Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 451-463.doi: 10.3724/SP.J.1006.2024.32014

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Quality differences between noodle rice grown in early and late seasons

XIAO Zheng-Wu1(), HU Li-Qin1, LI Xing1, XIE Jia-Xin1, LIAO Cheng-Jing1, KANG Yu-Ling1, Hu Yu-Ping1, ZHANG Ke-Qian1, FANG Sheng-Liang2, CAO Fang-Bo1, CHEN Jia-Na1, HUANG Min1,*()   

  1. 1Key Laboratory of Ministry of Education for Crop Physiology and Molecular Biology / Hunan Agricultural University, Changsha 410128, Hunan, China
    2Hengyang Academy of Agricultural Sciences, Hengyang 421101, Hunan, China
  • Received:2023-04-23 Accepted:2023-09-13 Online:2024-02-12 Published:2023-10-09
  • Contact: *E-mail: mhuang@hunau.edu.cn
  • Supported by:
    Joint Fund of the Natural Science Foundation of Hunan Province and the Government of Hengyang City(2021JJ50076);National Key Research and Development Program of China(2016YFD0300509)

Abstract:

In order to identify the influence of climatic conditions of different rice-growing seasons on cooking quality of the rice noodles, a field experiment was conducted in Liuyang, Hunan Province from 2020 to 2022. Five noodle rice cultivars (Guanglu’ai 4, Zhongjiazao 17, Xiangzaoxian 24, Zhongzao 39, and Zhuliangyou 729), were grown in the early and late seasons to compare the cooking quality of rice noodles and the grain quality of noodle rice. The results showed that the mean temperature and solar radiation at grain-filling stage were 18.7% and 12.7% lower in the late season than in the early season, respectively. The cooking loss rate of rice noodles was reduced by 7.4% in the late season compared to the early season. There were not significant differences in cooked break rate and water absorption rate between early and late seasons. The peak viscosity, through viscosity, breakdown viscosity, final viscosity, consistency viscosity, and pasting temperature were lower by 25.8%, 22.9%, 34.3%, 19.7%, 14.2%, and 2.0%, whereas the setback viscosity and peaking time were higher by 11.8% and 2.3% in the late season compared to the early season, respectively. Correlation analysis showed that the mean temperature at grain-filling stage was positively correlated with peak viscosity, through viscosity, breakdown viscosity, final viscosity, consistency viscosity, and pasting temperature, and negatively correlated with setback viscosity. The mean radiation at grain-filling stage was positively correlated with peak viscosity, through viscosity, final viscosity, and negatively correlated with setback viscosity. The cooking loss rate of rice noodles was positively correlated with the final viscosity, pasting temperature, and peaking time. Therefore, the cooking quality of rice noodles can be improved by growing noodle rice in the late season. The final viscosity and pasting temperature in the paste properties of noodle rice were the critical factors affecting the cooking loss rate of rice noodles.

Key words: noodle rice, amylose content, RVA, rice noodles cooking quality, temperature, radiation

Fig. 1

Daily mean temperature (a, c, e) and daily mean solar radiation (b, d, f) during grain filling period of noodle rice in 2020-2022 The dashed line denotes mean temperature and mean solar radiation at grain filling stage in the early and late seasons."

Table 1

Variance analysis of season, cultivar and year on rice quality and rice noodles cooking quality of noodle rice (F-value)"

变异源
Source of variation
季节
Season (S)
品种
Cultivar (C)
年份
Year (Y)
季节×品种
S×C
季节×年份
S×Y
品种×年份
C×Y
季节×品种×年份
S×C×Y
总淀粉含量Total starch content 0.00 NS 20.20** 2.11 NS 0.82 NS 20.10** 3.38** 1.88 NS
直链淀粉含量Amylose content 20.87** 15.41** 18.33** 0.84 NS 11.39** 2.14* 0.95 NS
支链淀粉含量Amylopectin content 10.93** 1.13 NS 11.83** 1.97 NS 1.33 NS 2.83* 2.01 NS
蛋白质含量Protein content 67.93** 36.99** 111.63** 1.00 NS 33.04** 1.23 NS 1.44 NS
峰值黏度Peak viscosity 1513.42** 10.02** 125.99** 3.94** 25.01** 5.53** 1.32 NS
热浆黏度Through viscosity 737.68** 23.01** 126.69** 3.07* 9.12** 1.63 NS 2.84**
崩解值Breakdown viscosity 216.38** 18.23** 1.60 NS 6.03** 5.76** 2.15* 1.16 NS
最终黏度Final viscosity 1149.51** 17.45** 60.25** 1.99 NS 23.87** 5.18** 1.58 NS
消减值Setback viscosity 27.18** 38.22** 35.83** 12.44** 10.33** 1.50 NS 0.31 NS
回复值Consistency viscosity 173.64** 25.95** 33.12** 2.37 NS 14.56** 2.94** 1.21 NS
峰值时间Peaking time 68.83** 63.63** 8.29** 5.44** 10.32** 1.50 NS 1.62 NS
糊化温度Pasting temperature 370.20** 104.32** 64.35** 4.59** 119.06** 10.98** 19.74**
断条率Cooked break rate 0.13 NS 0.72 NS 1.83 NS 1.17 NS 4.27* 0.99 NS 0.38 NS
损失率Cooking loss rate 11.48** 70.58** 3.96* 5.15** 4.48* 3.28** 3.88**
吸水率Water absorption rate 0.06 NS 30.70** 18.86** 4.85** 3.70* 1.27 NS 1.22 NS

Table 2

Starch and protein contents in milled rice flours of early and late seasons noodle rice in 2020-2022 (%)"

年份
Year
季节
Season
品种
Cultivar
总淀粉
Total starch
直链淀粉
Amylose
支链淀粉
Amylopectin
蛋白质
Protein
2020 早季
Early
season
广陆矮4号Guanglu’ai 4 75.19 a 25.98 a 49.21 a 7.21 bc
中嘉早17 Zhongjiazao 17 75.75 a 26.73 a 49.02 a 6.71 c
湘早籼24号 Xiangzaoxian 24 73.07 b 24.57 b 48.50 ab 8.25 a
中早39 Zhongzao 39 73.63 b 26.08 a 47.55 b 7.61 ab
株两优729 Zhuliangyou 729 76.13 a 26.91 a 49.22 a 7.33 bc
平均 Mean 74.76 B 26.05 A 48.71 B 7.42 B
晚季
Late
season
广陆矮4号Guanglu’ai 4 76.79 ab 26.05 abc 50.74 a 8.89 b
中嘉早17 Zhongjiazao 17 76.34 ab 26.91 ab 49.43 a 8.73 b
湘早籼24号 Xiangzaoxian 24 75.00 b 24.77 c 50.23 a 10.60 a
中早39 Zhongzao 39 75.06 b 25.78 bc 49.28 a 8.95 b
株两优729 Zhuliangyou 729 77.64 a 27.26 a 50.38 a 8.31 b
平均 Mean 76.17 A 26.15 A 50.02 A 9.10 A
2021 早季
Early
season
广陆矮4号Guanglu’ai 4 76.40 a 27.92 ab 48.48 ab 6.64 b
中嘉早17 Zhongjiazao 17 75.99 a 28.42 a 47.57 b 7.02 ab
湘早籼24号 Xiangzaoxian 24 74.14 b 26.22 c 47.92 ab 7.89 a
中早39 Zhongzao 39 75.53 a 27.19 b 48.34 ab 6.85 b
株两优729 Zhuliangyou 729 76.10 a 27.55 ab 48.55 a 6.84 b
平均 Mean 75.63 A 27.46 A 48.17 A 7.05 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 76.17 ab 27.28 b 48.89 b 6.90 bc
中嘉早17 Zhongjiazao 17 76.93 a 28.76 a 48.17 b 6.57 bc
湘早籼24号 Xiangzaoxian 24 73.35 c 26.29 bc 47.06 b 7.82 a
中早39 Zhongzao 39 77.21 a 25.69 c 51.52 a 6.46 c
株两优729 Zhuliangyou 729 75.33 b 26.38 bc 48.95 b 7.04 b
平均 Mean 75.80 A 26.88 B 48.92 A 6.96 A
2022 早季
Early
season
广陆矮4号Guanglu’ai 4 76.09 b 29.70 a 46.39 a 6.09 b
中嘉早17 Zhongjiazao 17 77.91 a 28.60 a 49.31 a 6.13 b
湘早籼24号 Xiangzaoxian 24 74.64 b 27.35 a 47.29 a 7.53 a
中早39 Zhongzao 39 75.93 b 27.67 a 48.26 a 6.14 b
株两优729 Zhuliangyou 729 75.56 b 28.02 a 47.54 a 6.32 b
平均 Mean 76.03 A 28.27 A 47.76 A 6.44 B
晚季
Late
season
广陆矮4号Guanglu’ai 4 75.93 a 26.50 a 49.43 a 6.65 bc
中嘉早17 Zhongjiazao 17 74.96 ab 26.92 a 48.04 a 6.35 c
湘早籼24号 Xiangzaoxian 24 73.06 b 25.29 a 47.77 a 8.34 a
中早39 Zhongzao 39 73.94 ab 26.18 a 47.76 a 6.86 b
株两优729 Zhuliangyou 729 74.29 ab 26.81 a 47.48 a 7.02 b
平均 Mean 74.44 B 26.34 B 48.10 A 7.05 A

Table 3

Paste properties in milled rice flours of early and late seasons noodle rice in 2020-2022"

年份
Year
季节
Season
品种
Cultivar
黏度Viscosity (cP) 峰值时间
Peaking time
(min)
糊化温度
Pasting
temperature (℃)
峰值黏度
Peak
热浆黏度
Through
崩解值
Breakdown
最终黏度
Final
消减值
Setback
回复值
Consistency
2020 早季
Early
season
广陆矮4号Guanglu’ai 4 3306 a 2389 b 917 ab 4094 bc 788 b 1705 b 5.87 b 80.11 c
中嘉早17 Zhongjiazao 17 3277 a 2332 b 945 ab 4029 c 752 b 1697 b 5.82 b 80.10 c
湘早籼24号 Xiangzaoxian 24 3299 a 2555 ab 744 b 4460 a 1161 a 1905 a 6.18 a 81.43 a
中早39 Zhongzao 39 3536 a 2498 ab 1038 a 4380 ab 844 b 1882 a 6.07 a 81.31 a
株两优729 Zhuliangyou 729 3513 a 2695 a 818 ab 4248 abc 735 b 1553 c 6.22 a 80.88 b
平均 Mean 3386 A 2494 A 892 A 4242 A 856 A 1748 A 6.03 B 80.76 A
晚季
Late season
广陆矮4号Guanglu’ai 4 2433 b 1741 c 692 ab 3305 c 872 b 1564 ab 6.09 c 79.70 cd
中嘉早17 Zhongjiazao 17 2415 b 1747 c 668 ab 3310 c 895 ab 1563 ab 6.11 c 79.44 d
湘早籼24号 Xiangzaoxian 24 2713 a 2085 b 628 b 3652 ab 939 ab 1567 ab 6.38 a 83.38 a
中早39 Zhongzao 39 2877 a 2248 a 629 b 3844 a 967 a 1596 a 6.38 a 81.13 b
株两优729 Zhuliangyou 729 2787 a 2080 b 707 a 3533 bc 746 c 1453 b 6.27 b 80.75 bc
平均 Mean 2645 B 1980 B 665 B 3529 B 884 A 1549 B 6.24 A 80.88 A
2021 早季
Early
season
广陆矮4号Guanglu’ai 4 4151 a 2970 a 1181 a 4733 b 582 b 1763 a 5.89 c 80.94 c
中嘉早17 Zhongjiazao 17 4109 a 2980 a 1129 a 4766 ab 657 b 1786 a 5.95 bc 79.99 d
湘早籼24号 Xiangzaoxian 24 3792 b 3031 a 761 b 4836 ab 1044 a 1805 a 6.26 a 84.59 a
中早39 Zhongzao 39 4259 a 3176 a 1083 a 4939 a 680 b 1763 a 6.07 b 83.68 b
株两优729 Zhuliangyou 729 4079 a 3165 a 914 ab 4728 b 649 b 1563 b 6.29 a 80.49 cd
平均 Mean 4078 A 3065 A 1013 A 4800 A 722 A 1735 A 6.09 B 81.94 A
晚季
Late season
广陆矮4号Guanglu’ai 4 2854 c 2103 b 751 a 3554 c 700 b 1451 a 6.09 c 79.45 b
中嘉早17 Zhongjiazao 17 2774 c 2166 b 608 abc 3551 c 777 b 1385 a 6.20 bc 79.05 b
湘早籼24号 Xiangzaoxian 24 2879 bc 2402 a 477 c 3792 ab 913 a 1390 a 6.42 a 80.23 a
中早39 Zhongzao 39 3060 a 2408 a 652 ab 3805 a 745 b 1397 a 6.27 abc 80.48 a
株两优729 Zhuliangyou 729 2972 ab 2442 a 530 bc 3640 bc 668 b 1198 b 6.38 ab 80.75 a
平均 Mean 2908 B 2304 B 604 B 3668 B 760 A 1364 B 6.27 A 79.99 B
2022 早季
Early
season
广陆矮4号Guanglu’ai 4 4057 a 2834 bc 1223 a 4578 a 521 b 1744 a 5.91 c 80.77 c
中嘉早17 Zhongjiazao 17 3699 b 2653 c 1046 a 4237 b 538 b 1584 ab 6.04 c 80.47 c
湘早籼24号 Xiangzaoxian 24 3858 b 3142 a 716 b 4755 a 897 a 1613 ab 6.45 a 81.55 b
中早39 Zhongzao 39 3797 b 2811 bc 986 a 4342 b 545 b 1531 b 6.27 b 82.33 a
株两优729 Zhuliangyou 729 3700 b 3033 ab 667 b 4262 b 562 b 1229 c 6.36 ab 81.82 ab
平均 Mean 3822 A 2894 A 928 A 4435 A 613 B 1541 A 6.21 A 81.39 A
晚季
Late season
广陆矮4号Guanglu’ai 4 2857 ab 2190 b 667 a 3686 a 829 a 1496 a 6.11 b 77.62 d
中嘉早17 Zhongjiazao 17 2777 b 2174 b 603 a 3632 ab 855 a 1458 a 6.13 b 77.85 cd
湘早籼24号 Xiangzaoxian 24 2813 ab 2230 b 583 a 3676 ab 863 a 1446 a 6.24 ab 78.33 bc
中早39 Zhongzao 39 2923 a 2349 a 574 a 3683 a 760 a 1334 ab 6.38 a 79.67 a
株两优729 Zhuliangyou 729 2766 b 2224 b 542 a 3480 b 714 a 1256 b 6.33 a 78.63 b
平均 Mean 2827 B 2233 B 594 B 3631 B 804 A 1398 B 6.24 A 78.42 B

Table 4

Cooking quality of rice noodles processed from early and late seasons noodle rice in 2020-2022 (%)"

年份
Year
季节Season 品种
Cultivar
断条率
Cooked break rate
损失率
Cooking loss rate
吸水率
Water absorption rate
2020 早季
Early
season
广陆矮4号Guanglu’ai 4 0.00 b 5.02 c 65.97 ab
中嘉早17 Zhongjiazao 17 2.22 a 4.89 c 71.70 a
湘早籼24号 Xiangzaoxian 24 0.00 b 7.82 a 66.80 ab
中早39 Zhongzao 39 0.00 b 5.92 b 46.70 c
株两优729 Zhuliangyou 729 2.22 a 6.04 b 54.27 bc
平均 Mean 0.89 A 5.94 A 61.09 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 1.11 a 4.06 c 71.80 a
中嘉早17 Zhongjiazao 17 1.11 a 4.14 c 66.57 a
湘早籼24号 Xiangzaoxian 24 2.22 a 6.71 b 61.20 ab
中早39 Zhongzao 39 2.22 a 8.43 a 54.63 b
株两优729 Zhuliangyou 729 3.33 a 5.35 bc 66.70 a
平均 Mean 2.00 A 5.74 A 64.18 A
2021 早季
Early
season
广陆矮4号Guanglu’ai 4 3.33 a 6.08 b 60.27 b
中嘉早17 Zhongjiazao 17 2.22 a 3.95 c 68.47 a
湘早籼24号 Xiangzaoxian 24 2.22 a 6.79 b 50.43 c
中早39 Zhongzao 39 0.00 a 7.68 a 47.63 c
株两优729 Zhuliangyou 729 3.33 a 6.00 b 51.73 c
平均 Mean 2.22 A 6.10 A 55.71 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 0.00 a 4.38 c 60.60 a
中嘉早17 Zhongjiazao 17 0.00 a 3.98 c 60.77 a
湘早籼24号 Xiangzaoxian 24 0.00 a 5.88 b 52.50 b
中早39 Zhongzao 39 1.11 a 7.23 a 46.63 c
株两优729 Zhuliangyou 729 1.11 a 4.14 c 57.53 a
平均 Mean 0.44 A 5.12 B 55.61 A
2022 早季
Early
season
广陆矮4号Guanglu’ai 4 0.00 a 4.67 c 68.75 b
中嘉早17 Zhongjiazao 17 1.11 a 3.71 d 74.24 a
湘早籼24号 Xiangzaoxian 24 0.00 a 6.55 ab 60.88 c
中早39 Zhongzao 39 1.11 a 6.63 a 54.56 d
株两优729 Zhuliangyou 729 0.00 a 5.74 b 61.35 c
平均 Mean 0.44 A 5.46 A 63.96 A
晚季
Late
season
广陆矮4号Guanglu’ai 4 0.00 b 4.73 bc 62.20 ab
中嘉早17 Zhongjiazao 17 1.11 ab 4.01 c 63.31 a
湘早籼24号 Xiangzaoxian 24 0.00 b 5.66 ab 59.43 ab
中早39 Zhongzao 39 2.22 a 6.31 a 56.93 b
株两优729 Zhuliangyou 729 0.00 b 5.94 a 59.05 ab
平均 Mean 0.67 A 5.33 A 60.18 B

Fig. 2

Pearson’s correlation coefficients of rice noodles cooking quality against starch and protein contents and paste properties for noodle rice Data are from Table 2, Table 3, and Table 4 (n=30). * and ** denotes significant correlation coefficients at the 0.05 and 0.01 probability levels, respectively."

Fig. 3

Pearson’s correlation coefficients of starch and protein contents as well as paste properties against mean temperature and mean solar radiation during the grain filling period for noodle rice Data are from Table 2, Table 3, and Fig. 1 (n=30). * and ** denotes significant correlation coefficients at the 0.05 and 0.01 probability levels, respectively."

[1] Fu B X. Asian noodles: history, classification, raw materials, and processing. Food Res Int, 2008, 41: 888-902.
doi: 10.1016/j.foodres.2007.11.007
[2] Sanchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: a review. Glob Change Biol, 2014, 20: 408-417.
doi: 10.1111/gcb.2014.20.issue-2
[3] Huang M, Cao J L, Liu Y, Zhang M Y, Hu L Q, Xiao Z W, Chen J N, Cao F B. Low-temperature stress during the flowering period alters the source-sink relationship and grain quality in field- grown late-season rice. J Agron Crop Sci, 2021, 207: 833-839.
doi: 10.1111/jac.v207.5
[4] 周显青, 彭超, 张玉荣, 郭利利, 熊宁. 早籼稻的品质分析与其压榨型鲜湿米粉加工适应性. 食品科学, 2018, 39(19): 36-43.
doi: 10.7506/spkx1002-6630-201819007
Zhou X Q, Peng C, Zhang Y R, Guo L L, Xiong N. Quality analysis of early indica rice cultivars and their suitability for processing of pressed fresh noodles. Food Sci, 2018, 39(19): 36-43 (in Chinese with English abstract).
[5] 高晓旭, 佟立涛, 钟葵, 刘丽娅, 周闲容, 周素梅, 王立. 鲜米粉加工专用原料的选择. 中国粮油学报, 2015, 30(2): 1-5.
Gao X X, Tong L T, Zhong K, Liu L Y, Zhou X R, Zhou S M, Wang L. Raw material selection for fresh rice noodles. J Chin Cereals Oils Assoc, 2015, 30(2): 1-5 (in Chinese with English abstract).
[6] 雷婉莹, 吴卫国, 廖卢艳, 倪婷, 张喻. 鲜湿米粉品质评价及原料选择. 食品科学, 2020, 41(1): 74-79.
doi: 10.7506/spkx1002-6630-20181202-015
Lei W Y, Wu W G, Liao L Y, Ni T, Zhang Y. Quality evaluation of and raw material selection for wet rice noodles. Food Sci, 2020, 41(1): 74-79 (in Chinese with English abstract).
doi: 10.1111/jfds.1976.41.issue-1
[7] Low Y K, Effarizah M E, Cheng L H. Factors influencing rice noodles qualities. Food Rev Int, 2020, 36: 781-794.
doi: 10.1080/87559129.2019.1683747
[8] 丁文平, 丁霄霖. 大米品种对其淀粉凝胶特性的影响. 中国粮油学报, 2003, 18(3): 17-20.
Ding W P, Ding X L. Effects of rice varieties on its starch gels properties. J Chin Cereals Oils Assoc, 2003, 18(3): 17-20 (in Chinese with English abstract).
[9] 王永辉, 张业辉, 张名位, 魏振承, 唐小俊, 张瑞芬, 邓媛元, 张雁. 不同水稻品种大米直链淀粉含量对加工米粉丝品质的影响. 中国农业科学, 2013, 46: 109-120.
doi: 10.3864/j.issn.0578-1752.2013.01.013
Wang Y H, Zhang Y H, Zhang M W, Wei Z C, Tang X J, Zhang R F, Deng Y Y, Zhang Y. Effect of amylose content of different rice varieties on the qualities of rice vermicelli. Sci Agric Sin, 2013, 46: 109-120 (in Chinese with English abstract).
[10] Xuan Y, Yi Y, Liang H, Wei S Q, Chen N P, Jiang L G, Ali I, Ullah S, Wu X C, Cao T Y, Zhao Q, Li T Y. Amylose content and RVA profile characteristics of noodle rice under different conditions. Agron J, 2020, 112: 117-129.
doi: 10.1002/agj2.v112.1
[11] Huang M, Jiang L G, Zou Y B, Zhang W X. On-farm assessment of effect of low temperature at seedling stage on early-season rice quality. Field Crops Res, 2013, 141: 63-68.
doi: 10.1016/j.fcr.2012.10.019
[12] Ai X F, Xiong R Y, Tan X M, Wang H X, Zeng Y J, Huang S, Shang Q Y, Pan X H, Shi Q H, Zhang J, Zeng Y H. Low temperature and light combined stress after heading on starch fine structure and physicochemical properties of late-season indica rice with different grain quality in southern China. Food Res Int, 2023, 164: 112320.
doi: 10.1016/j.foodres.2022.112320
[13] Zhou N B, Zhang J, Fang S L, Wei H Y, Zhang H C. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China. J Integr Agric, 2021, 20: 1762-1774.
doi: 10.1016/S2095-3119(20)63561-4
[14] 冯向前, 殷敏, 王孟佳, 马横宇, 褚光, 刘元辉, 徐春梅, 章秀福, 张运波, 王丹英, 陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响. 中国农业科学, 2023, 56: 46-63.
doi: 10.3864/j.issn.0578-1752.2023.01.004
Feng X Q, Yin M, Wang M J, Ma H Y, Chu G, Liu Y H, Xu C M, Zhang X F, Zhang Y B, Wang D Y, Chen S. Effects of meteorological factors on quality of late japonica rice during late season grain filling stage under ‘early indica and late japonica’ cultivation pattern in southern China. Sci Agric Sin, 2023, 56: 46-63 (in Chinese with English abstract).
[15] 徐栋, 朱盈, 周磊, 韩超, 郑雷鸣, 张洪程, 魏海燕, 王珏, 廖桉桦, 蔡仕博. 不同类型籼粳杂交稻产量和品质性状差异及其与灌浆结实期气候因素间的相关性. 作物学报, 2018, 44: 1548-1559.
doi: 10.3724/SP.J.1006.2018.01548
Xu D, Zhu Y, Zhou L, Han C, Zheng L M, Zhang H C, Wei H Y, Wang Y, Liao A H, Cai S B. Differences in yield and grain quality among various types of indica/japonica hybrid rice and correlation between quality and climatic factors during grain filling period. Acta Agron Sin, 2018, 44: 1548-1559 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01548
[16] Rehmani M I A, Wei G B, Hussain N, Ding C Q, Li G H, Liu Z H, Wang S H, Ding Y. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crops Res, 2014, 156: 231-241.
doi: 10.1016/j.fcr.2013.09.019
[17] 金正勋, 杨静, 钱春荣, 刘海英, 金学泳, 秋太权. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响. 中国水稻科学, 2005, 19: 377-380.
Jin Z X, Yang J, Qian C R, Liu H Y, Jin X Y, Qiu T Q. Effects of temperature during grain filling period on activities of key enzymes for starch synthesis and rice grain quality. Chin J Rice Sci, 2005, 19: 377-380 (in Chinese with English abstract).
[18] Dou Z, Tang S, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci, 2017, 57: 2183-2192.
doi: 10.2135/cropsci2016.05.0350
[19] Fan X L, Sun X S, Yang R, Chen S, Li R M, Bian X Y, Xia L X, Zhang C Q. Comparative analyses of grain quality in response to high temperature during the grain-filling stage between Wxa and Wxb under indica and japonica backgrounds. Agronomy, 2023, 13: 17.
doi: 10.3390/agronomy13010017
[20] Cheng F M, Zhong L J, Zhao N C, Liu Y, Zhang G P. Temperature induced changes in the starch components and biosynthetic enzymes of two rice varieties. Plant Growth Regul, 2005, 46: 87-95.
doi: 10.1007/s10725-005-7361-6
[21] 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系. 生态学报, 2000, 20: 646-652.
Cheng F M, Ding Y S, Zhu B Y. The formation of amylose content in rice grain and its relation with field temperature. Acta Ecol Sin, 2000, 20: 646-652 (in Chinese with English abstract).
[22] Liu Q H, Wu X, Ma J Q, Li T, Zhou X B, Guo T. Effects of high air temperature on rice grain quality and yield under field condition. Agron J, 2013, 105: 446-454.
doi: 10.2134/agronj2012.0164
[23] 袁继超, 丁志勇, 蔡光泽, 杨世民, 朱庆森, 杨建昌. 攀西地区稻米淀粉RVA谱的影响因子及其垂直变化特点. 作物学报, 2005, 31: 1611-1619.
Yuan J C, Ding Z Y, Cai G Z, Yang S M, Zhu Q S, Yang J C. The factors influencing RVA profile of rice starch and their changes with altitudes in Panxi region. Acta Agron Sin, 2005, 31: 1611-1619 (in Chinese with English abstract).
[24] 陶钰, 姚宇, 王坤庭, 邢志鹏, 翟海涛, 冯源, 刘秋员, 胡雅杰, 郭保卫, 魏海燕, 张洪程. 穗肥氮素用量与结实期遮光复合作用对常规粳稻品质的影响. 作物学报, 2022, 48: 1730-1745.
doi: 10.3724/SP.J.1006.2022.12039
Tao Y, Yao Y, Wang K T, Xing Z P, Zhai H T, Feng Y, Liu Q Y, Hu Y J, Guo B W, Wei H Y, Zhang H C. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice. Acta Agron Sin, 2022, 48: 1730-1745 (in Chinese with English abstract).
[25] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响. 作物学报, 2021, 47: 701-713.
doi: 10.3724/SP.J.1006.2021.02037
Yang F, Zhong X Y, Li Q P, Li S X, Li W, Zhou T, Li B, Yuan Y J, Deng F, Chen Y, Ren W J. Effects of delayed sowing and planting date on starch RVA profiles of different indica hybrid rice in the sub-suitable region of ratoon rice. Acta Agron Sin, 2021, 47: 701-713 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02037
[26] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N B, Xing Z P, Hu Y J, Cui P Y, Dai Q G, Zhang H C. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 2405-2417.
doi: 10.1016/S2095-3119(18)62025-8
[27] 邓飞, 王丽, 叶德成, 任万军, 杨文钰. 生态条件及栽培方式对稻米RVA谱特性及蛋白质含量的影响. 作物学报, 2012, 38: 717-724.
Deng F, Wang L, Ye D C, Ren W J, Yang W Y. Effects of ecological conditions and cultivation methods on rice starch RVA profile characteristics and protein content. Acta Agron Sin, 2012, 38: 717-724 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00717
[28] Tong L T, Gao X X, Lin L Z, Liu Y J, Zhong K, Liu L Y, Zhou X R, Wang L, Zhou S M. Effects of semidry flour milling on the quality attributes of rice flour and rice noodles in China. J Cereal Sci, 2015, 62: 45-49.
doi: 10.1016/j.jcs.2014.12.007
[29] 吴伟斌, 李佳雨, 张震邦, 凌彩金, 林贤柯, 常星亮. 基于高光谱图像的茶树LAI与氮含量反演. 农业工程学报, 2018, 34(3): 195-201.
Wu W B, Li J Y, Zhang Z B, Ling C J, Lin X K, Chang X L. Estimation model of LAI and nitrogen content in tea tree based on hyperspectral image. Trans CSAE, 2018, 34(3): 195-201 (in Chinese with English abstract).
[30] Tsukaguchi T, Taniguchi Y, Ito R. The effects of nitrogen uptake before and after heading on grain protein content and the occurrence of basal- and back-white grains in rice (Oryza sativa L.). Plant Prod Sci, 2016, 19: 508-517.
doi: 10.1080/1343943X.2016.1223527
[31] Bhattacharya M, Zee S Y, Corke H. Physicochemical properties related to quality of rice noodles. Cereal Chem, 1999, 76: 861-867.
doi: 10.1094/CCHEM.1999.76.6.861
[32] Huang M, Xiao Z W, Chen J N, Cao F B. Yield and quality of brown rice noodles processed from early-season rice grains. Sci Rep, 2021, 11: 18668.
doi: 10.1038/s41598-021-98352-7 pmid: 34548582
[33] Zhou N B, Wei H Y, Zhang H C. Response of milling and appearance quality of rice with good eating quality to temperature and solar radiation in lower reaches of Huai River. Agronomy, 2021, 11: 77.
doi: 10.3390/agronomy11010077
[34] Huang M, Cao J L, Zhang R C, Chen J N, Cao F B, Liu L S, Fang S L, Zhang M. Delayed sowing does not improve palatability-related traits in high-quality rice. Food Chem Adv, 2022, 1: 100096.
doi: 10.1016/j.focha.2022.100096
[35] Deng F, Zhang C, He L H, Liao S, Li Q P, Li B, Zhu S L, Gao Y T, Tao Y F, Zhou W, Lei X L, Wang L, Hu J F, Chen Y, Ren W J. Delayed sowing date improves the quality of mechanically transplanted rice by optimizing temperature conditions during growth season. Field Crops Res, 2022, 281: 108493.
doi: 10.1016/j.fcr.2022.108493
[36] 丛舒敏, 余恩唯, 夏陈钰, 薛建涛, 李娈, 李荣凯, 胡雅杰. 结实期温度和光照对不同类型粳稻品种产量和品质的影响. 扬州大学学报(农业与生命科学版), 2022, 43(5): 18-26.
Cong S M, Yu E W, Xia C Y, Xue J T, Li L, Li R K, Hu Y J. Effects of temperature and light on yield and quality of different types of japonica rice varieties at seed-setting stage. J Yangzhou Univ (Agric Life Sci Edn), 2022, 43(5): 18-26 (in Chinese with English abstract).
[37] 任万军, 杨文钰, 徐精文, 樊高琼, 马周华. 弱光对水稻籽粒生长及品质的影响. 作物学报, 2003, 29: 785-790.
Ren W J, Yang W Y, Xu J W, Fan G Q, Ma Z H. Effect of low light on grains growth and quality in rice. Acta Agron Sin, 2003, 29: 785-790 (in Chinese with English abstract).
[38] Chen H, Chen D, He L H, Wang T, Lu H, Yang F, Deng F, Chen Y, Tao Y F, Li M, Li G Y, Ren W J. Correlation of taste values with chemical compositions and Rapid Visco Analyser profiles of 36 indica rice (Oryza sativa L.) varieties. Food Chem, 2021, 349: 129176.
doi: 10.1016/j.foodchem.2021.129176
[39] 张国发, 王绍华, 尤娟, 王强盛, 丁艳峰, 吉志军. 结实期不同时段高温对稻米品质的影响. 作物学报, 2006, 32: 283-287.
Zhang G F, Wang S H, You J, Wang Q S, Ding Y F, Ji Z J. Effect of higher temperature in different filling stages on rice qualities. Acta Agron Sin, 2006, 32: 283-287 (in Chinese with English abstract).
[40] 邹应斌, 戴魁根. 湖南发展双季稻生产的优势. 作物研究, 2008, 22(4): 209-213.
Zou Y B, Dai K G. The advantages for promoting double-season rice production in Hunan province. Crop Res, 2008, 22(4): 209-213 (in Chinese with English abstract).
[41] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44: 845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014, 44: 845-850 (in Chinese with English abstract).
doi: 10.1360/052014-98
[42] 邹应斌, 黄敏. 转型期作物生产发展的机遇与挑战. 作物学报, 2018, 44: 791-795.
doi: 10.3724/SP.J.1006.2018.00791
Zou Y B, Huang M. Opportunities and challenges for crop production in China during the transition period. Acta Agron Sin, 2018, 44: 791-795 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00791
[43] 陈佳娜, 曹放波, 谢小兵, 单双吕, 高伟, 李志斌, 黄敏, 邹应斌. 机插条件下低氮密植栽培对“早晚兼用”双季稻产量和氮素吸收利用的影响. 作物学报, 2016, 42: 1176-1187.
doi: 10.3724/SP.J.1006.2016.01176
Chen J N, Cao F B, Xie X B, Shan S L, Gao W, Li Z B, Huang M, Zou Y B. Effect of low nitrogen rate combined with high plant density on yield and nitrogen use efficiency of machine- transplanted early-late season double cropping rice. Acta Agron Sin, 2016, 42: 1176-1187 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01176
[1] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[2] LI Wan, LI Cheng, CHENG Min, WU Fang. Phosphorus transporter StPHO1.2 improving heat tolerance in potato [J]. Acta Agronomica Sinica, 2024, 50(2): 394-402.
[3] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[4] ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361.
[5] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[6] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[7] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[8] LIU Xin-Meng, CHENG Yi, LIU Yu-Wen, PANG Shang-Shui, YE Xiu-Qin, BU Yan-Xia, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, REN Hao, LIU Peng. Difference analysis of yield and resource use efficiency of modern summer maize varieties in Huang-Huai-Hai region [J]. Acta Agronomica Sinica, 2023, 49(5): 1363-1371.
[9] WU Zong-Sheng, XU Cai-Long, LI Rui-Dong, XU Yi-Fan, SUN Shi, HAN Tian-Fu, SONG Wen-Wen, WU Cun-Xiang. Effects of wheat straw mulching on physical properties of topsoil and yield formation in soybean [J]. Acta Agronomica Sinica, 2023, 49(4): 1052-1064.
[10] DING Min, DUAN Zheng-Yong, WANG Yu-Zhuo, XUE Ya-Peng, WANG Hai-Gang, CHEN Ling, WANG Rui-Yun, QIAO Zhi-Jun. Development and validation of functional markers of GBSSI gene in proso millet [J]. Acta Agronomica Sinica, 2023, 49(3): 703-718.
[11] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[12] LI Jia-Jia, LONG Qun, ZHU Shang-Shang, SHAN Ya-Jing, WU Mei-Yan, LU Yun, ZHI Xian-Guan, LIAO Wei, CHEN Hao-Ran, ZHAO Zhen-Bang, MIAO Long, GAO Hui-Hui, LI Ying-Hui, WANG Xiao-Bo, QIU Li-Juan. Construction of evaluation method for tolerance to high-temperature and screening of heat-tolerant germplasm resources of bud stage in soybean [J]. Acta Agronomica Sinica, 2023, 49(11): 2863-2875.
[13] ZHAO Fu-Gui, ZHANG Long, LI Dan, HAN Gu, WANG Nan, HOU Xian-Qing. Effects of tillage with mulching on soil water and temperature and potato yield on the dry farmland of Southern Ningxia under different climate year types [J]. Acta Agronomica Sinica, 2023, 49(10): 2806-2819.
[14] WANG Peng-Fei, YU Ai-Zhong, WANG Yu-Long, SU Xiang-Xiang, CHAI Jian, LI Yue, LYU Han-Qiang, SHANG Yong-Pan, YANG Xue-Hui. Effects of multiple cropping green manure after wheat harvest combined with reduced nitrogen application on soil hydrothermal characteristics and maize yield [J]. Acta Agronomica Sinica, 2023, 49(10): 2793-2805.
[15] SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan. Spatiotemporal variation of high temperature stress in different regions of China under climate change [J]. Acta Agronomica Sinica, 2023, 49(1): 167-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .