Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 167-176.doi: 10.3724/SP.J.1006.2023.23007

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Spatiotemporal variation of high temperature stress in different regions of China under climate change

SHANG Meng-Fei, SHI Xiao-Yu, ZHAO Jiong-Chao, LI Shuo, CHU Qing-Quan()   

  1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2022-01-15 Accepted:2022-06-07 Online:2023-01-12 Published:2022-07-06
  • Contact: CHU Qing-Quan E-mail:cauchu@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300201)

Abstract:

Analysing the spatial-temporal distribution and the change of high temperature damage during crop growth period is of great significance for developing management techniques of crop cultivation under climate change. Based on the daily data of 558 meteorological stations and maize phenology period in China, we explored the spatiotemporal variation of heat degree days (HDD) and its trend of different maize growth periods from 1961 to 2020. The results showed that the HDD exhibited a general increased trend during the whole growth period and every growth stage of maize in China from 1961 to 2020, with HDD increased 1.19-9.27℃ d (10a)-1 of different farming regions. The HDD increase range was higher in Sichuan Basin farming region, south China farming region and northwest farming region, and it increased significantly by 8.79, 9.27, and 5.81℃ d (10a)-1, respectively. The change trend of HDD at different growth stages had obvious variation in different regions. HDD increased greatly in the early growth period of northern farming regions, while HDD increased greatly in late growth period of southern farming regions. During maize sowing-tassel period, the HDD increased significantly by 2.67 and 2.00℃ d (10a)-1 in northwest farming region and north China farming region, respectively, and it increased by 1.41℃ d (10a)-1 in Huang-Huai-Hai farming region, both of them were higher than that in other farming regions. During tassel-milk period, the HDD of southern farming regions increased greatly, which increased significantly by 3.68 and 2.11℃ d (10a)-1 in south China farming region and Sichuan Basin farming region, respectively. During milk-maturity period, the HDD of southern farming regions increased higher by 0.88-5.31℃ d (10a)-1 than -0.01-0.59℃ d (10a)-1 in northern farming regions. In conclusion, to cope with the increasing risk of high temperature stress of maize, northern farming regions should focus on the impact of high temperature during maize sowing-milk period, and southern farming regions should focus on the impact of high temperature after maize tasseled.

Key words: maize, growth stages, high temperature stress, temporal and spatial variation, farming region

Fig. 1

Study area in this experiment The farming regions cited Farming Systems in China[26]. DB: Northeast farming region; BB: North China farming region; XB: Northwest farming region; HHH: Huang-Huai-Hai farming region; SC: Sichuan Basin farming region; XN: Southwest farming region; CZ: Yangtze Plain farming region; JN: Jiangnan farming region; HN: South China farming region; QZ: Qinghai-Tibet Plateau farming region."

Table 1

HDD in maize growth period of different farming regions from 1961 to 2020"

区域
Region
高温度日HDD (℃ d)
播种-抽穗期
Sowing-tassel
抽穗-乳熟期
Tassel-milk
乳熟-成熟期
Milk-maturity
全生育期
Whole growth period
春玉米Spring maize
东北农林区Northeast farming region 5.4±5.9 2.4±3.2 0.2±0.2 8.0±7.4
北部中低高原农牧区North China farming region 17.1±10.4 8.2±4.1 1.7±2.0 27.0±13.8
西北农牧区Northwest farming region 42.5±13.0 36.6±11.1 15.3±5.6 94.4±21.7
四川盆地农作区Sichuan Basin farming region 9.5±6.7 18.1±11.3 34.8±17.7 62.4±29.5
西南中高原农林区Southwest farming region 14.9±5.0 12.9±5.5 16.0±6.1 43.8±13.1
长江中下游平原农作区Yangtze Plain farming region 9.3±4.9 21.9±12.6 38.4±12.5 69.7±23.3
江南丘陵农林区Jiangnan farming region 6.9±4.8 16.4±8.7 32.8±10.5 56.1±19.2
华南农林渔区South China farming region 12.4±4.9 14.7±9.5 16.5±9.7 43.6±20.4
夏玉米Summer maize
黄淮海平原农作区Huang-Huai-Hai farming region 53.8±18.9 12.1±8.0 2.7±2.9 68.6±24.8

