Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (6): 1630-1642.doi: 10.3724/SP.J.1006.2023.22040

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases

XU Ran(), CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang*()   

  1. State Key Laboratory of Rice Biology/China National Rice Research Institute, Hangzhou 311400, Zhejiang, China
  • Received:2022-06-29 Accepted:2022-10-10 Online:2023-06-12 Published:2022-10-26
  • Contact: *E-mail: chuguang@caas.cn
  • Supported by:
    Key Research and Development Program of Zhejiang Province(2021C02023);Key Research and Development Program of Zhejiang Province(2022C02034);National Natural Science Foundation of China(32101825);China Agriculture Research System of MOF and MARA(Rice, CARS-01)

Abstract:

The objective of this study is to understand how nitrogen (N) application rates affected on grain yield and N use efficiency (NUE) of japonica-indica hybrid rice cultivar Yongyou-1540 and its physiological bases. In the present study, a japonica-indica hybrid rice cultivar Yongyou 1540, which was widely planted in Zhejiang province was field grown in 2020 and 2021, and four N application rates [0 kg hm-2 (N0), 80 kg hm-2 (N1), 160 kg hm-2 (N2), and 240 kg hm-2 (N3)] were applied during rice growing season. The results indicated that, (1) N application rate had significant effects on grain yield and NUE of rice. Grain yield was significantly increased with the increase of N application rate from 0 kg hm-2 to 160 kg hm-2, and the increase in grain yield was mainly attributed to the increase in total spikelets per unit area. However, there were no significantly difference in grain yield between N2 and N3 treatments, which was mainly due to the reduce in grain filling percentage in N3 treatment. When compared with N2 treatment, N3 treatment significantly reduced N harvest index and NUE, including agronomic N use efficiency (AEN), N recovery efficiency (REN), N partial factor productivity (PFPN), and internal N use efficiency (IEN). (2) N application rate had significant effects on shoot growth and development. Shoot dry weight was significantly increased at jointing, heading, and maturity stages and harvest index was significantly decreased with the increase of N application rate from 0 kg hm-2 to 240 kg hm-2. The net photosynthetic rate of flag leaf, the concentration of zeatin plus zeatin riboside (Z+ZR) in flag leaves, and the activities of key enzymes involved in sucrose-to-starch conversion in grains were significantly increased with the increase of N application rate from 0 kg hm-2 to 160 kg hm-2, however, N3 treatment could not increase or even reduce the above indicators compared with N2 treatment. (3) N application rate had significant effects on rice root morphological and physiological traits. Root dry weight, root dry weight in both 0-10 cm and 10-20 cm soil layers, total root length, root length density, specific root length at jointing, heading, and maturity stages, and root oxidation activity (ROA) and concentration of Z+ZR in both roots and root-bleeding sap at mid- and late grain filling stages were significantly increased with the increase of N application rate from 0 kg hm-2 to 160 kg hm-2. However, when compared with N2 treatment, N3 treatment significantly increased root dry weight, and root dry weight in 0-10 cm soil layer, total root length and root length density. (4) The results of the correlation analysis showed that ROA, and concentration of Z+ZR in roots or in root-bleeding sap, were significantly positively correlated with net photosynthetic rate of flag leaves, the concentration of Z+ZR in flag leaves, and activities of key enzymes involved in sucrose-to-starch conversion in grains. Generally, the appropriate N application rate could improve rice root morphological and physiological traits and promote shoot growth and development, and then improved plant physiological performances during the mid- and late grain filling stages, and finally achieved the due goal of increase both grain yield and NUE.

Key words: japonica-indica hybrid rice, nitrogen application rate, grain yield, nitrogen use efficiency, root morphological and physiological traits

Table 1

Soil physical and chemical properties in the experiment field"

年度
Year
pH 全氮含量
Total N content
(g kg-1)
有机质含量
Organic matter content
(g kg-1)
速效养分含量Available nutrients content (mg kg-1)
N P K
2020 5.95 2.49 56.5 207 20.8 64.9
2021 6.02 2.55 57.2 211 21.3 65.7

Table 2

Monthly total precipitation and sunshine hours, and averages temperatures during the growing seasons in rice"

年份/气象条件
Year/meteorological condition
6月
June
7月
July
8月
August
9月
September
10月
October
2020
降雨量Precipitation (mm) 341 236 66.1 223 39.9
日照时长Sunshine (h) 71.1 102 258 122 134
平均气温Temperature (℃) 26.6 26.8 31.0 23.9 19.2
2021
降雨量Precipitation (mm) 221 317 315 125 68.6
日照时长Sunshine (h) 141 246 254 237 196
平均气温Temperature (℃) 26.6 29.3 28.6 26.8 20.0

Table 3

Effects of nitrogen rates on grain yield and its yield components of japonica-indica hybrid rice cultivar Yongyou 1540"

年度/处理
Year/treatment
产量
Grain yield
(t hm-2)
穗数
No. of panicles
(×104 hm-2)
每穗粒数
Spikelets per panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Filled grains
(%)
千粒重
1000-grain weight (g)
收获指数
Harvest index
(%)
2020 N0 7.35 c 175 c 195 d 3.41 d 93.2 a 23.1 a 49.5 a
N1 10.2 b 198 b 255 c 5.05 c 87.2 b 23.1 a 48.8 b
N2 12.7 a 220 a 310 b 6.82 b 81.5 c 22.9 ab 47.5 c
N3 12.8 a 222 a 335 a 7.44 a 75.6 d 22.7 b 45.2 d
2021 N0 6.98 c 161 d 200 d 3.22 d 93.5 a 23.2 a 50.1 a
N1 9.74 b 200 c 246 c 4.92 c 85.7 b 23.1 a 48.7 b
N2 12.2 a 215 b 307 b 6.60 b 80.4 c 22.9 ab 47.2 c
N3 12.3 a 225 a 334 a 7.52 a 71.5 d 22.8 b 45.1 d
方差分析ANOVA
Year (Y) NS NS NS NS NS NS NS
Treatment (T) ** ** ** ** ** * **
Y × T NS NS NS NS NS NS NS

Table 4

Effects of nitrogen rates on nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540"

年度/处理
Year/treatment
植株吸氮量
N uptake
(kg hm-2)
氮收获指数
N harvest index
(%)
氮肥吸收利用率
Recovery
efficiency
(%)
农学利用率
Agronomic
efficiency
(kg kg-1)
氮肥偏生产力
Partial factor
productivity of N
(kg kg-1)
产谷利用率
Internal N use
efficiency
(kg kg-1)
2020 N0 114 d 68.5 a 64.7 a
N1 168 c 64.4 b 67.9 a 35.3 a 127.0 a 60.6 b
N2 215 b 63.7 b 63.6 b 33.6 a 79.6 b 59.1 b
N3 238 a 57.2 c 51.6 c 22.6 b 53.2 c 53.7 c
2021 N0 109 d 70.4 a 64.2 a
N1 159 c 65.8 b 62.3 a 34.4 a 122.0 a 61.4 b
N2 200 b 64.5 b 57.3 b 32.3 a 76.0 b 60.6 b
N3 226 a 56.4 c 48.9 c 21.9 b 51.0 c 54.1 c
方差分析 ANOVA
Year (Y) NS NS NS NS NS NS
Treatment (T) ** ** ** ** ** **
Y × T NS NS NS NS NS NS

Fig. 1

Effects of nitrogen rates on shoot dry weight (A, B), root dry weight (C, D), and root-shoot ratio (E, F) of japonica-indica hybrid rice cultivar Yongyou 1540 JT: jointing stage; HD: heading stage; MA: maturity stage. N0: 0 kg hm-2; N1: 80 kg hm-2; N2: 160 kg hm-2; N3: 240 kg hm-2."

Fig. 2

Effects of nitrogen rates on root dry weight in the 0-10 cm soil layer (A, B), root dry weight in the 10-20 cm soil layer (C, D), and the percentage of root dry weight in the 10-20 cm soil layer to total root dry weight (E, F) of japonica-indica hybrid rice cultivar Yongyou 1540 JT: jointing stage; HD: heading stage; MA: maturity stage. N0: 0 kg hm-2; N1: 80 kg hm-2; N2: 160 kg hm-2; N3: 240 kg hm-2."

Fig. 3

Effects of nitrogen rates on root length (A, B), root length density (C, D), and specific root length (E, F) of japonica-indica hybrid rice cultivar Yongyou 1540 JT: jointing stage; HD: heading stage; MA: maturity stage. N0: 0 kg hm-2; N1: 80 kg hm-2; N2: 160 kg hm-2; N3: 240 kg hm-2."

Fig. 4

Effects of nitrogen rates on root oxidation activity (A, B), zeatin (Z) + zeatin riboside (ZR) content in root bleeding (C, D), and zeatin (Z) + zeatin riboside (ZR) content in roots (E, F) of japonica-indica hybrid rice cultivar Yongyou 1540 EF: the early grain filling stage; MF: the middle grain filling stage; LF: the late grain filling stage. N0: 0 kg hm-2; N1: 80 kg hm-2; N2: 160 kg hm-2; N3: 240 kg hm-2"

Fig. 5

Effects of nitrogen rates on flag leaf photosynthetic rate (A, B) and zeatin (Z) + zeatin riboside (ZR) content in leaves (C, D) of japonica-indica hybrid rice cultivar Yongyou 1540 EF: the early grain filling stage; MF: the middle grain filling stage; LF: the late grain filling stage. N0: 0 kg hm-2; N1: 80 kg hm-2; N2: 160 kg hm-2; N3: 240 kg hm-2."

Table 5

Effects of nitrogen rates on the activities of SuSase and AGPase in grains of japonica-indica hybrid rice cultivar Yongyou 1540"

年度/处理
Year/treatment
蔗糖合酶
SuSase (μmol g-1 FW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase (μmol g-1 FW min-1)
EG MG LG EG MG LG
2020 N0 7.94 c 5.61 c 3.65 d 6.45 b 4.15 c 2.44 d
N1 10.7 b 7.56 b 5.01 c 7.98 a 5.27 b 3.67 c
N2 12.4 a 9.89 a 7.17 a 9.45 a 7.29 a 5.44 a
N3 12.1 a 9.77 a 6.22 b 9.79 a 7.55 a 4.59 b
2021 N0 8.25 c 5.92 c 4.11 d 6.02 c 3.87 c 2.89 d
N1 9.79 b 8.44 b 5.79 c 7.57 b 5.28 b 4.18 c
N2 11.2 a 10.3 a 7.10 a 8.91 a 7.15a 6.57 a
N3 11.5 a 10.5 a 6.45 b 9.20 a 6.99 a 5.79 b
方差分析 Analysis of variance
Year (Y) NS NS NS NS NS NS
Treatment (T) ** ** ** ** * *
Y × T NS NS NS NS NS NS

Table 6

Correlation coefficients of physiological traits in rice shoot and root"

指标
Trait
叶片中Z+ZR含量
Z+ZR in leaves
剑叶净光合速率
Photosynthetic rate
蔗糖合酶
SuSase
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase
2020
根系氧化力 ROA 0.78** 0.85** 0.79** 0.82**
根系中Z+ZR浓度 Z+ZR in roots 0.85** 0.88** 0.81** 0.78**
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding 0.75** 0.80** 0.83** 0.76**
2021
根系氧化力 ROA 0.84** 0.88** 0.79** 0.85**
根系中Z+ZR浓度 Z+ZR in roots 0.79** 0.85** 0.80** 0.78**
根系伤流液中Z+ZR浓度 Z+ZR in root bleeding 0.83** 0.78** 0.72** 0.69**
[1] 章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26(2): 85-88.
Zhang X F, Wang D Y, Fang F P, Zeng Y K, Liao X Y. Food safety and rice production in China. Res Agric Modern, 2005, 26(2): 85-88. (in Chinese with English abstract)
[2] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3
[3] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin (Vitae), 2014, 44: 845-850 (in Chinese with English abstract).
[4] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutur Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract).
[5] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract).
[6] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46: 3161-3171.
doi: 10.3864/j.issn.0578-1752.2013.15.010
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 46: 3161-3171. (in Chinese with English abstract)
[7] Cui Z, Zhang H, Chen X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[8] Zhang G Q. Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. J Integr Agric, 2020, 19: 1-10.
doi: 10.1016/S2095-3119(19)62843-1
[9] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49: 207-218.
doi: 10.3864/j.issn.0578-1752.2016.02.002
Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Sci Agric Sin, 2016, 49: 207-218. (in Chinese with English abstract)
[10] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t hm-2). Acta Agron Sin, 2014, 40: 2149-2159. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02149
[11] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优 2640 钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016-2027.
doi: 10.3724/SP.J.1006.2014.02016
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Wei H Y, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, Huo Z Y, Xu K, Guo B W. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014, 40: 2016-2027. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.02016
[12] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[13] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46. (in Chinese with English abstract)
[14] Chu G, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
doi: 10.1016/j.fcr.2019.107625
[15] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-59.
doi: 10.1016/j.fcr.2015.02.007
[16] Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926.
doi: 10.1016/S2095-3119(12)60082-3
[17] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
doi: 10.1016/j.fcr.2013.11.006
[18] Li H W, Liu L J, Wang Z Q, Yang J C, Zhang J H. Agronomic and physiological performance of high-yielding wheat and rice in the lower reaches of Yangtze River of China. Field Crops Res, 2012, 133: 119-129.
doi: 10.1016/j.fcr.2012.04.005
[19] Pan X Q, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high performance liquid chromatography-mass spectrometry. Nat Prot, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37
[20] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9
[21] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[22] 袁锐, 周群, 王志琴, 张耗, 顾骏飞, 刘立军, 张伟杨, 杨建昌. 籼粳杂交稻甬优2640氮素吸收利用特点. 中国水稻科学, 2022, 36: 77-86.
doi: 10.16819/j.1001-7216.2022.210310
Yuan R, Zhou Q, Wang Z Q, Zhang H, Gu J F, Liu L J, Zhang W Y, Yang J C. Characteristics of nitrogen absorption and utilization of an indica-japonica hybrid rice, Yongyou 2640. Chin J Rice Sci, 2022, 36: 77-86. (in Chinese with English abstract)
[23] 孟天瑶, 葛佳琳, 张徐彬, 韦还和, 陆钰, 李心月, 陶源, 丁恩浩, 周桂生, 戴其根. 甬优中熟籼粳杂交稻栽后植株氮素积累模型与特征. 作物学报, 2020, 46: 798-807.
doi: 10.3724/SP.J.1006.2020.92046
Meng T Y, Ge J L, Zhang X B, Wei H H, Lu Y, Li X Y, Tao Y, Ding E H, Zhou G S, Dai Q G. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou japonica/indica hybrids. Acta Agron Sin, 2020, 46: 798-807. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.92046
[24] 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础. 中国农业科学, 2021, 54: 1499-1511.
doi: 10.3864/j.issn.0578-1752.2021.07.014
Chu G, Xu R, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-japonica hybrid rice and its physiological bases. Sci Agric Sin, 2021, 54: 1499-1511. (in Chinese with English abstract)
[25] Chu G, Chen T T, Chen S, Xu, C M, Wang D Y, Zhang X F. The effect of alternate wetting and severe drying irrigation on grain yield and water use efficiency of indica-japonica hybrid rice (Oryza sativa L.). Food Energy Security, 2018, 7: e00133.
doi: 10.1002/fes3.2018.7.issue-2
[26] Wei H H, Meng T Y, Li C, Xu K, Huo Z Y, Wei H Y, Guo B W, Zhang H C, Dai Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res, 2017, 204: 101-109.
doi: 10.1016/j.fcr.2017.01.001
[27] 李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用效率的影响研究进展. 中国水稻科学, 2017, 31: 327-334.
doi: 10.16819/j.1001-7216.2017.6078 327
Li J F, Yang J C. Research advances in the effects of water, nitrogen and their interaction on the yield, water and nitrogen use efficiencies of rice. Chin J Rice Sci, 2017, 31: 327-334 (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.6078 327
[28] 刘立军, 王康君, 卞金龙, 熊溢伟, 陈璐, 王志琴, 杨建昌. 水稻产量对氮肥响应的品种间差异及其与根系形态生理的关系. 作物学报, 2014, 40: 1999-2007.
doi: 10.3724/SP.J.1006.2014.01999
Liu L J, Wang K J, Bian J L, Xiong Y W, Chen L, Wang Z Q, Yang J C. Differences in yield response to nitrogen fertilizer among rice cultivars and their relationship with root morphology and physiology. Acta Agron Sin, 2014, 40: 1999-2007 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01999
[29] 陈露, 张伟杨, 王志琴, 张耗, 刘立军, 杨建昌. 施氮量对江苏不同年代中粳稻品种产量与群体质量的影响. 作物学报, 2014, 40: 1412-1423.
doi: 10.3724/SP.J.1006.2014.01412
Chen L, Zhang W Y, Wang Z Q, Zhang H, Liu L J, Yang J C. Effects of nitrogen application rate on grain yield and population quality of mid-season japonica rice cultivars at different decades in Jiangsu province. Acta Agron Sin, 2014, 40: 1412-1423 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01412
[30] Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res, 2018, 228: 135-146.
doi: 10.1016/j.fcr.2018.08.024
[31] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004
[32] Chu G, Xu R, Chen S, Xu C M, Liu Y H, Abliz B, Zhang X F, Wang D Y. Root morphological- physiological traits for japonica/indica hybrid rice with better yield performance under low N conditions. Food Energy Security, 2022, 11: e355.
[33] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Osaki M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in the new plant type of tropical rice lines. J Plant Nutr, 2005, 28: 835-850.
doi: 10.1081/PLN-200055550
[34] Samejima H, Kondo M, Ito O, Nozoe T, Shinano T, Samejima H. Root-shoot interaction as a limiting factor of biomass productivity in new tropical rice lines. Soil Sci Plant Nutr, 2004, 50: 545-554.
doi: 10.1080/00380768.2004.10408511
[35] Passioura J. Roots and drought resistance. Agric Water Manag, 1983, 7: 265-280.
doi: 10.1016/0378-3774(83)90089-6
[36] 褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35: 586-594.
doi: 10.16819/j.1001-7216.2021.201213
Chu G, Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice. Chin J Rice Sci, 2021, 35: 586-594 (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2021.201213
[37] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
[38] Osaki M, Shinano T, Matsumoto M, Zheng T, Tadano T. A root-shoot interaction hypothesis for high productivity of field crops. Soil Sci Plant Nutr, 1997, 43: 1079-1084.
doi: 10.1080/00380768.1997.11863721
[39] Gu J F, Li Z K, Mao Y Q, Struik P, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274: 320-331.
doi: S0168-9452(18)30135-3 pmid: 30080619
[40] Liu K, Li T T, Chen Y, Huang J, Qiu Y Y, Li S Y, Wang H, Zhu A, Zhuo X X, Yu F, Zhang H, Gu J F, Liu L J, Yang J C. Effects of root morphology and physiology on the formation and regulation of large panicles in rice. Field Crops Res, 2020, 258: 107946.
doi: 10.1016/j.fcr.2020.107946
[41] 褚光, 刘洁, 张耗, 杨建昌. 超级稻根系形态生理特征及其与产量形成的关系. 作物学报, 2014, 40: 850-858.
doi: 10.3724/SP.J.1006.2014.00850
Chu G, Liu J, Zhang H, Yang J C. Morphology and physiology of roots and their relationships with yield formation in super rice. Acta Agron Sin, 2014, 40: 850-858.
doi: 10.3724/SP.J.1006.2014.00850
[42] Chu G, Wang Z Q, Zhang H, Yang J C, Zhang J H. Agronomic and physiological performance of rice under integrative crop management. Agron J, 2016, 108: 1-12.
doi: 10.2134/agronj15.0135
[1] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[2] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Me, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[3] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[4] LI Hui, WANG Xu-Min, LIU Miao, LIU Peng-Zhao, LI Qiao-Li, WANG Xiao-Li, WANG Rui, LI Jun. Water and nitrogen reduction scheme optimization based on yield and nitrogen utilization of summer maize [J]. Acta Agronomica Sinica, 2023, 49(5): 1292-1304.
[5] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[6] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[7] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[8] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[9] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[10] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[11] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[14] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[15] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .