Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 1102-1109.doi: 10.3724/SP.J.1006.2025.42041

• RESEARCH NOTES • Previous Articles     Next Articles

Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains

XIAO Zheng-Wu(), ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min()   

  1. Key Laboratory of Crop Physiology and Molecular Biology / National Engineering Research Center of Rice / Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2024-08-27 Accepted:2024-12-12 Online:2025-04-12 Published:2024-12-16
  • Contact: E-mail: mhuang@hunau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2023YFD2301401);China Agriculture Research System of MOF and MARA(CARS-01-33)

Abstract:

The key factors influencing the cooking and eating quality of brown rice noodles were investigated in this study. Field experiments were conducted in Liuyang, Hunan province, in 2021 and 2022, using five noodle rice cultivars: Guanglu’ai 4, Zhongjiazao 17, Xiangzaoxian 24, Zhongzao 39, and Zhuliangyou 729. The cooking and eating qualities of brown rice noodles, starch component contents, and pasting properties of brown rice grains were analyzed. The results showed that brown rice noodles processed from Guanglu’ai 4 and Zhongjiazao 17 exhibited lower cooked break rates and cooking loss rates, along with higher chewiness and springiness, compared to those made from Xiangzaoxian 24, Zhongzao 39, and Zhuliangyou 729. Correlation analysis revealed that the cooking loss rate of brown rice noodles was negatively correlated with amylose content but positively correlated with time to peak viscosity and pasting temperature. Chewiness was negatively correlated with trough viscosity, while springiness was positively correlated with the amylose-to-amylopectin ratio and negatively correlated with time to peak viscosity. These findings indicate that amylose content, amylose-to-amylopectin ratio, trough viscosity, time to peak viscosity, and pasting temperature of brown rice grains are critical factors influencing the cooking and eating quality of brown rice noodles.

Key words: noodle rice, brown rice noodles, rice noodle quality, starch component content, pasting property

Table 1

Cooking quality of brown rice noodles processed from different cultivars (%)"

品种
Cultivar
2021 2022
断条率
Cooked break rate
损失率
Cooking loss rate
断条率
Cooked break rate
损失率
Cooking loss rate
广陆矮4号 Guanglu’ai 4 1.11 ± 1.11 a 13.40 ± 1.09 bc 4.44 ± 1.11 b 7.92 ± 0.60 c
中嘉早17 Zhongjiazao 17 6.67 ± 6.67 a 10.50 ± 2.83 c 0 ± 0 b 9.52 ± 0.92 bc
湘早籼24号 Xiangzaoxian 24 4.44 ± 4.44 a 16.31 ± 1.73 ab 5.56 ± 1.11 b 13.31 ± 1.23 ab
中早39 Zhongzao 39 3.33 ± 3.33 a 14.51 ± 0.34 abc 12.22 ± 2.94 a 16.34 ± 0.84 a
株两优729 Zhuliangyou 729 5.56 ± 4.01 a 18.10 ± 1.82 a 3.33 ± 1.92 b 13.88 ± 1.65 a

Table 2

Eating quality of cooked brown rice noodles processed from different cultivars"

年份
Year
品种
Cultivar
硬度
Hardness
(g)
咀嚼性
Chewiness
(g)
弹性
Springiness
(%)
内聚性
Cohesiveness
(%)
回复性
Resilience
(%)
2021 广陆矮4号 Guanglu’ai 4 1307 ± 147 ab 894 ± 117 ab 87.3 ± 0.5 a 78.0 ± 0.8 a 54.4 ± 0.6 b
中嘉早17 Zhongjiazao 17 1082 ± 140 b 734 ± 115 b 87.9 ± 0.9 a 76.5 ± 1.0 a 57.1 ± 0.4 a
湘早籼24号 Xiangzaoxian 24 1558 ± 344 a 1047 ± 238 a 86.8 ± 0.3 ab 77.5 ± 0.1 a 55.6 ± 0.2 ab
中早39 Zhongzao 39 1226 ± 127 ab 770 ± 73 b 84.7 ± 1.4 b 74.4 ± 3.0 a 55.1 ± 0.9 b
株两优729 Zhuliangyou 729 1198 ± 112 b 785 ± 84 ab 85.7 ± 0.3 ab 76.5 ± 0.8 a 54.4 ± 0.5 b
2022 广陆矮4号 Guanglu’ai 4 1334 ± 180 a 944 ± 142 a 89.5 ± 0.7 a 78.4 ± 0.8 a 54.0 ± 1.0 b
中嘉早17 Zhongjiazao 17 1263 ± 68 ab 880 ± 71 ab 88.8 ± 0.7 a 78.0 ± 1.7 a 57.3 ± 1.4 a
湘早籼24号 Xiangzaoxian 24 1121 ± 47 bc 730 ± 23 bc 87.7 ± 0.7 a 74.1 ± 0.3 b 53.0 ± 0.6 b
中早39 Zhongzao 39 902 ± 50 d 602 ± 41 c 87.4 ± 0.6 a 75.6 ± 0.9 ab 53.3 ± 0.1 b
株两优729 Zhuliangyou 729 950 ± 97 cd 647 ± 84 c 88.9 ± 0.8 a 75.8 ± 1.4 ab 54.5 ± 0.1 b

Table 3

Starch component contents in brown rice flour of different cultivars"

年份 Year 品种
Cultivar
总淀粉
Total starch (%)
直链淀粉
Amylose (%)
支链淀粉
Amylopectin (%)
直支比
Amylose-to-amylopectin ratio
2021 广陆矮4号 Guanglu’ai 4 69.2 ± 0.3 a 25.3 ± 0.6 b 43.9 ± 0.7 a 0.58 ± 0.02 b
中嘉早17 Zhongjiazao 17 69.2 ± 0.3 a 26.6 ± 0.1 a 42.5 ± 0.3 b 0.63 ± 0.01 a
湘早籼24号 Xiangzaoxian 24 65.9 ± 0.2 b 25.1 ± 0.2 b 40.9 ± 0.3 c 0.61 ± 0.01 ab
中早39 Zhongzao 39 69.0 ± 0.4 a 26.0 ± 0.2 ab 43.0 ± 0.5 ab 0.60 ± 0.01 ab
株两优729 Zhuliangyou 729 69.2 ± 0.4 a 25.7 ± 0.3 ab 43.5 ± 0.2 ab 0.59 ± 0.01 ab
2022 广陆矮4号 Guanglu’ai 4 67.2 ± 0.3 ab 27.1 ± 1.1 a 40.1 ± 1.2 ab 0.68 ± 0.05 ab
中嘉早17 Zhongjiazao 17 67.8 ± 1.1 a 27.8 ± 0.7 a 40.0 ± 0.5 ab 0.70 ± 0.01 a
湘早籼24号 Xiangzaoxian 24 65.3 ± 0.8 b 27.2 ± 0.8 a 38.1 ± 0.6 b 0.72 ± 0.03 a
中早39 Zhongzao 39 65.9 ± 0.6 ab 24.3 ± 0.3 b 41.5 ± 0.8 a 0.59 ± 0.02 b
株两优729 Zhuliangyou 729 66.5 ± 0.1 ab 26.6 ± 0.9 ab 40.0 ± 0.8 ab 0.67 ± 0.04 ab

Table 4

Pasting properties of brown rice flour of different cultivars"

年份
Year
品种
Cultivar
黏度 Viscosity (cP)
峰值黏度
Peak
热浆黏度
Through
最终黏度
Final
崩解值
Breakdown
2021 广陆矮4号 Guanglu’ai 4 2560 ± 37.0 bc 1909 ± 14.3 c 3357 ± 61.5 d 658 ± 25.2 a
中嘉早17 Zhongjiazao 17 2704 ± 33.1 b 2003 ± 27.3 b 3532 ± 30.3 b 701 ± 7.0 a
湘早籼24号 Xiangzaoxian 24 2469 ± 60.6 c 1941 ± 53.3 bc 3515 ± 42.0 bc 528 ± 21.2 b
中早39 Zhongzao 39 2869 ± 37.5 a 2192 ± 18.6 a 3759 ± 5.5 a 677 ± 44.7 a
株两优729 Zhuliangyou 729 2601 ± 41.9 bc 1996 ± 14.8 bc 3374 ± 51.6 cd 605 ± 35.5 ab
2022 广陆矮4号 Guanglu’ai 4 2870 ± 77.8 a 2043 ± 29.5 a 3679 ± 29.0 bc 827 ± 96.2 a
中嘉早17 Zhongjiazao 17 2891 ± 83.8 a 2061 ± 15.9 a 3794 ± 119.8 ab 830 ± 98.0 a
湘早籼24号 Xiangzaoxian 24 2789 ± 91.7 a 2130 ± 80.6 a 3737 ± 71.0 abc 659 ± 119.8 a
中早39 Zhongzao 39 2979 ± 24.2 a 2161 ± 35.2 a 3915 ± 50.7 a 818 ± 11.9 a
株两优729 Zhuliangyou 729 2848 ± 48.1 a 2109 ± 20.1 a 3572 ± 4.2 c 739 ± 28.0 a
年份
Year
品种
Cultivar
黏度 Viscosity (cP) 峰值时间
Time to peak viscosity (min)
糊化温度
Pasting temperature (℃)
消减值
Setback
回复值
Consistency
2021 广陆矮4号 Guanglu’ai 4 797 ± 36.7 bc 1454 ± 56.0 ab 6.04 ± 0.059 bc 82.1 ± 0.29 bc
中嘉早17 Zhongjiazao 17 828 ± 19.9 bc 1529 ± 21.7 a 5.98 ± 0.023 c 81.5 ± 0.02 c
湘早籼24号 Xiangzaoxian 24 1046 ± 36.0 a 1574 ± 45.8 a 6.22 ± 0.023 a 83.4 ± 0.23 a
中早39 Zhongzao 39 890 ± 32.6 b 1567 ± 18.0 a 6.27 ± 0.067 a 82.9 ± 0.22 ab
株两优729 Zhuliangyou 729 773 ± 11.6 c 1378 ± 46.8 b 6.20 ± 0.040 ab 83.1 ± 0.43 a
2022 广陆矮4号 Guanglu’ai 4 809 ± 50.0 a 1636 ± 47.1 bc 5.98 ± 0.090 a 81.5 ± 0.02 b
中嘉早17 Zhongjiazao 17 903 ± 184.2 a 1733 ± 96.3 ab 5.98 ± 0.118 a 81.8 ± 0.71 ab
湘早籼24号 Xiangzaoxian 24 948 ± 132.3 a 1607 ± 39.4 c 6.27 ± 0.170 a 83.2 ± 0.76 a
中早39 Zhongzao 39 936 ± 28.9 a 1753 ± 25.7 a 6.20 ± 0.040 a 83.0 ± 0.12 a
株两优729 Zhuliangyou 729 724 ± 49.4 a 1463 ± 21.8 d 6.15 ± 0.023 a 82.6 ± 0.27 ab

Fig. 1

Correlations between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice flour The data used in the analysis are from Tables 1-4 (n = 10). * and ** indicate significant correlation coefficients at the 0.05 and 0.01 probability levels, respectively."

[1] Geng D H, Zhou S M, Wang L L, Zhou X R, Liu L, Lin Z X, Qin W Y, Liu L Y, Tong L T. Effects of slight milling combined with cellulase enzymatic treatment on the textural and nutritional properties of brown rice noodles. LWT, 2020, 128: 109520.
[2] 李亚男, 胡培松, 王莉, 陈正行. 早籼稻的品质特性及其加工适应性研究进展. 食品与机械, 2015, 31(6): 238-241.
Li Y N, Hu P S, Wang L, Chen Z X. Research progress on quality characteristics and processing adaptability of early indica rice. Food Mach, 2015, 31(6): 238-241 (in Chinese with English abstract).
[3] 朱大伟, 曾波, 邵雅芳, 章林平, 陈铭学, 于永红. 近10年我国籼稻品种品质特征分析. 粮油食品科技, 2023, 31(6): 10-19.
Zhu D W, Zeng B, Shao Y F, Zhang L P, Chen M X, Yu Y H. Analysis of rice quality characteristics of indica rice varieties of China in recent 10 years. Sci Technol Cereals Oils Foods, 2023, 31(6): 10-19 (in Chinese with English abstract).
[4] Low Y K, Effarizah M E, Cheng L H. Factors influencing rice noodles qualities. Food Rev Int, 2020, 36: 781-794.
doi: 10.1080/87559129.2019.1683747
[5] Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B. Closing yield gaps for rice self-sufficiency in China. Nat Commun, 2019, 10: 1725.
doi: 10.1038/s41467-019-09447-9 pmid: 30979872
[6] Aune D, Keum N, Giovannucci E, Fadnes L T, Boffetta P, Greenwood D C, Tonstad S, Vatten L J, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ, 2016, 353: i2716.
[7] Xia Q, Green B D, Zhu Z Z, Li Y F, Gharibzahedi S M T, Roohinejad S, Barba F J. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice (Oryza sativa L.): opportunities for enhancing food quality and health attributes. Crit Rev Food Sci Nutr, 2019, 59: 3349-3370.
[8] 谭斌, 刘明, 吴娜娜, 汪丽萍, 田晓红. 发展糙米全谷物食品改善国民健康状况. 食品与机械, 2012, 28(5): 2-5.
Tan B, Liu M, Wu N N, Wang L P, Tian X H. Development of brown rice whole grain food to improve people’s health. Food Mach, 2012, 28(5): 2-5 (in Chinese with English abstract).
[9] 刘璐, 周素梅, 王爱霞, 耿栋辉, 王丽丽, 刘丽娅, 周闲容, 佟立涛. 杂豆对糙米米粉食用及营养品质的影响. 中国食品学报, 2021, 21(9): 169-176.
Liu L, Zhou S M, Wang A X, Geng D H, Wang L L, Liu L Y, Zhou X R, Tong L T. Effects of beans on eating and nutritional quality of brown rice noodles. J Chin Inst Food Sci Technol, 2021, 21(9): 169-176 (in Chinese with English abstract).
[10] 杨玎玲, 范冬雪, 吴继红, 胡小松, 沈群. 发芽、发酵对米粉品质的影响. 中国食品学报, 2017, 17(12): 293-299.
Yang D L, Fan D X, Wu J H, Hu X S, Shen Q. The effects of germination and fermentation on rice flour. J Chin Inst Food Sci Technol, 2017, 17(12): 293-299 (in Chinese with English abstract).
[11] 周游, 张运辰, 冯红, 孙周亮, 吕庆云, 丁文平, 庄坤, 陈磊. 食盐改善挤压糙米米线食用品质研究. 食品科技, 2022, 47(5): 196-201.
Zhou Y, Zhang Y C, Feng H, Sun Z L, Lyu Q Y, Ding W P, Zhuang K, Chen L. Study on improving quality of extruded brown rice noodles by adding salt. Food Sci Technol, 2022, 47(5): 196-201 (in Chinese with English abstract).
[12] Geng D H, Lin Z X, Liu L, Qin W Y, Wang A X, Wang F Z, Tong L T. Effects of ultrasound-assisted cellulase enzymatic treatment on the textural properties and in vitro starch digestibility of brown rice noodles. LWT, 2021, 146: 111543.
[13] Wang L, Duan W, Zhou S M, Qian H F, Zhang H, Qi X G. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta. Food Chem, 2016, 204: 320-325.
doi: S0308-8146(16)30214-X pmid: 26988508
[14] Tong L T, Gao X X, Lin L Z, Liu Y J, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 2015, 62: 45-49.
[15] 肖正午, 黄敏. 鲜湿米粉品质及其影响因素. 中国稻米, 2022, 28(3): 34-41.
doi: 10.3969/j.issn.1006-8082.2022.03.006
Xiao Z W, Huang M. Fresh rice noodle quality and influencing factors. China Rice, 2022, 28(3): 34-41 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2022.03.006
[16] Sandhu K S, Kaur M, Mukesh. Studies on noodle quality of potato and rice starches and their blends in relation to their physicochemical, pasting and gel textural properties. LWT, 2010, 43: 1289-1293.
[17] 周显青, 彭超, 张玉荣, 郭利利, 熊宁. 压榨型鲜湿米粉条凝胶质构特性及食用品质影响因素. 食品科学, 2017, 38(21): 93-99.
doi: 10.7506/spkx1002-6630-201721015
Zhou X Q, Peng C, Zhang Y R, Guo L L, Xiong N. Factors influencing gel texture and eating quality of pressed type fresh rice noodles. Food Sci, 2017, 38(21): 93-99 (in Chinese with English abstract).
[18] 高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 周素梅, 王立. 鲜米粉加工专用原料的选择. 中国粮油学报, 2015, 30(2): 1-5.
Gao X X, Tong L T, Zhong K, Liu L Y, Zhou X R, Zhou S M, Wang L. Raw material selection for fresh rice noodles. J Chin Cereals Oils Assoc, 2015, 30(2): 1-5 (in Chinese with English abstract).
[19] 王永辉, 张业辉, 张名位, 魏振承, 唐小俊, 张瑞芬, 邓媛元, 张雁. 不同水稻品种大米直链淀粉含量对加工米粉丝品质的影响. 中国农业科学, 2013, 46: 109-120.
doi: 10.3864/j.issn.0578-1752.2013.01.013
Wang Y H, Zhang Y H, Zhang M W, Wei Z C, Tang X J, Zhang R F, Deng Y Y, Zhang Y. Effect of amylose content of different rice varieties on the qualities of rice vermicelli. Sci Agric Sin, 2013, 46: 109-120 (in Chinese with English abstract).
[20] Bhattacharya M, Zee S Y, Corke H. Physicochemical properties related to quality of rice noodles. Cereal Chem, 1999, 76: 861-867.
[21] Yi C P, Zhu H, Bao J S, Quan K, Yang R H. The texture of fresh rice noodles as affected by the physicochemical properties and starch fine structure of aged paddy. LWT, 2020, 130: 109610.
[22] 周显青, 彭超, 张玉荣, 郭利利, 熊宁. 早籼稻的品质分析与其压榨型鲜湿米粉加工适应性. 食品科学, 2018, 39(19): 36-43.
doi: 10.7506/spkx1002-6630-201819007
Zhou X Q, Peng C, Zhang Y R, Guo L L, Xiong N. Quality analysis of early indica rice cultivars and their suitability for processing of pressed fresh noodles. Food Sci, 2018, 39(19): 36-43 (in Chinese with English abstract).
[23] 肖正午, 胡丽琴, 黎星, 解嘉鑫, 廖成静, 康玉灵, 胡玉萍, 张珂骞, 方升亮, 曹放波, 等. 米粉稻早季与晚季种植品质差异研究. 作物学报, 2024, 50: 451-463.
doi: 10.3724/SP.J.1006.2024.32014
Xiao Z W, Hu L Q, Li X, Xie J X, Liao C J, Kang Y L, Hu Y P, Zhang K Q, Fang S L, Cao F B, et al. Quality differences between noodle rice grown in early and late seasons. Acta Agron Sin, 2024, 50: 451-463 (in Chinese with English abstract).
[24] 林芳栋, 蒋珍菊, 廖珊, 游娟, 李朝学. 质构仪及其在食品品质评价中的应用综述. 生命科学仪器, 2009, 7(5): 61-63.
Lin F D, Jiang Z J, Liao S, You J, Li C X. The summary of texture analyzer and its application in the evaluation for food quality. Life Sci Instrum, 2009, 7(5): 61-63 (in Chinese with English abstract).
[25] 丁文平, 王月慧, 丁霄霖. 米线质量仪器评价体系的建立. 食品工业科技, 2004, 25(1): 135-137.
Ding W P, Wang Y H, Ding X L. The establishment of quality evaluation system for rice noodle by instrumental test. Sci Technol Food Ind, 2004, 25(1): 135-137 (in Chinese).
[26] 高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 王立, 周素梅. 鲜米粉品质评价指标的研究. 核农学报, 2014, 28: 1656-1663.
doi: 10.11869/j.issn.100-8551.2014.09.1656
Gao X X, Tong L T, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. Research on quality evaluation of fresh rice noodles. J Nucl Agric Sci, 2014, 28: 1656-1663 (in Chinese with English abstract).
[27] 陈款, 周游, 庄坤, 丁文平, 吕庆云, 高红波, 莫守生, 刘娥. 纤维素酶处理改善糙米米线食用品质的研究. 食品科技, 2023, 48(4): 168-175.
Chen K, Zhou Y, Zhuang K, Ding W P, Lyu Q Y, Gao H B, Mo S S, Liu E. Improving the edible quality of brown rice noodles by cellulase treatment. Food Sci Technol, 2023, 48(4): 168-175 (in Chinese with English abstract).
[28] Huang M, Xiao Z W, Chen J N, Cao F B. Yield and quality of brown rice noodles processed from early-season rice grains. Sci Rep, 2021, 11: 18668.
doi: 10.1038/s41598-021-98352-7 pmid: 34548582
[29] Kang T, Yoon M R, Lee J S, Choi K O. Branched chain length distribution of amylopectin in rice flour as a key attribute for determining the quality of extruded rice noodles. J Food Process Preserv, 2022, 46: e16473.
[30] Puhin K, Fukuoka M, Ratanasumawong S. Effect of starch and non-starch components on water migration, microstructure, starch retrogradation and texture of flat rice noodles made from different rice varieties. Int J Food Sci Technol, 2021, 56: 3344-3354.
[31] 刘晓飞, 贾春艳, 李祥, 吴鸣, 张光, 张娜. 淀粉改性对米线品质影响的研究进展. 食品工业科技, 网络首发[2024-09-14], https://link.cnki.net/urlid/11.1759.TS.20240913.1735.005.
Liu X F, Jia C Y, Li X, Wu M, Zhang G, Zhang N. Research progress on the effect of modified starch on the quality of rice noodles. Sci Technol Food Ind, Published online [2024-09-14], https://link.cnki.net/urlid/11.1759.TS.20240913.1735.005 (in Chinese with English abstract).
[32] 贾良, 丁雪云, 王平荣, 邓晓建. 稻米淀粉RVA谱特征及其与理化品质性状相关性的研究. 作物学报, 2008, 34: 790-794.
doi: 10.3724/SP.J.1006.2008.00790
Jia L, Ding X Y, Wang P R, Deng X J. Rice RVA profile characteristics and correlation with the physical/chemical quality. Acta Agron Sin, 2008, 34: 790-794 (in Chinese with English abstract).
[33] 隋炯明, 李欣, 严松, 严长杰, 张蓉, 汤述翥, 陆驹飞, 陈宗祥, 顾铭洪. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005, 38: 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Sci Agric Sin, 2005, 38: 657-663 (in Chinese with English abstract).
[34] 李刚, 邓其明, 李双成, 王世全, 李平. 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009, 23: 99-102.
Li G, Deng Q M, Li S C, Wang S Q, Li P. Correlation analysis between RVA profile characteristics and quality in rice. Chin J Rice Sci, 2009, 23: 99-102 (in Chinese with English abstract).
[35] 包劲松, 夏英武. 稻米淀粉RVA谱的基因型 × 环境互作效应分析. 中国农业科学, 2001, 34: 123-127.
Bao J S, Xia Y W. Genetic effects and genotype × environment interactions for the starch RVA profiles in indica rice. Sci Agric Sin, 2001, 34: 123-127 (in Chinese with English abstract).
[1] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[2] SUN Jian, YUE Rui-Xue, CHOU Fu-Xiang, XU Fei, ZHU Gong. Relationship among Amylose Content, Starch Pasting and Ethanol Fermentation in Sweetpotato Varieties for Starch Use [J]. Acta Agron Sin, 2012, 38(03): 479-486.
[3] LIU Da-Lei, GUO Huan-Fen, DONG Ce, LIU Wei-Beng. Starch Physicochemical Characteristics and Granule Size Distribution at Apical, Middle and Basal Ear Positions in Normal, Sweet, and Waxy Maize [J]. Acta Agronomica Sinica, 2011, 37(02): 331-338.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!