Fig. 2

Spatial distribution of HDD during different growth period in maize"

Table 2

Trend of HDD during different growth period in maize from 1961 to 2020"

区域
Region
高温度日倾向率Trend of HDD (℃ d (10a) -1)
播种-抽穗期
Sowing-tassel
抽穗-乳熟期
Tassel-milk
乳熟-成熟期
Milk-maturity
全生育期
Whole growth period
春玉米Spring maize
东北农林区Northeast farming region 0.76 0.45 -0.01 1.19
北部中低高原农牧区North China farming region 2.00* 1.05** 0.08 3.13*
西北农牧区Northwest farming region 2.67* 2.55** 0.59 5.81**
四川盆地农作区Sichuan Basin farming region 1.37** 2.11* 5.31** 8.79**
西南中高原农林区Southwest farming region 1.31** 1.03** 1.38* 3.73**
长江中下游平原农作区Yangtze Plain farming region 0.59 0.15 0.88 1.63
江南丘陵农林区Jiangnan farming region -0.15 0.77 2.11** 2.73*
华南农林渔区South China farming region 1.23** 3.68** 4.36** 9.27**
夏玉米Summer maize
黄淮海平原农作区Huang-Huai-Hai farming region 1.41 0.79 0.22 2.42

Fig. 3

Trend of HDD at sowing-tassel stages of different farming regions in maize from 1961 to 2020"

Fig. 4

Trend of HDD at tassel-milk stages of different farming regions in maize from 1961 to 2020"

Fig. 5

Trend of HDD at milk-maturity stages of different farming regions in maize from 1961 to 2020"

[1] 秦大河, 丁一汇, 苏纪兰, 任贾文, 王绍武, 伍荣生, 杨修群, 王苏民, 刘时银, 董光荣, 卢琦, 黄镇国, 杜碧兰, 罗勇. 中国气候与环境演变评估: I. 中国气候与环境变化及未来趋势. 气候变化研究进展, 2005, 1(1): 4-9.
Qin D H, Ding Y H, Su J L, Ren J W, Wang S W, Wu R S, Yang X Q, Wang S M, Liu S Y, Dong G R, Lu Q, Huang Z G, Du L B, Luo Y. Assessment of climate and environment change in China: I. Climate and environment changes in China and their projection. Adv Clim Change Res, 2005, 1(1): 4-9. (in Chinese with English abstract)
[2] Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 5-6.
[3] 杨晓光, 刘志娟, 陈阜. 全球气候变暖对中国种植制度可能影响: I. 气候变暖对中国种植制度北界和粮食产量可能影响的分析. 中国农业科学, 2010, 43: 329-336.
Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China. Sci Agric Sin, 2010, 43: 329-336. (in Chinese with English abstract)
[4] Feng S, Hu Q. Changes in agro-meteorological indicators in the contiguous United States: 1951-2000. Theor Appl Clim, 2004, 78: 247-264.
[5] Easterling D R. Recent changes in frost days and the frost-free season in the United States. Bull Am Meteorol Soc, 2002, 83: 1327-1332.
doi: 10.1175/1520-0477(2002)083<1327:RCIFDA>2.3.CO;2
[6] 刘园, 王颖, 杨晓光. 华北平原参考作物蒸散量变化特征及气候影响因素. 生态学报, 2010, 30: 923-932.
Liu Y, Wang Y, Yang X G. Trends in reference crop evapotranspiration and possible climatic factors in the North China Plain. Acta Ecol Sin, 2010, 30: 923-932. (in Chinese with English abstract)
[7] 刘志娟, 杨晓光, 王文峰. 气候变化背景下中国农业气候资源变化: IV. 黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征. 应用生态学报, 2011, 22: 905-912.
Liu Z J, Yang X G, Wang W F. Changes of China agricultural climate resources under the background of climate change: IV. Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain. Chin J Appl Ecol, 2011, 22: 905-912. (in Chinese with English abstract)
[8] 刘彦随, 刘玉, 郭丽英. 气候变化对中国农业生产的影响及应对策略. 中国生态农业学报, 2010, 18: 905-910.
Liu Y S, Liu Y, Guo L Y. Impact of climatic change on agricultural production and response strategies in China. Chin J Eco- Agric, 2010, 18: 905-910. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00905
[9] 王占彪. 气候变化背景下华北麦-玉两熟生产的风险评价及低碳策略. 中国农业大学博士学位论文, 北京, 2015.
Wang Z B. Risk Assessment and Low Carbon Strategies of Winter Wheat and Summer Maize Production in North China Plain under Climate Change. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[10] 尹小刚. 气候变化背景下东北玉米生产的干旱风险与适应对策. 中国农业大学博士学位论文, 北京, 2015.
Yin X G. Drought Risks and Adaptation Measures of Maize Production in Northeast China under Climate Change. PhD Dissertation of China Agricultural University, Beijing, China, 2015. (in Chinese with English abstract)
[11] Liu B, Liu L L, Tian L Y, Cao W X, Zhu Y, Asseng S. Post-heading heat stress and yield impact in winter wheat of China. Glob Change Biol, 2014, 20: 372-381.
doi: 10.1111/gcb.12442
[12] Hawkins E D, Fricker T E, Challinor A J, Ferro C A T, Ho C K, Osborne, T M. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Glob Change Biol, 2013, 19: 937-947.
doi: 10.1111/gcb.12069
[13] Lobell D B, Sibley A, Ortiz-Monasterio J I. Extreme heat effects on wheat senescence in India. Nat Clim Change, 2012, 2: 186-189.
doi: 10.1038/nclimate1356
[14] Lobell D B, Hammer G L, McLean G, Messina C, Roberts M J, Wolfram S. The critical role of extreme heat for maize production in the United States. Nat Clim Change, 2013, 3: 497-501.
doi: 10.1038/nclimate1832
[15] Lobell D B, Marianne B, Cosmos M, Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Change, 2011, 1: 42-45.
[16] Butler E E, Huybers P. Adaptation of US maize to temperature variations. Nat Clim Change, 2013, 3: 68-72.
[17] 尹小刚, 王猛, 孔箐锌, 王占彪, 张海林, 褚庆全, 文新亚, 陈阜. 东北地区高温对玉米生产的影响及对策. 应用生态学报, 2015, 26(1): 186-198.
Yin X G, Wang M, Kong Q X, Wang Z B, Zhang H L, Chu Q Q, Wen X Y, Chen F. Impacts of high temperature on maize production and adaptation measures in Northeast China. Chin J Appl Ecol, 2015, 26(1): 186-198. (in Chinese with English abstract)
[18] 王丽君. 黄淮海平原夏玉米季干旱、高温的发生特征及对产量的影响. 中国农业大学博士学位论文, 北京, 2018.
Wang L J. Spatial-temporal Characteristics of Drought, Heat and its Effect on Yield for Summer Maize in Huang-Huai-Hai Plain, China. PhD Dissertation of China Agricultural University, Beijing, China, 2018. (in Chinese with English abstract)
[19] 徐延红, 刘天学, 方文松, 李树岩. 河南省夏玉米花期高温热害风险分析. 中国农业气象, 2021, 42: 879-888.
Xu Y H, Liu T X, Fang W S, Li S Y. Risk analysis of high temperature disaster during summer maize flowering period in Henan province. Chin J Agrometeorol, 2021, 42: 879-888. (in Chinese with English abstract)
[20] 盛得昌, 王媛媛, 黄收兵, 陶洪斌, 王璞. 高温对玉米植株形态与功能、产量构成及子粒养分的影响. 玉米科学, 2020, 28(5): 86-92.
Sheng D C, Wang Y Y, Huang S B, Tao H B, Wang P. Effects of high temperature on morphology and function, yield components and grain nutrients of maize plants. J Maize Sci, 2020, 28(5): 86-92.<br (in Chinese with English abstract)
[21] 赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40: 1839-1845.
Zhao L X, Zhang P, Wang R N, Wang P, Tao H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agron Sin, 2014, 40: 1839-1845. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01839
[22] 闫振华, 刘东尧, 贾绪存, 杨琴, 陈艺博, 董朋飞, 王群. 花期高温干旱对玉米雄穗发育、生理特性和产量影响. 中国农业科学, 2021, 54: 3592-3608.
Yan Z H, Liu D Y, Jia X C, Yang Q, Chen Y B, Dong P F, Wang Q. Maize tassel development, physiological traits and yield under heat and drought stress during flowering stage. Sci Agric Sin, 2021, 54: 3592-3608. (in Chinese with English abstract)
[23] 和骅芸, 胡琦, 潘学标, 马雪晴, 胡莉婷, 王晓晨, 何奇瑾. 气候变化背景下华北平原夏玉米花期高温热害特征及适宜播期分析. 中国农业气象, 2020, 41: 1-15.
He H Y, Hu Q, Pan X B, Ma X Q, Hu L T, Wang X C, He Q J. Characteristics of heat damage during flowering period of summer maize and suitable sowing date in North China Plain under climate change. Chin J Agrometeorol, 2020, 41: 1-15. (in Chinese with English abstract)
[24] 曹永强, 冯兴兴, 李玲慧, 路洁. 气候变化下辽宁省春玉米水热时空特征及干旱风险. 生态学报, 2021, 41: 1092-1105.
Cao Y Q, Feng X X, Li L H, Lu J. Temporal and spatial variation of spring corn in Liaoning province under climate change. Acta Ecol Sin, 2021, 41: 1092-1105. (in Chinese with English abstract)
[25] 王秀萍, 方文松, 杜子璇, 刘天学. 夏玉米花期高温热害时空分布特征. 玉米科学, 2021, 29(1): 61-68.
Wang X P, Fang W S, Du Z X, Liu T X. Spatiotemporal variation of flowering stage heat damage of summer maize. J Maize Sci, 2021, 29(1): 61-68. (in Chinese with English abstract)
[26] 刘巽浩, 陈阜. 中国农作制. 北京: 中国农业出版社, 2005. pp 30-33.
Liu X H, Chen F. Farming Systems in China. Beijing: China Agriculture Press, 2005. pp 30-33. (in Chinese)
[27] 国家气象信息中心. 中国地面气候资料日值数据集(V3.0). [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_ CLI_CHN_MUL_DAY_V3.0.html.
China Meteorological Data Service Centre. Dataset of Daily Climate Data from Chinese Surface Stations (V 3.0). [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html. (in Chinese)
[28] 崔读昌, 刘洪顺, 闵谨如, 贺菊美. 中国主要农作物气候资源图集. 北京: 气象出版社, 1984. pp 119-156.
Cui D C, Liu H S, Min J R, He J M. Atlas of Climate Resources of Major Crops in China. Beijing: China Meteorological Press, 1984. pp 119-156. (in Chinese)
[29] 梅旭荣, 刘勤, 严昌荣. 中国主要农作物生育期图集. 杭州: 浙江科学技术出版社, 2016. pp 87-113.
Mei X R, Liu Q, Yan C R. Atlas of Main Crop Growth Period in China. Hangzhou: Zhejiang Science and Technology Publishing Press, 2016. pp 87-113. (in Chinese)
[30] 国家气象信息中心. 中国农作物生长发育和农田土壤湿度旬值数据集. [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html.
China Meteorological Data Service Centre. Ten-day Dataset on Crop Growth and Soil Humidity in China. [2021-03-25]. http://data.cma.cn/data/cdcdetail/dataCode/AGME_AB2_CHN_TEN.html. (in Chinese)
[31] 王占彪, 王猛, 尹小刚, 张海林, 褚庆全, 文新亚, 陈阜. 气候变化背景下华北平原夏玉米各生育期水热时空变化特征. 中国生态农业学报, 2015, 23: 473-481.
Wang Z B, Wang M, Yin X G, Zhang H L, Chu Q Q, Wen X Y, Chen F. Spatiotemporal characteristics of heat and rainfall changes in summer maize season under climate change in the North China Plain. Chin J Eco-Agric, 2015, 23: 473-481. (in Chinese with English abstract)
[32] 沈瑱, 曾燕, 肖卉, 费松. 江苏省日照时数的气候特征分析. 气象科学, 2007, 27: 425-429.
Shen Z, Zeng Y, Xiao H, Fei S. Changes of sunshine hours in the recent 40 years over Jiangsu province. J Meteorol Sci, 2007, 27: 425-429. (in Chinese with English abstract)
[33] 李林超. 极端气温、降水和干旱事件的时空演变规律及其多模式预测. 西北农林科技大学硕士学位论文, 陕西咸阳, 2019.
Li L C. Temporal-spatial Evolution of Extreme Temperature, Precipitation and Drought Event and its Projection by Multi-model Ensemble. MS Thesis of Northwest A&F University, Xianyang, Shaanxi, China, 2019. (in Chinese with English abstract)
[34] 赵福成, 景立权, 闫发宝, 陆大雷, 王桂跃, 陆卫平. 灌浆期高温胁迫对甜玉米籽粒糖分积累和蔗糖代谢相关酶活性的影响. 作物学报, 2013, 39: 1644-1651.
doi: 10.3724/SP.J.1006.2013.01644
Zhao F C, Jing L Q, Yan F B, Lu D L, Wang G Y, Lu W P. Effects of heat stress during grain filling on sugar accumulation and enzyme activity associated with sucrose metabolism in sweet corn. Acta Agron Sin, 2013, 39: 1644-1651. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.01644
[35] 张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50: 2061-2070.
Zhang P, Chen G Y, Geng P, Gao Y, Zheng L, Zhang S S, Wang P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Sci Agric Sin, 2017, 50: 2061-2070. (in Chinese with English abstract)
[36] 邵靖宜, 李小凡, 于维祯, 刘鹏, 赵斌, 张吉旺, 任佰朝. 高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响. 中国农业科学, 2021, 54: 3623-3631.
Shao J Y, Li X F, Yu W Z, Liu P, Zhao B, Zhang J W, Ren B Z. Combined effects of high temperature and drought on yield and stem microstructure of summer maize. Sci Agric Sin, 2021, 54: 3623-3631. (in Chinese with English abstract)
[37] 严旖旎. 吐丝期喷施外源激素对花后高温下糯玉米产量和品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2021.
Yan Y N. Effects of Spraying Exogenous Hormones at Silking Stage on the Grain Yield and Quality under Post-silking Heat Stress for Waxy Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2021. (in Chinese with English abstract)
[38] 中国气象局. QX/T 595-2021气候指数: 高温. 北京: 气象出版社, 2021.
China Meteorological Administration. QX/T 595-2021 Climate Index: High Temperature. Beijing: China Meteorological Press, 2021. (in Chinese)
[39] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21985-2008主要农作物高温危害温度指标. 北京: 中国标准出版社, 2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 21985-2008 Temperature Index of High Temperature Harm for Main Crops. Beijing: Standards Press of China, 2008. (in Chinese)
[40] 陈岩, 岳丽杰, 杨勤, 张会玲, 柯国华, 刘永红. 高温热害对玉米生长发育的影响及研究进展. 耕作与栽培, 2019, 39(1): 26-31.
Chen Y, Yue L J, Yang Q, Zhang H L, Ke G H, Liu Y H. Effects of high temperature on maize development and its research advances. Tillage Cult, 2019, 39(1): 26-31. (in Chinese)
[41] 王海梅. 高温胁迫对河套灌区玉米生理指标及产量构成要素的影响. 干旱气象, 2015, 33(1): 59-62.
Wang H M. Influence of high temperature stress on physiological indexes and yield components of maize in Hetao Irrigation District. J Arid Meteorol, 2015, 33(1): 59-62. (in Chinese with English abstract)
[42] 郭欢乐, 汤彬, 曹钟洋, 李涵, 陈松林, 陈志辉. 湖南省春夏秋三季玉米生长发育及温度胁迫特点研究. 作物研究, 2020, 34(3): 217-222.
Guo H L, Tang B, Cao Z Z, Li H, Chen S L, Chen Z H. Study on growth and temperature stress of spring, summer and autumn maize in Hunan province. Crop Res, 2020, 34(3): 217-222. (in Chinese with English abstract)
[43] 陈怀亮, 李树岩. 气候变暖背景下河南省夏玉米花期高温灾害风险预估. 中国生态农业学报, 2020, 28: 337-348.
Chen H L, Li S Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan province. Chin J Eco-Agric, 2020, 28: 337-348. (in Chinese with English abstract)
[1] YIN Fang-Bing, LI Ya-Nan, BAO Jian-Xi, MA Ya-Jie, QIN Wen-Xuan, WANG Rui-Pu, LONG Yan, LI Jin-Ping, DONG Zhen-Ying, WAN Xiang-Yuan. Genome-wide association study and candidate genes predication of yield related ear traits in maize [J]. Acta Agronomica Sinica, 2023, 49(2): 377-391.
[2] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[3] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[4] XU Tong, LYU Yan-Jie, SHAO Xi-Wen, GENG Yan-Qiu, WANG Yong-Jun. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities [J]. Acta Agronomica Sinica, 2023, 49(2): 472-484.
[5] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[6] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[7] ZHANG Jing, WANG Hong-Zhang, REN Hao, YIN Fu-Wei, WU Hong-Yan, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, DAI Ai-Bin, LIU Peng. Relationship between root architecture and root pulling force of summer maize [J]. Acta Agronomica Sinica, 2023, 49(1): 188-199.
[8] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[9] DUAN Can-Xing, CUI Li-Na, XIA Yu-Sheng, DONG Huai-Yu, YANG Zhi-Huan, HU Qing-Yu, SUN Su-Li, LI Xiao, ZHU Zhen-Dong, WANG Xiao-Ming. Precise characterization and analysis of maize germplasm resources for resistance to Fusarium ear rot and Gibberella ear rot [J]. Acta Agronomica Sinica, 2022, 48(9): 2155-2167.
[10] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[11] GUO Yao, CHAI Qiang, YIN Wen, FAN Hong. Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize [J]. Acta Agronomica Sinica, 2022, 48(8): 1871-1883.
[12] WANG Tian-Bo, HE Wen-Xue, ZHANG Jun-Ming, LYU Wei-Zeng, LIANG Yu-Huan, LU Yang, WANG Yu-Lu, GU Feng-Xu, SONG Ci, CHEN Jun-Ying. ROS production and ATP synthase subunit mRNAs integrity in artificially aged maize embryos [J]. Acta Agronomica Sinica, 2022, 48(8): 1996-2006.
[13] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[14] YANG Ying-Xia, ZHANG Guan, WANG Meng-Meng, LU Guo-Qing, WANG Qian, CHEN Rui. Molecular characterization of transgenic maize GM11061 based on high-throughput sequencing technology [J]. Acta Agronomica Sinica, 2022, 48(7): 1843-1850.
[15] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[3] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[4] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[5] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[6] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[7] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[8] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[9] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .
[10] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .