analysis of quantitative trait loci associated with leaflet types in two recombinant inbred lines of soybean. Plant Breed, 2005, 124: 582-589.
doi: 10.1111/pbr.2005.124.issue-6 |
[18] |
Jun T H, Freewalt K, Michel A P, Mian R. Identification of novel QTL for leaf traits in soybean. Plant Breed, 2014, 133: 61-66.
doi: 10.1111/pbr.2014.133.issue-1 |
[19] |
Vieira A J D, Oliveira D A, Soares T C B, Schuster I, Piovesan N D, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290.
doi: 10.1590/S1677-04202006000200004 |
[20] |
Mian M A R, Ashley D A, Boerma H R. An additional QTL for water use efficiency in soybean. Crop Sci, 1998, 38: 390-393.
doi: 10.2135/cropsci1998.0011183X003800020020x |
[21] |
Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G.Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[22] |
Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet, 1993, 86: 907-913.
doi: 10.1007/BF00211040 pmid: 24193996 |
[23] |
Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327-1336.
doi: 10.2135/cropsci1996.0011183X003600050042x |
[24] |
Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics, 1990, 126: 735-742.
doi: 10.1093/genetics/126.3.735 pmid: 1979039 |
[25] |
Chen Q S, Zhang Z C, Liu C Y, Xin D W, Qiu H M, Shan C P, Shan C Y, Hu G H. QTL analysis of major agronomic traits in soybean. Agric Sci China, 2007, 6: 399-405.
doi: 10.1016/S1671-2927(07)60062-5 |
[26] | Bernard R L, Weiss M G. Qualitative genetics. In: Boerma H R, Specht J E, eds. Soybeans: Improvement, Production, and Uses. Madison: American Society of Agronomy, 1973. pp 117-154. |
[27] |
Jeong N, Suh S J, Kim M H, Lee S, Moon J K, Kim H S, Jeong S C. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean. Plant Cell, 2012, 24: 4807-4818.
doi: 10.1105/tpc.112.104968 |
[28] |
Fang C, Li W Y, Li G Q, Wang Z, Zhou Z K, Ma Y M, Shen Y T, Li C C, Wu Y W, Zhu B G, Yang W C, Tian Z X. Cloning of Ln gene through combined approach of map-based cloning and association study in soybean. J Genet Genomics, 2013, 40: 93-96.
doi: 10.1016/j.jgg.2013.01.002 |
[29] |
Li Y H, Qin C, Wang L, Jiao C Z, Hong H L, Tian Y, Li Y F, Xing G N, Wang J, Gu Y Z, Gao X P, Li D L, Li H Y, Liu Z X, Jing X, Feng B B, Zhao T, Guan R X, Guo Y, Liu J, Yan Z, Zhang L J, Ge T L, Li X K, Wang X B, Qiu H M, Zhang W H, Luan X Y, Han Y P, Han D Z, Chang R Z, Guo Y L, Reif J C, Jackson S A, Liu B, Tian S L, Qiu L J. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci China Life Sci, 2022, 66: 350-365.
doi: 10.1007/s11427-022-2158-7 |
[30] |
Schmutz J, Cannon S B, Schlueter J, Ma J X, Mitros T, Nelson W, Hyten, D L, Song Q J, Telen J J, Cheng J L, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S Q, Goodstein D. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183.
doi: 10.1038/nature08670 |
[31] |
张洪映, 毛新国, 景蕊莲, 谢惠民, 昌小平. 小麦 TaPK7 基因单核苷酸多态性与抗旱性的关系. 作物学报, 2008, 34: 1537-1543.
doi: 10.3724/SP.J.1006.2008.01537 |
Zhang H Y, Mao X G, Jing R L, Xie H M, Chang X P. Relationship between single nucleotide polymorphisms and drought resistance in TaPK7 gene in wheat. Acta Agron Sin, 2008, 34: 1537-1543. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.01537 |
|
[32] |
Stephens J C, Schneider J A, Tanguay D A, Choi J, Acharya T, Stanley S E, Jiang R, Messer C J, Chew A, Han J H, Duan J, Carr J L, Lee M S, Koshy B, Kumar A M, Zhang G, Newell W R, Windemuth A, Xu C B, Kalbflesch T S, Shaner S L, Arnold K, Schulz V, Drysdale C M, Nandabalan K, Judson R S, Ruano G, Vovis G F. Haplotype variation and linkage disequilibrium in 313 human genes. Science, 2001, 293: 489-493.
doi: 10.1126/science.1059431 pmid: 11452081 |
[33] |
张乐, 李英慧, 刘章雄, 邱丽娟. 栽培大豆(G. max)和野生大豆(G. soja)的Glyma13g21630基因多样性. 作物学报, 2011, 37: 1724-1734.
doi: 10.3724/SP.J.1006.2011.01724 |
Zhang L, Li Y H, Liu Z X, Qiu L J. Glyma13g21630 genetic diversity of cultivated soybeans (G. max) and wild soybeans (G. soja). Acta Agron Sin, 2001 37: 1724-1734. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01724 |
[1] | HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372. |
[2] | LIU Ting-Xuan, GU Yong-Zhe, ZHANG Zhi-Hao, WANG Jun, SUN Jun-Ming, QIU Li-Juan. Mapping soybean protein QTLs based on high-density genetic map [J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. |
[3] | LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281. |
[4] | WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064. |
[5] | ZHU Zhi, LI Long, LI Chao-Nan, MAO Xin-Guo, HAO Chen-Yang, ZHU Ting, WANG Jing-Yi, CHANG Jian-Zhong, JING Rui-Lian. Transcription factor TaMYB5-3B is associated with plant height and 1000- grain weight in wheat [J]. Acta Agronomica Sinica, 2023, 49(4): 906-916. |
[6] | SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150. |
[7] | LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844. |
[8] | YANG Shuo, WU Yang-Chun, LIU Xin-Lei, TANG Xiao-Fei, XUE Yong-Guo, CAO Dan, WANG Wan, LIU Ting-Xuan, QI Hang, LUAN Xiao-Yan, QIU Li-Juan. Fine mapping of qPRO-20-1 related to high protein content in soybean [J]. Acta Agronomica Sinica, 2023, 49(2): 310-320. |
[9] | WANG Hui, WU Zhi-Yi, ZHANG Yu-E, YU De-Yue. Transcriptional expression profiling of soybean genes under sulfur-starved conditions by RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(1): 105-118. |
[10] | LIANG Zheng, KE Mei-Yu, CHEN Zhi-Wei, CHEN Xu, GAO Zhen. Function of GmPIN2 family gene in regulating root development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 24-35. |
[11] | BAI Zhi-Yuan, CHEN Xiang-Yang, ZHENG A-Xiang, ZHANG Li, ZOU Jun, ZHANG Da-Tong, CHEN Fu, YIN Xiao-Gang. Spatial-temporal variations for agronomic and quality characters of soybeans varieties (strains) tested in America from 1991 to 2019 [J]. Acta Agronomica Sinica, 2023, 49(1): 177-187. |
[12] | XU Kai, ZHENG Xing-Fei, ZHANG Hong-Yan, HU Zhong-Li, NING Zi-Lan, LI Lan-Zhi. Genome-wide association analysis of indica-rice heading date based on NCII genetic mating design [J]. Acta Agronomica Sinica, 2023, 49(1): 86-96. |
[13] | QI Yang-Yang, DOU Ru-Na, ZHAO Cai-Tong, ZHANG Zhi, LI Wen-Bin, JIANG Zhen-Feng. Analysis of key genes involved in GA pathway responding to temperature and exogenous GA related to internode development in soybean [J]. Acta Agronomica Sinica, 2023, 49(1): 62-72. |
[14] | DING Pu-Yang, ZHOU Jie-Guang, ZHAO Cong-Hao, TANG Hua-Ping, MU Yang, TANG Li-Wei, DENG Mei, WEI Yu-Ming, LAN Xiu-Jin, MA Jian. Dissection of haplotypes, geographical distribution and breeding utilization of WAPO1 associated with spike development in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2196-2209. |
[15] | LIU Cheng, ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin, GAI Jun-Yi. Wild segments associated with 100-seed weight and their candidate genes in a wild chromosome segment substitution line population [J]. Acta Agronomica Sinica, 2022, 48(8): 1884-1893. |
|