Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1942-1953.doi: 10.3724/SP.J.1006.2023.21049

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction

DONG Zhi-Qiang(), LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling*()   

  1. Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences / Scientific Observing and Experimental Station of Crop Cultivation in North China, Ministry of Agriculture and Rural Affairs / Key Laboratory of Crop Cultivation Physiology and Green Production of Hebei Province, Shijiazhuang 050035, Hebei, China
  • Received:2022-07-15 Accepted:2022-11-25 Online:2023-07-12 Published:2022-12-29
  • Contact: *E-mail: jiaxiuling2013@163.com E-mail:woshidongzhiqiang81@126.com;jiaxiuling2013@163.com
  • Supported by:
    The Science and Technology Innovation Special Project of the Finance Project of Hebei Province(2022KJCXZX-LYS-10);The Science and Technology Innovation Special Project of the Finance Project of Hebei Province(2022KJCXZX-LYS-9);The Key Research and Development Program of Hebei Province(20326411D)

Abstract:

The purpose of this study is to explore the effects of different water and nitrogen interaction on yield and processing quality of high-quality wheat with strong gluten Shiluan 02-1, and to provide theoretical basis for how to achieve the goal of synergistically improving grain yield and processing quality through reasonable irrigation and optimal nitrogen application rate in the production of strong gluten wheat. From 2017 to 2020, the two factors split zone experiment of watering times and nitrogen application amount was set under field conditions. The main-plot factor was watering times [spring watering one time (W1, jointing water) and spring watering two times (W2, jointing water + flowering water)]; and the split-plot factor was nitrogen (N) fertilizer treatment in six levels (N0: 0, N1: 60, N2: 120, N3: 180, N4: 240, and N5: 300 kg hm-2). The study showed that: When N application rate was 0-300 kg hm-2, the yield of spring irrigating one time and spring irrigating two times increased first and then decreased with the increase of N application rate, and the N application amount corresponding to the maximum grain yield was 240 kg hm-2 in the different precipitation years. When N application rate was 120-300 kg hm-2, the yield of spring irrigating two times was significantly higher than that of spring irrigating one time. Water and N interaction had the greatest effect on the number of grains per unit area, followed by 1000-grain weight, which had the least effect on grain number per spike. When N application rate was 0-300 kg hm-2, the average value of wet gluten content, sedimentation value, water absorption rate, dough stability time, tensile energy, and maximum tensile resistance of winter wheat treated with spring irrigating two times were higher than those treated with spring irrigating one time in 2017 and 2018 (wet year). However, in 2018-2019 and 2019-2020 (drought year), it was opposite: spring irrigating one time was higher than spring irrigating two times. The wet gluten content and sedimentation value of wheat in spring irrigating one time and spring irrigating two times increased first and then decreased or gradually increased with the increase of N application rate in different precipitation years, the N application rate corresponding to the maximum of the two quality indicators was 240 kg hm-2 or 300 kg hm-2. The stabilization time, tensile energy, and maximum tensile resistance increased first and then decreased with the increase of N application rate, and reached the maximum value when N application rate was 240 kg hm-2. The grain yield and processing quality of high-quality wheat with strong gluten Shiluan 02-1 were the best when it was watered twice in spring and N was applied at 240 kg hm-2 in different precipitation years.

Key words: water and nitrogen interaction, strong gluten wheat, Shiluan 02-1, yield, processing quality

Table 1

Soil basic nutrient content in experimental area (0-20 cm)"

处理
Treatment
有机质
Organic matter (g kg-1)
全氮
Total N (g kg-1)
有效磷
Available P (mg kg-1)
速效钾
Available K (mg kg-1)
W1N0 16.6 1.01 16.62 132.2
W1N1 17.1 1.05 14.81 118.3
W1N2 17.8 1.10 13.99 112.0
W1N3 18.0 1.11 12.40 118.5
W1N4 18.2 1.12 12.55 125.1
W1N5 18.7 1.18 12.04 124.3
W2N0 15.6 0.94 16.78 135.0
W2N1 17.0 1.05 17.16 120.7
W2N2 17.3 1.07 17.78 125.5
W2N3 17.6 1.12 11.17 107.7
W2N4 18.0 1.13 13.01 116.0
W2N5 18.2 1.14 12.24 102.0

Table 2

Rainfall in experiment area from 2017 to 2020 (mm)"

年份
Year
月份 Month 生育年
Annual
休闲期
Fallow
period
生育期
Growth
period
7 8 9 10 11 12 1 2 3 4 5 6
2017-2018 99.2 94.5 10.7 200.3 3.8 0 2.2 0 6.9 84.9 72.3 68.3 643.1 204.4 438.7
2018-2019 45.3 130.1 4.6 21.0 2.6 3.3 0 0 0 59.3 8.3 41.3 315.8 180.0 135.8
2019-2020 158.4 44.9 25.0 30.2 0 2.0 7.4 5.4 6.6 11.0 44.4 46.6 381.9 228.3 153.6

Table 3

Effects of different water and nitrogen interaction on wheat yield and yield composition in 2017 and 2018"

处理
Treatment
收获穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
收获指数
Harvest index
(%)
W1N0 542 f 23.9 f 30.6 cd 4867 e 46.7 bc
W1N1 643 e 26.7 bc 31.6 b 6629 d 47.9 a
W1N2 884 c 25.3 e 30.8 bc 7095 c 47.3 ab
W1N3 887 c 25.9 de 30.6 cd 7411 b 46.1 c
W1N4 913 bc 26.4 cd 31.0 bc 7532 b 47.7 a
W1N5 891 c 26.5 cd 29.8 d 7326 b 44.9 d
W2N0 518 f 22.1 g 32.8 a 4431 f 41.0 g
W2N1 727 d 25.5 e 30.9 bc 6760 d 43.0 ef
W2N2 979 ab 28.0 a 30.1 cd 7507 b 43.6 e
W2N3 1003 a 27.3 b 30.2 cd 7766 a 42.7 f
W2N4 1003 a 27.0 bc 30.6 cd 7825 a 43.4 e
W2N5 946 abc 27.2 b 30.6 cd 7754 a 43.2 ef

Table 4

Effects of different water and nitrogen interaction on wheat yield and yield composition in 2018 and 2019"

处理
Treatment
收获穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
收获指数
Harvest index
(%)
W1N0 309 f 21.6 g 33.0 d 2998 g 38.1 d
W1N1 545 d 28.6 e 31.8 e 5198 e 38.9 d
W1N2 562 cd 30.8 d 29.8 f 5776 d 38.7 d
W1N3 614 bc 33.0 c 30.2 f 6175 c 37.2 e
W1N4 625 bc 34.0 b 29.7 f 6329 c 38.9 d
W1N5 635 b 33.5 bc 29.4 f 6276 c 37.2 e
W2N0 351 e 23.9 f 37.0 a 3308 f 42.4 c
W2N1 642 b 29.7 de 37.5 a 6887 b 43.9 b
W2N2 721 a 33.4 bc 36.8 a 8442 a 45.6 a
W2N3 770 a 32.8 c 35.7 b 8499 a 44.6 ab
W2N4 778 a 32.7 c 35.8 b 8692 a 44.2 ab
W2N5 760 a 35.9 a 34.4 c 8556 a 44.1 ab

Table 5

Effects of different water and nitrogen interaction on wheat yield and yield composition in 2019 and 2020"

处理
Treatment
收获穗数
Spike number
(×104 hm-2)
穗粒数
Grain number
per spike
千粒重
Thousand-grain
weight (g)
籽粒产量
Grain yield
(kg hm-2)
收获指数
Harvest index
(%)
W1N0 230 g 15.6 d 34.1 fg 1251 g 15.7 f
W1N1 571 e 21.4 c 36.5 bcd 4811 e 40.3 a
W1N2 626 d 24.1 b 34.9 ef 5630 d 40.6 a
W1N3 656 cd 24.9 b 35.3 def 5766 d 38.3 b
W1N4 755 b 24.8 b 33.1 g 6080 c 38.0 bc
W1N5 724 bc 24.3 b 33.3 g 5797 cd 36.7 c
W2N0 341 f 15.4 d 35.5 de 1850 f 23.8 e
W2N1 631 d 21.5 c 37.7 ab 4940 e 31.0 d
W2N2 772 b 26.6 a 38.1 a 7602 b 40.4 a
W2N3 859 a 25.4 ab 36.5 bcd 7872 b 37.6 bc
W2N4 879 a 25.1 b 36.8 bc 8359 a 38.2 bc
W2N5 892 a 25.3 ab 36.0 cde 8184 a 38.7 b

Table 6

Changes of wheat processing quality under different water and nitrogen interaction in 2017 and 2018"

处理
Treatment
湿面筋含量
Wet gluten
(%)
沉降值
Sedimentation value
(mL)
吸水率
Water absorption
(%)
稳定时间
Stability time
(min)
拉伸能量
Energy
(cm2)
最大拉伸阻力
Max resistance
(BU)
W1N0 23.9 f 34.0 d 58.4 a 8.4 g 102.0 f 440.0 f
W1N1 27.9 d 34.4 cd 58.3 a 9.8 f 110.5 e 482.5 e
W1N2 31.1 c 34.7 cd 59.0 a 10.3 e 114.0 e 489.5 de
W1N3 32.6 b 35.4 bc 58.7 a 10.8 e 114.0 e 509.0 de
W1N4 32.8 b 35.8 bc 59.4 a 11.4 d 124.5 cd 521.0 cd
W1N5 30.6 c 36.4 ab 59.0 a 10.7 e 121.5 d 516.0 d
W2N0 21.2 g 33.3 d 57.1 a 10.5 e 110.5 e 550.0 bc
W2N1 25.7 e 33.9 d 57.6 a 12.1 c 122.0 d 565.0 b
W2N2 33.5 b 36.1 b 59.4 a 12.7 b 128.0 bc 577.0 ab
W2N3 35.0 a 36.7 ab 59.9 a 13.0 b 132.0 ab 577.5 ab
W2N4 35.3 a 37.9 a 59.8 a 14.1 a 134.5 a 591.5 a
W2N5 34.2 ab 36.4 ab 59.8 a 12.9 b 127.0 c 582.5 ab

Table 7

Changes of wheat processing quality under different water and nitrogen interaction in 2018 and 2019"

处理
Treatment
湿面筋含量
Wet gluten
(%)
沉降值
Sedimentation value
(mL)
吸水率
Water absorption
(%)
稳定时间
Stability time
(min)
拉伸能量
Energy
(cm2)
最大拉伸阻力
Max resistance
(BU)
W1N0 20.2 fg 36.2 e 56.9 bc 28.2 e 94.0 f 531.0 fg
W1N1 22.5 e 39.7 c 57.2 bc 28.6 e 101.0 e 547.0 efg
W1N2 31.0 c 47.9 b 58.6 abc 42.1 b 112.0 d 572.0 de
W1N3 33.2 b 48.5 b 58.9 abc 46.9 a 157.0 b 707.0 a
W1N4 35.5 a 51.6 a 60.2 a 47.0 a 186.0 a 723.0 a
W1N5 35.1 a 51.3 a 60.4 a 43.2 b 161.0 b 631.0 b
W2N0 19.6 g 29.0 g 56.2 c 22.5 f 83.0 g 524.0 g
W2N1 20.8 f 30.8 f 57.4 abc 22.9 f 94.0 f 559.0 ef
W2N2 28.1 d 36.7 e 57.5 abc 33.9 d 104.5 e 577.0 de
W2N3 31.9 c 37.5 de 59.8 ab 35.4 d 132.0 c 614.0 bc
W2N4 33.2 b 38.9 cd 59.5 ab 42.3 b 156.2 b 629.0 b
W2N5 32.7 bc 38.7 cd 58.1 abc 39.0 c 135.3 c 593.0 cd

Table 8

Changes of wheat processing quality under different water and nitrogen interaction in 2019 and 2020"

处理
Treatment
湿面筋含量
Wet gluten
(%)
沉降值
Sedimentation value
(mL)
吸水率
Water absorption
(%)
稳定时间
Stability time
(min)
拉伸能量
Energy
(cm2)
最大拉伸阻力
Max resistance
(BU)
W1N0 27.8 e 31.3 e 58.2 bc 16.8 d 102 cd 497 c
W1N1 28.2 e 33.3 d 59.4 abc 17.2 d 108 c 502 c
W1N2 32.1 d 37.2 b 60.6 abc 19.3 c 110 c 534 b
W1N3 34.4 c 37.9 b 61.9 a 24.3 a 124 b 545 b
W1N4 34.7 bc 39.7 a 62.1 a 24.6 a 132 a 594 a
W1N5 36.3 a 41.0 a 62.2 a 22.1 b 126 b 576 a
W2N0 22.8 f 29.2 f 57.6 c 12.9 e 96 e 392 e
W2N1 23.6 f 29.4 f 58.4 bc 13.2 e 98 de 409 de
W2N2 27.9 e 32.2 de 59.6 abc 17.3 d 100 d 410 de
W2N3 33.5 cd 35.1 c 60.8 abc 18.4 c 101 d 426 d
W2N4 35.5 ab 35.9 c 61.1 ab 19.3 c 106 c 505 c
W2N5 36.0 a 34.9 c 61.2 ab 18.6 c 99 de 498 c
[30] Zhang X T, Huang Y F, Ma X J, Ye Y L. Effects of seeding rate and nitrogen level on dry matter accumulation, translocation and grain yield in two genotypes of winter wheat (Triticum aestivum). Plant Physiol J, 2017, 53: 1067-1076. (in Chinese with English abstract)
[31] 张秀, 朱文美, 代兴龙, 初金鹏, 钤太峰, 贺明荣. 施氮量对强筋小麦产量、氮素利用率和品质的影响. 麦类作物学报, 2018, 38: 963-969.
Zhang X, Zhu W M, Dai X L, Chu J P, Qian T F, He M R. Effect of nitrogen application rate on grain yield, nitrogen use efficiency and grain quality of strong gluten wheat. J Triticeae Crops, 2018, 38: 963-969. (in Chinese with English abstract)
[32] Guo S L, Zhu H H, Dang T H, Wu J S, Liu W Z, Hao M D. Winter wheat grain yield associated with precipitation distribution under long-term nitrogen fertilization in the semiarid Loess Plateau in China. Geoderma, 2012, 189-190: 442-450.
doi: 10.1016/j.geoderma.2012.06.012
[33] Yang X L, Gao W S, Shi Q H, Chen F, Chu Q Q. Impact of climate change on the water requirement of summer maize in the Huang-Huai-Hai farming region. Agric Water Manag, 2013, 124: 20-27.
doi: 10.1016/j.agwat.2013.03.017
[34] 李娜娜, 刘园, 谢迎新, 朱云集, 王晨阳, 郭天财. 水氮对冬小麦花后籽粒淀粉含量及产量的影响. 麦类作物学报, 2013, 33: 103-107.
Li N N, Liu Y, Xie Y X, Zhu Y J, Wang C Y, Guo T C. Effects of water and nitrogen interaction on starch content and yield of winter wheat. J Triticeae Crops, 2013, 33: 103-107. (in Chinese with English abstract)
[35] 房琴, 王红光, 马伯威, 李东晓, 李瑞奇, 李雁鸣. 密度和施氮量对超高产冬小麦群体质量和产量形成的影响. 麦类作物学报, 2015, 35: 364-371.
Fang Q, Wang H G, Ma B W, Li D X, Li R Q, Li Y M. Effect of planting density and nitrogen application rate on population quality and yield formation of super high-yielding winter wheat. J Triticeae Crops, 2015, 35: 364-371. (in Chinese with English abstract)
[36] Li J P, Zhang Z, Yao C S, Liu Y, Wang Z M, Fang B T, Zhang Y H. Improving winter wheat grain yield and water-nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J Integr Agric, 2021, 20: 606-621.
doi: 10.1016/S2095-3119(20)63407-4
[37] 赵广才, 万富世, 常旭虹, 刘利华, 杨玉双, 池忠志, 杨丽珍. 不同试点氮肥水平对强筋小麦加工品质性状及其稳定性的影响. 作物学报, 2006, 32: 1498-1502.
Zhao G C, Wan F S, Chang X H, Liu L H, Yang Y S, Chi Z Z, Yang L Z. Effects of nitrogen levels and experimental sites on processing quality characteristics and stability in strong gluten wheat. Acta Agron Sin, 2006, 32: 1498-1502. (in Chinese with English abstract)
[38] 赵广才, 何中虎, 刘利华, 杨玉双, 张艳, 李振华, 张文彪. 肥水调控对强筋小麦中优9507品质与产量协同提高的研究. 中国农业科学, 2004, 37: 351-356.
Zhao G C, He Z H, Liu L H, Yang Y S, Zhang Y, Li Z H, Zhang W B. Study on the co-enhancing regulating effect of fertilization and watering on the main quality and yield in Zhongyou 9507 high gluten wheat. Sci Agric Sin, 2004, 37: 351-356. (in Chinese with English abstract)
[39] 徐恒永, 赵振东, 刘爱峰, 刘建军, 张存良, 毕德锋, 杭新杰, 张怀友. 氮肥对优质专用小麦产量和品质的影响: II.氮肥对小麦品质的影响. 山东农业科学, 2001, (2): 13-17.
Xu H Y, Zhao Z D, Liu A F, Liu J J, Zhang C L, Bi D F, Hang X J, Zhang H Y. Effect of nitrogen fertilizer on yield and quality of good quality special wheat: II. Effect of nitrogen fertilizer on wheat quality. Shandong Agric Sci, 2001, (2): 13-17. (in Chinese with English abstract)
[40] 蔡金华, 陈爱大, 温明星, 李东升, 曲朝喜. 施氮量和种植密度对镇麦168子粒产量与品质的影响. 植物营养与肥料学报, 2013, 19: 1312-1320.
Cai J H, Chen A D, Wen M X, Li D S, Qu C X. Effect of nitrogen application rate and planting density on grain yield and quality of wheat cultivar Zhenmai 168. J Plant Nutr Fert, 2013, 19: 1312-1320. (in Chinese with English abstract)
[41] 周秋峰, 于沐, 张果果, 赵建国. 施肥对小麦品质的调节效应. 中国农学通报, 2016, 32(36): 40-44.
doi: 10.11924/j.issn.1000-6850.casb16040068
Zhou Q F, Yu M, Zhang G G, Zhao J G. Regulation effect of fertilization on wheat quality. Chin Agric Sci Bull, 2016, 32(36): 40-44. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb16040068
[1] 康绍忠. 水安全与粮食安全. 中国生态农业学报, 2014, 22: 880-885.
Kang S Z. Towards water and food security in China. Chin J Eco-Agric, 2014, 22: 880-885. (in Chinese with English abstract)
[2] 串丽敏, 何萍, 赵同科, 徐新朋, 周卫, 郑怀国. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015, 26:76-86.
Chuan L M, He P, Zhao T K, Xu X P, Zhou W, Zheng H G. Nitrogen cycling and balance for wheat in China. J Appl Ecol, 2015, 26: 76-86. (in Chinese with English abstract)
[3] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[4] Yu Z T, She M Y, Zheng T, Diepeveen D, Islam S, Zhao Y, Zhang Y Q, Tang G X, Zhang Y J, Zhang J J, Blanchard C L, Ma W J. Impact and mechanism of Sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun Biol, 2021, 4: 945.
doi: 10.1038/s42003-021-02458-7 pmid: 34362999
[5] 董志强, 吕丽华, 张丽华, 姚艳荣, 张经廷, 申海平, 郑孟静, 姚海坡, 贾秀领. 长期水氮互作下不同年代冬小麦的产量和光合特性. 麦类作物学报, 2020, 40: 1524-1532.
Dong Z Q, Lyu L H, Zhang L H, Yao Y R, Zhang J T, Shen H P, Zheng M J, Yao H P, Jia X L. Yield and photosynthetic characteristics of winter wheat released in different ages under long-term water-nitrogen interaction. J Triticeae Crops, 2020, 40: 1524-1532. (in Chinese with English abstract)
[6] 黄岭, 高阳, 李新强, 邱新强, 巩文军, 申孝军, 段爱旺. 水分对不同年代冬小麦品种干物质积累和转移的影响. 灌溉排水学报, 2012, 31(6): 75-80.
Huang L, Gao Y, Li X Q, Qiu X Q, Gong W J, Shen X J, Duan A W. Effects of water on dry matter accumulation and translocation of winter wheat cultivars during different decades. J Irrig Drain, 2012, 31(6): 75-80. (in Chinese with English abstract)
[7] 王立秋, 靳占忠, 曹敬山, 王占宇. 水肥因子对小麦籽粒及面包烘烤品质的影响. 中国农业科学, 1997, 30(3): 67-73.
Wang L Q, Jin Z Z, Cao J S, Wang Z Y. Effect of water and fertilizer factors on grain quality and breeding baking quality of wheat. Sci Agric Sin, 1997, 30(3): 67-73. (in Chinese with English abstract)
[8] Mary J G, Jeffrey C S, Katherine O B, Edward S. Relative sensitivity of spring wheat grain yield and quality parameters to moisture deficit. Crop Sci, 2001, 41: 327-335.
doi: 10.2135/cropsci2001.412327x
[9] Zhou J X, Liu D M, Deng X, Zhen S M, Wang Z M, Yan Y M. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.). J Sci Food Agric, 2018, 98: 4357-4368.
doi: 10.1002/jsfa.2018.98.issue-11
[10] Peng Y C, Zhao Y, Yu Z T, Zeng J B, Xu D G, Dong J, Ma W J. Wheat quality formation and its regulatory mechanism. Front Plant Sci, 2022, 13: 834654.
doi: 10.3389/fpls.2022.834654
[11] 赵广才, 常旭虹, 刘利华, 杨玉双, 李振华, 周双月, 郭庆侠, 刘月洁. 不同灌水处理对强筋小麦籽粒产量和蛋白质组分含量的影响. 作物学报, 2007, 33: 1828-1833.
Zhao G C, Chang X H, Liu L H, Yang Y S, Li Z H, Zhou S Y, Guo Q X, Liu Y J. Grain yield and protein components responses to irrigation in strong gluten wheat. Acta Agron Sin, 2007, 33: 1828-1833. (in Chinese with English abstract)
[12] Xu X X, Zhang M, Li J P, Liu Z Q, Zhao Z G, Zhang Y H, Zhou S L, Wang Z M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res, 2018, 221: 219-227.
doi: 10.1016/j.fcr.2018.02.011
[13] 沈建辉, 姜东, 戴廷波, 荆奇, 田永超, 曹卫星. 施肥量对专用小麦旗叶光合作用特性及籽粒产量和蛋白质含量的影响. 南京农业大学学报, 2003, 26(1): 1-5.
Shen J H, Jiang D, Dai T B, Jing Q, Tian Y C, Cao W X. Effects of fertilizer levels on photosynthetic characteristics of flag leaf and contents of protein and yield in grain in specialty wheat. J Nanjing Agric Univ, 2003, 26(1): 1-5. (in Chinese with English abstract)
[14] 吕丽华, 董志强, 张经廷, 张丽华, 梁双波, 贾秀领, 姚海坡. 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014, 47: 3839-3849.
doi: 10.3864/j.issn.0578-1752.2014.19.012
Lyu L H, Dong Z Q, Zhang J T, Zhang L H, Liang S B, Jia X L, Yao H P. Effect of water and nitrogen on yield and nitrogen utilization of winter wheat and summer maize. Sci Agric Sin, 2014, 47: 3839-3849. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2014.19.012
[15] 蒋家慧, 王洪娴, 衣先众, 蒋晓明. 施氮量对强筋小麦籽粒产量和品质的影响. 中国农学通报, 2004, 20(4): 156-157.
Jiang J H, Wang H X, Yi X Z, Jiang X M. Effect of nitrogen application amount on grain yield and quality in wheat. Chin Agric Sci Bull, 2004, 20(4): 156-157. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.0404156
[16] Liu J X, Zhang J W, Zhu G R, Zhu D, Yan Y M. Effects of water deficit and high N fertilization on wheat storage protein synthesis, gluten secondary structure, and breadmaking quality. Crop J, 2022, 10: 216-223.
doi: 10.1016/j.cj.2021.04.006
[17] 董飞, 李峰, 贾亚琴, 杨峰, 闫秋艳, 鲁晋秀, 申艳婷. 追氮量对黑小麦品种(系)籽粒产量和品质的影响. 核农学报, 2022, 36: 435-444.
doi: 10.11869/j.issn.100-8551.2022.02.0435
Dong F, Li F, Jia Y Q, Yang F, Yan Q Y, Lu J X, Shen Y T. Effect of nitrogen topdressing rate on yield and quality of black-grained wheat varieties (strains). J Nucl Agric Sci, 2022, 36: 435-444. (in Chinese with English abstract)
doi: 10.11869/j.issn.100-8551.2022.02.0435
[18] 黄倩楠, 党海燕, 黄婷苗, 侯赛宾, 王朝辉. 我国主要麦区农户施肥评价及减肥潜力分析. 中国农业科学, 2020, 53: 4816-4834.
doi: 10.3864/j.issn.0578-1752.2020.23.009
Huang Q N, Dang H Y, Huang T M, Hou S B, Wang Z H. Evaluation of farmers’ fertilizer application and fertilizer reduction potentials in major wheat production regions of China. Sci Agric Sin, 2020, 53: 4816-4834. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2020.23.009
[19] Wang H Y, Zhang Y T, Chen A Q, Liu H B, Zhai L M, Lei B K, Ren T Z. An optimal regional nitrogen application threshold for wheat in the North China Plain considering yield and environmental effects. Field Crops Res, 2017, 207: 52-61.
doi: 10.1016/j.fcr.2017.03.002
[20] Zheng X J, Yu Z W, Zhang Y L, Shi Y. Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain. Sci Rep, 2020, 10: 3305.
doi: 10.1038/s41598-020-59877-5 pmid: 32094371
[21] 王月福, 姜东, 于振文, 曹卫星. 氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础. 中国农业科学, 2003, 36: 513-520.
Wang Y F, Jiang D, Yu Z W, Cao W X. Effects of nitrogen rates on grain yield and protein content of wheat and its physiological basis. Sci Agric Sin, 2003, 36: 513-520. (in Chinese with English abstract)
[22] Jeuffroy M H, Bouchard C. Intensity and duration of nitrogen deficiency on wheat grain number. Crop Sci, 1999, 39: 1385-1393.
doi: 10.2135/cropsci1999.3951385x
[23] 马小艳, 杨瑜, 黄冬琳, 王朝辉, 高亚军, 李永刚, 吕辉. 小麦化肥减施与不同轮作方式的周年养分平衡及经济效益分析. 中国农业科学, 2022, 55: 1589-1603.
doi: 10.3864/j.issn.0578-1752.2022.08.010
Ma X Y, Yang Y, Huang D L, Wang Z H, Gao Y J, Li Y G, Lye H. Annual nutrients balance and economic return analysis of wheat with fertilizers reduction and different rotations. Sci Agric Sin, 2022, 55: 1589-1603. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.08.010
[24] Johansson E, Prietolinde M L, Jonsson J. Effects of wheat cultivar and nitrogen application on storage protein composition and bread-making quality. Cereal Chem, 2001, 78: 19-25.
doi: 10.1094/CCHEM.2001.78.1.19
[25] Fuertes T, Aizpurua A, Gonzalez M B, Estavillo J M. Improving wheat breadmaking quality by splitting the N fertilizer rate. Eur J Agron, 2010, 33: 52-61.
doi: 10.1016/j.eja.2010.03.001
[26] 郭明明, 董招娣, 易媛, 张明伟, 李银银, 代丹丹, 刘立伟, 朱新开, 郭文善, 赵广才, 彭永欣. 氮肥运筹对不同筋型小麦产量和品质的影响. 麦类作物学报, 2014, 34: 1559-1565.
Guo M M, Dong Z D, Yi Y, Zhang M W, Li Y Y, Dai D D, Liu L W, Zhu X K, Guo W S, Zhao G C, Peng Y X. Effects of nitrogen management on grain yield and quality of wheat cultivars with different gluten types. J Triticeae Crops, 2014, 34: 1559-1565. (in Chinese with English abstract)
[27] 贺明荣, 杨雯玉, 王晓英, 王振林, 杨万立. 不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响. 作物学报, 2005, 31: 1047-1051.
He M R, Yang W Y, Wang X Y, Wang Z L, Yang W L. Effects of different N management modes on grain yield and quality as well as fertilizer N use efficiency of winter wheat. Acta Agron Sin, 2005, 31: 1047-1051. (in Chinese with English abstract)
[28] Zhen S M, Deng X, Xu X X, Liu N N, Zhu D, Wang Z M, Yan Y M. Effect of high-nitrogen fertilizer on gliadin and glutenin subproteomes during kernel development in wheat (Triticum aestivum L.). Crop J, 2020, 18: 38-52.
[29] 张美微, 王晨阳, 郭天财, 马冬云, 朱云集. 施氮量对冬小麦蛋白质品质和面粉色泽的影响. 植物营养与肥料学报, 2012, 18: 1312-1318.
Zhang M W, Wang C Y, Guo T C, Ma D Y, Zhu Y J. Effects of nitrogen fertilization on protein quality and flour color of winter wheat. Plant Nutr Fert Sci, 2012, 18: 1312-1318. (in Chinese with English abstract)
[30] 张小涛, 黄玉芳, 马晓晶, 叶优良. 播种量和施氮量对不同基因型冬小麦干物质积累、运转及产量的影响. 植物生理学报, 2017, 53: 1067-1076.
[1] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
[2] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[3] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[4] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Chen-Yang, WANG Li-Fang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[5] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[6] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[7] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[8] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[9] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[10] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[11] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[12] YU Xin-Ying, WANG Chun-Yun, LI Da-Shuang, WANG Zong-Kai, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHOU Guang-Sheng. Formation mechanism of yield stability in high-yielding rapeseed varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1601-1615.
[13] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[14] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[15] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, WANG Meng, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .