Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 440-450.doi: 10.3724/SP.J.1006.2024.31019

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat

XIE Wei2,3(), HE Peng2,3, MA Hong-Liang2,3, LEI Fang2,3, HUANG Xiu-Lan2,3, FAN Gao-Qiong1,2,3,*(), YANG Hong-Kun1,2,3,*()   

  1. 1State Key Laboratory for Exploration and Utilization of Crop Genetic Resources in Southwest China, Chengdu 611130, Sichuan, China
    2Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / Collage of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
  • Received:2023-03-13 Accepted:2023-09-13 Online:2024-02-12 Published:2023-10-08
  • Contact: *E-mail: fangao20056@126.com;E-mail: 1241459894@qq.com
  • Supported by:
    National Natural Science Foundation of China(32201904);Sichuan Crop Breeding Program(22ZDZX0018);Sichuan Provincial Key Research and Development Program(2021YFYZ0002)

Abstract:

Frequent occurrence of drought in winter and spring, combined with soil P deficiency limits nitrogen absorption of winter wheat in southwest wheat. This study aims to investigate the effects of straw mulching from autumn fallow and phosphorus application on root NO3- uptake dynamic potential, nitrogen uptake and utilization, chlorophyll content, and grain yield in wheat, which provides the theoretical basis for high and stable yield of wheat as well as efficient use of nutrients. The experiment was carried out at Renshou in Sichuan province from 2020 to 2022. Two factors spilt-plot design was employed with main plot of maize straw mulching (SM) and no mulching (NSM), and three phosphorus levels 0 (P0), 75 (P75), and 120 (P120) kg hm-2 were set as sub-plot. Results showed that straw mulching and phosphorus application significantly increased above-ground phosphorus accumulation. Compared with NSM, SM increased root tip NO3- net absorption rate, grain nitrogen accumulation, nitrogen transport, nitrogen assimilation, nitrogen partial productivity and grain yield by 28.2%, 8.4%, 9.0%, 41.9%, 23.3%, and 21.9%, respectively. Compared with P0, P75 and P120 increased by 35.1%-37.6%, 12.6%-19.0%, 7.1%-9.3%, 35.7%-60.5%, 17.6%-23.8%, 17.2%-23.6%, respectively. Compared with NSM, SM increased the content of chlorophyll in flag leaf at grain filling stage, thus improving grain yield. In summary, straw mulching and phosphorus application can promote NO3- absorption in root tip of wheat and chlorophyll content, significantly increase post anthesis nitrogen absorption and reserved N remobilized to developing grains, and ultimately improve grain yield. Considering the economic benefits and yield returns, it is recommended to apply 75 kg hm-2 of phosphate fertilizer with straw mulching for high yield and efficiency cultivation of wheat in southwest China.

Key words: winter wheat, straw mulch, phosphorus application, NO3- absorption in root tip, nitrogen absorption, distribution, and utilization, grain yield

Fig. 1

Air temperature and rainfall in 2020 and 2022 during growing seasons in wheat"

Table 1

Physical and chemical properties of the tested soils"

年份
Year
pH 有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
全磷
Total P
(g kg-1)
碱解氮
Available N
(mg kg-1)
速效磷
Available P
(mg kg-1)
速效钾
Available K
(mg kg-1)
2020-2021 7.75 15.36 0.95 0.73 56.29 6.18 139
2021-2022 7.88 16.11 1.08 0.84 56.56 6.67 138

Fig. 2

Straw mulching and phosphorus fertilization on NO3- absorption rate of root tips of wheat S1: straw mulching; S0: without mulch; P0: 0 kg P2O5 hm-2; P75: 75 kg P2O5 hm-2; P120: 120 kg P2O5 hm-2; M and P represent maize straw mulch and phosphorus fertilization in wheat growing season, respectively. * and ** represent significant differences between treatments at the 0.05 and 0.01 probability levels, respectively. ns: no significant difference. Different lowercase letters indicate significant differences between treatments at P < 0.05."

Table 2

Straw mulch and phosphorus fertilization on phosphorus uptake and transport of wheat from 2020-2021 (kg hm-2)"

处理
Treatment
茎秆+叶鞘
Stem and sheath
叶片
Leaf
颖壳+穗轴
Spike and glume
籽粒
Grain
花前磷素转运量
Pre-anthesis P transfer
花后磷素同化量
Post-anthesis P assimilation
SM P0 4.7±0.2 b 3.0±0.0 c 3.0±0.1 c 13.6±0.3 b 9.6±0.5 c 4.0±0.4 a
P75 5.4±0.4 a 3.4±0.1 b 7.1±0.5 a 16.1±0.6 a 12.9±0.5 ab 3.2±0.6 b
P120 5.5±0.3 a 4.8±0.1 a 7.2±0.2 a 15.8±0.9 a 13.6±0.7 a 2.2±0.4 d
NSM P0 2.4±0.1 d 1.8±0.0 d 4.6±0.2 b 9.3±0.2 c 6.6±0.3 d 2.7±0.1 c
P75 3.8±0.1 c 1.7±0.1 d 4.5±0.2 b 12.5±0.6 b 9.4±0.7 c 3.2±0.2 b
P120 3.8±0.1 c 3.5±0.1 b 5.0±0.1 b 15.3±0.3 a 12.2±0.4 b 3.2±0.7 b
F M ** ** ** ** ** ns
F-value P ** ** ** ** ** ns
M×P ns ** ** ** ** **

Fig. 3

Straw mulching and phosphorus fertilization on nitrogen accumulation in various organs of wheat at maturity stage Abbreviations are the same as those given in Fig. 2. Different lowercase letters between the same organs indicate significant differences between the treatments at P < 0.05."

Table 3

Straw mulching and phosphorus fertilization on nitrogen distribution ratio in different organs of wheat at maturity stage"

年份
Year
处理
Treatment
分配比例Distribution proportion (%)
茎秆+叶鞘
Stem and sheath
叶片
Leaf
颖壳+穗轴
Spike and glume
籽粒
Grain
2020-2021 SM P0 4.8±0.3 f 5.4±0.1 d 8.9±0.1 c 80.9±0.4 d
P75 8.5±0.1 c 6.5±0.1 b 9.2±0.1 b 75.8±0.1 b
P120 11.2±0.1 a 8.3±0.1 a 11.7±0.0 a 68.8±0.2 c
NSM P0 6.1±0.1 e 4.8±0.3 e 6.6±0.1 e 82.5±0.2 a
P75 7.1±0.0 d 6.1±0.1 c 7.1±0.0 d 79.8±0.1 a
P120 9.7±0.0 b 8.4±0.0 a 7.3±0.0 d 74.7±0.0 b
FF-value M ** ** ** **
P ** ** ** **
M×P ** ** ** **
2021-2022 SM P0 9.6±0.6 b 6.1±0.1 b 10.9±0.3 ab 73.4±0.6 d
P75 11.6±0.1 a 5.8±0.2 b 11.4±0.4 a 71.2±0.6 e
P120 12.3±0.2 a 7.2±0.4 a 11.4±0.2 a 69.1±0.6 f
NSM P0 6.5±0.1 d 4.8±0.1 c 9.9±0.3 c 78.8±0.2 a
P75 7.8±0.3 c 4.6±0.1 cd 10.8±0.5 ab 76.7±0.4 b
P120 10.1±0.5 b 4.2±0.1 c 10.4±0.3 bc 75.3±0.1 c
FF-value M ** ** ** **
P ** ** * **
M×P * ** ns ns

Table 4

Straw mulching and phosphorus fertilization on nitrogen transport and assimilation of wheat"

年份
Year
处理
Treatment
开花前营养器官贮藏氮素Pre-anthesis reserves 开花后同化氮素Post-anthesis assimilates
转运量
Translocation amount
(kg hm-2)
转运率Translocation efficiency
(%)
对籽粒贡献率Contribution efficiency to grain (%) 同化量
Assimilation amount
(kg hm-2)
对籽粒贡献率
Contribution efficiency
to grain
(%)
2020-2021 SM P0 49.2±1.2 a 77.0±1.0 b 79.5±1.8 b 12.7±1.1 bc 20.5±1.8 bc
P75 51.8±1.4 a 70.5±0.0 c 76.4±0.7 c 16.1±1.0 a 23.6±0.7 a
P120 49.3±0.1 a 62.1±0.0 d 74.2±1.0 c 17.2±0.9 a 25.8±1.0 a
NSM P0 43.8±0.1 b 79.8±0.0 a 84.2±1.4 a 8.2±0.9 d 15.8±1.4 d
P75 45.5±0.9 b 76.2±0.3 b 81.5±2.1 ab 10.3±1.2 c 18.5±2.1 c
P120 45.9±0.6 b 69.2±0.4 c 76.0±1.3 c 14.5±0.8 ab 24.0±1.3 a
F
F-value
M ** ** ** ** **
P ** ** ** ** **
M×P * ** ns ns ns
2021-2022 SM P0 41.9±1.0 cd 68.4±0.0 d 77.3±1.9 b 12.3±1.0 d 22.7±1.9 c
P75 46.4±0.7 b 64.5±0.5 e 73.1±1.0 c 17.1±1.1 b 26.9±1.0 b
P120 49.0±0.7 a 61.8±0.3 f 71.2±0.0 c 19.8±0.2 a 28.8±0.0 a
NSM P0 39.4±0.7 d 75.7±0.5 a 83.6±1.2 a 7.7±0.5 e 16.4±1.2 d
P75 43.0±0.7 c 72.3±0.5 b 78.1±1.0 b 12.1±0.5 d 21.9±1.0 c
P120 46.7±0.3 b 70.1±0.3 c 76.6±1.4 b 14.1±1.0 c 23.4±1.4 c
F
F-value
M ** ** ** ** **
P ** ** ** ** **
M×P ns ns ns ns ns

Fig. 4

Relationship between nitrogen and phosphorus accumulation in wheat **: P < 0.01."

Fig. 5

Straw mulching and phosphorus fertilization on nitrogen fertilizer partial productivity in wheat Abbreviations are the same as those given in Table 2. Different lowercase letters indicate significant differences between the treatments at P < 0.05. * and ** represent significant differences between treatments at the 0.05 and 0.01 probability levels."

Fig. 6

Straw mulching and phosphorus fertilization on chlorophyll content of flag leaf after anthesis in wheat Abbreviations are the same as those given in Fig. 2."

Fig. 7

Straw mulching and phosphorus fertilization on grain yield of wheat Abbreviations are the same as those given in Table 2. Different lowercase letters indicate significant differences between the treatments at P < 0.05. * and ** represent significant differences between treatments at the 0.05 and 0.01 probability levels."

[1] 陈松鹤, 向晓玲, 雷芳, 邹乔生, 艾代龙, 郑亭, 黄秀兰, 樊高琼. 秸秆覆盖配施氮肥条件下根际土真菌群落及其与小麦产量关系的研究. 生态学报, 2022, 42: 8751-8761.
Chen S H, Xiang X L, Lei F, Zou Q S, Ai D L, Zheng T, Huang X L, Fan G Q. Relationship between rhizosphere fungal community and wheat yield under straw mulching combined with nitrogen fertilizer. Acta Ecol Sin, 2022, 42: 8751-8761 (in Chinese with English abstract).
[2] 王健波, 严昌荣, 刘恩科, 陈保青, 张恒恒. 长期免耕覆盖对旱地冬小麦旗叶光合特性及干物质积累与转运的影响. 植物营养与肥料学报, 2015, 21: 296-305.
Wang J B, Yan C R, Liu E K, Chen B Q, Zhang H H. Effects of long-term no-tillage with straw mulch on photosynthetic characteristics of flag leaves and dry matter accumulation and translocation of winter wheat in dryland. J Plant Nutr Fert, 2015, 21: 296-305 (in Chinese with English abstract).
[3] 吴晓丽, 汤永禄, 李朝苏, 吴春, 黄钢. 秋季玉米秸秆覆盖对丘陵旱地小麦生理特性及水分利用效率的影响. 作物学报, 2015, 41: 929-937.
doi: 10.3724/SP.J.1006.2015.00929
Wu X L, Tang Y L, Li C S, Wu C, Huang G. Effects of autumn straw mulching on physiological characteristics and water use efficiency in winter wheat grown in hilly drought region. Acta Agron Sin, 2015, 41: 929-937 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00929
[4] Cao N, Wang J, Pang J, Hu W, Bai H, Zhou Z, Meng Y, Wang Y. Straw retention coupled with mineral phosphorus fertilizer for reducing phosphorus fertilizer input and improving cotton yield in coastal saline soils. Field Crops Res, 2021, 274: 108309.
doi: 10.1016/j.fcr.2021.108309
[5] Yang Y H, Ding J L, Zhang Y H, Wu J C, Zhang J M, Pan X Y, Gao C M, Wang Y, He F. Effects of tillage and mulching measures on soil moisture and temperature, photosynthetic characteristics and yield of winter wheat. Agric Water Manag, 2018, 201: 299-308.
doi: 10.1016/j.agwat.2017.11.003
[6] Zhang Y Q, Wang J D, Gong S H, Xu D, Mo Y, Zhang B Z. Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts. Agric Water Manag, 2021, 249: 106809.
doi: 10.1016/j.agwat.2021.106809
[7] Zhou T, Xu K W, Liu W G, Zhang C C, Chen Y X, Yang W Y. More aboveground biomass, phosphorus accumulation and remobilization contributed to high productivity of intercropping wheat. Int J Plant Prod, 2017, 11: 407-424.
[8] Liu D. Root developmental responses to phosphorus nutrition. J Integr Plant Biol, 2021, 63: 1065-1090.
doi: 10.1111/jipb.13090
[9] Adnan M, Shah Z, Fahad S, Arif M, Alam M, Khan I A, Mian I A, Basir A, Ullah H, Arshad M, Rahman I-U, Saud S, Ihsan M Z, Jamal Y, Amanullah, Hammad H M, Nasim W. Phosphate- solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep, 2017, 7: 16131.
doi: 10.1038/s41598-017-16537-5
[10] Wang C, Tian B L, Yu Z Z, Ding J Q. Effect of different combinations of phosphorus and nitrogen fertilization on arbuscular mycorrhizal fungi and aphids in wheat. Insects, 2020, 11: 365.
doi: 10.3390/insects11060365
[11] Chen Y F, Wang K, Chen H L, Yang H K, Zheng T, Huang X L, Fan G Q. Simultaneously genetic selection of wheat yield and grain protein quality in rice-wheat and soybean-wheat cropping systems through critical nitrogen efficiency-related traits. Front Plant Sci, 2022, 13: 899387.
doi: 10.3389/fpls.2022.899387
[12] 杨永辉, 吴普特, 武继承, 赵世伟, 黄占斌, 何方. 冬小麦光合特征及叶绿素含量对保水剂和氮肥的响应. 应用生态学报, 2011, 22: 79-85.
Yang Y H, Wu P T, Wu X C, Zhao S W, Huang Z B, He F. Responses of winter wheat photosynthetic characteristics and chlorophyll content to water retaining agent and N fertilizer. Chin J Appl Ecol, 2011, 22: 79-85 (in Chinese with English abstract).
[13] Yang H, Gu X T, Ding M Q, Lu W P, Lu D L. Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize. J Int Agric, 2020, 19: 78-88.
[14] Mussarat M, Shair M, Muhammad D, Mian I A, Khan S, Adnan M, Fahad S, Dessoky E S, El Sabagh A, Zia A, Khan B, Shahzad H, Anwar S, Ilahi H, Ahmad M, Bibi H, Adnan M, Khan F. Accentuating the role of nitrogen to phosphorus ratio on the growth and yield of wheat crop. Sustainability, 2021, 13: 2253.
doi: 10.3390/su13042253
[15] Yan W, Zhong Y, Shangguan Z. The relationships and sensibility of wheat C: N: P stoichiometry and water use efficiency under nitrogen fertilization. Plant Soil Environ, 2015, 61: 201-207.
doi: 10.17221/28/2015-PSE
[16] Zhang J G, Yan J W, Zuo W Q, Zhang P P, Zhang W F. Effects of straw return and fertilization on root growth and nutrient utilization efficiency of cotton in an arid area. Crop Past Sci, 2021, 72: 528-540.
doi: 10.1071/CP20259
[17] Ma B L, Zheng Z M. Relationship between plant nitrogen and phosphorus accumulations in a canola crop as affected by nitrogen management under ample phosphorus supply conditions. Can J Plant Sci, 2016, 96: 853-866.
doi: 10.1139/cjps-2015-0374
[18] 邢丹, 李淑文, 夏博, 文宏达. 磷肥施用对冬小麦产量及土壤氮素利用的影响. 应用生态学报, 2015, 26: 437-442.
pmid: 26094458
Xing D, Li S W, Xia B, Wen H D. Effects of phosphorus fertilization on yield of winter wheat and utilization of soil nitrogen. Chin J Appl Ecol, 2015, 26: 437-442 (in Chinese with English abstract).
pmid: 26094458
[19] Chai X, Wang X, Pi Y, Wu T, Zhang X, Xu X, Han Z, Wang Y. Nitrate transporter MdNRT2.4 interacts with rhizosphere bacteria to enhance nitrate uptake in apple rootstocks. J Exp Bot, 2022, 73: 6490-6504.
doi: 10.1093/jxb/erac301 pmid: 35792505
[20] Wang C, Du Y M, Zhang J X, Ren J T, He P, Wei T, Xie W, Yang H K, Zhang J X. Effects of exposure of the leaf abaxial surface to direct solar radiation on the leaf anatomical traits and photosynthesis of soybean (Glycine max L.) in dryland farming systems. Photosynthetica, 2021, 59: 496-507.
doi: 10.32615/ps.2021.038
[21] 陈嘉军, 林祥, 谷淑波, 王威雁, 张保军, 朱俊科, 王东. 花后叶面喷施尿素对冬小麦氮素吸收利用和产量的影响. 作物学报, 2023, 49: 277-285.
doi: 10.3724/SP.J.1006.2023.11116
Chen J J, Lin X, Gu S B, Wang W Y, Zhang B J, Zhu J K, Wang D. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat. Acta Agron Sin, 2023, 49: 277-285 (in Chinese with English abstract).
[22] 李法计, 徐学欣, 肖永贵, 何中虎, 王志敏. 不同氮素处理对中麦175和京冬17产量相关性状和氮素利用效率的影响. 作物学报, 2016, 46: 1853-1863.
Li F J, Xu X X, Xiao Y G, He Z H, Wang Z M. Effect of nitrogen on yield related traits and nitrogen utilization efficiency in Zhongmai 175 and Jingdong 17. Acta Agron Sin, 2016, 46: 1853-1863 (in Chinese with English abstract).
[23] 岳俊芹, 张德奇, 李向东, 王汉芳, 邵运辉, 方保停, 吕风荣, 马富举, 秦峰, 杨程. 氮钾配施下施磷对冬小麦群体发育特性、冠层光截获及产量的影响. 中国农业科学, 2016, 49: 840-851.
doi: 10.3864/j.issn.0578-1752.2016.05.004
Yue J Q, Zhang D Q, Li X D, Wang H F, Shao Y H, Fang B T, Lyu F R, Ma F J, Qin F, Yang C. Effects of phosphorus on winter wheat population characteristics, canopy intercepted photosynthetically active radiation and yield under certain nitrogen- potassium rates. Sci Agric Sin, 2016, 49: 840-851 (in Chinese with English abstract).
[24] 王旭东, 于振文, 石玉, 王小燕. 磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响. 作物学报, 2006, 32: 339-344.
Wang X D, Yu Z W, Shi Y, Wang X Y. Effects of phosphorus on activities of enzymes related to nitrogen metabolism in flag leaves and protein contents in grains of wheat. Acta Agron Sin, 2006, 32: 339-344 (in Chinese with English abstract).
[25] 高仁才, 陈松鹤, 马宏亮, 莫飘, 柳伟伟, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与减氮优化根系分布提高冬小麦产量及水氮利用效率. 中国农业科学, 2022, 55: 2709-2725.
doi: 10.3864/j.issn.0578-1752.2022.14.003
Gao R C, Chen S H, Ma H L, Mo P, Liu W W, Xiao Y, Zhang X, Fan G Q. Straw mulching from autumn fallow and reducing nitrogen application improved grain yield, water and nitrogen use efficiencies of winter wheat by optimizing root distribution. Sci Agric Sin, 2022, 55: 2709-2725 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.14.003
[26] 郑彩霞, 张富仓, 张志亮, 康银红. 限量灌水和施磷对冬小麦养分吸收及利用的影响. 干旱地区农业研究, 2014, 32(3): 102-107.
Zheng C X, Zhang F C, Zhang Z L, Kang Y H. Effect of limited irrigation and phosphorus fertilizer to nutrition absorption and utilization of winter wheat. Agric Res Arid Areas, 2014, 32(3): 102-107 (in Chinese with English abstract).
[27] 赵亚丽, 郭海斌, 薛志伟, 穆心愿, 李潮海. 耕作方式与秸秆还田对冬小麦-夏玉米轮作系统中干物质生产和水分利用效率的影响. 作物学报, 2014, 40: 1797-1807.
doi: 10.3724/SP.J.1006.2014.01797
Zhao Y L, Guo H B, Xue Z W, Mu X Y, Li C H. Effects of tillage and straw returning on biomass and water use efficiency in a winter wheat and summer maize rotation system. Acta Agron Sin, 2014, 40: 1797-1807 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.01797
[28] 张素瑜, 王和洲, 杨明达, 王静丽, 贺德先. 水分与玉米秸秆还田对小麦根系生长和水分利用效率的影响. 中国农业科学, 2016, 49: 2484-2496.
doi: 10.3864/j.issn.0578-1752.2016.13.004
Zhang S Y, Wang H Z, Yang M D, Wang J L, He D X. Influence of returning corn stalks to field under different soil moisture contents on root growth and water use efficiency of wheat (Triticum aestivum L.). Sci Agric Sin, 2016, 49: 2484-2496 (in Chinese with English abstract).
[29] Zhou B, Serret M, Elazab A, Pie J B, Araus J, Aranjuelo I, Sanz-Saez A. Wheat ear carbon assimilation and nitrogen remobilization contribute significantly to grain yield. J Integr Plant Biol, 2016, 58: 914-926.
doi: 10.1111/jipb.12478
[30] 陈梦楠, 高志强, 孙敏, 任爱霞, 邓妍. 休闲期耕作配施磷肥对旱地小麦氮素吸收与转运的影响. 麦类作物学报, 2015, 35: 1569-1575.
Chen M N, Gao Z Q, Sun M, Ren A X, Deng Y. Effect of phosphorus application under tillage in fallow period on nitrogen absorption and translocation in dryland wheat. J Triticeae Crops, 2015, 35: 1569-1575 (in Chinese with English abstract).
[31] 陈金, 唐玉海, 尹燕枰, 庞党伟, 崔正勇, 郑孟静, 彭佃亮, 杨卫兵, 杨东清, 李艳霞, 王振林, 李勇. 秸秆还田条件下适量施氮对冬小麦氮素利用及产量的影响. 作物学报, 2015, 41: 160-167.
doi: 10.3724/SP.J.1006.2015.00160
Chen J, Tang Y H, Yin Y P, Pang D W, Cui Z R, Zheng M J, Peng D L, Yang W B, Yang D Q, Li Y X, Wang Z L, Li Y. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat. Acta Agron Sin, 2015, 41: 160-167 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00160
[32] Yang H, Chen R, Chen Y, Li H, Wei T, Xie W, Fan G. Agronomic and physiological traits associated with genetic improvement of phosphorus use efficiency of wheat grown in a purple lithomorphic soil. Crop J, 2022, 10: 1151-1164.
doi: 10.1016/j.cj.2021.11.010
[33] Wierzbowska J, Bowszys T. Influence of growth regulators and phosphorus fertilization rates on nitrogen balance in spring wheat. J Element, 2008, 13: 423-432.
[34] Szczepaniak W, Potarzycki J. Impact of increasing nitrogen rates on the course of the nitrogen critical concentration curve during the vegetative growth of winter wheat. J Element, 2014, 19: 549-565.
[35] Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Rao R C N, Wright G C, Patanothai A. Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci, 2008, 194: 113-125.
doi: 10.1111/jac.2008.194.issue-2
[36] Zangani E, Afsahi K, Shekari F, Mac Sweeney E, Mastinu A. Nitrogen and phosphorus addition to soil improves seed yield, foliar stomatal conductance, and the photosynthetic response of rapeseed (Brassica napus L.). Agric (Basel), 2021, 11: 483.
[37] 武文明, 陈洪俭, 李金才, 魏凤珍, 王世济, 周向红. 氮肥运筹对孕穗期受渍冬小麦旗叶叶绿素荧光与籽粒灌浆特性的影响. 作物学报, 2012, 38: 1088-1096.
Wu W M, Chen H J, Li J C, Wei F Z, Wang S J, Zhou X H. Effects of nitrogen fertilization on chlorophyll fluorescence parameters of flag leaf and grain filling in winter wheat suffered waterlogging at booting stage. Acta Agric Sin, 2012, 38: 1088-1096 (in Chinese with English abstract).
[38] 徐婷, 邱悦, 魏波, 李诚, 李春艳, 朱长安. 不同水分条件下磷肥运筹对小麦旗叶和穗部叶绿素及核酸含量的影响. 植物营养与肥料学报, 2021, 27: 654-664.
Xu T, Qiu Y, Wei B, Li C, Li C Y, Zhu C A. Effect of phosphorus management on chlorophyll and the nucleic acid contents in flag leaf and ear parts of wheat under different water conditions. J Plant Nutr Fert, 2021, 27: 654-664 (in Chinese with English abstract).
[39] 岳俊芹, 李向东, 邵运辉, 方保停, 王汉芳, 张素瑜, 张德奇, 秦峰, 时艳华, 杨程, 杜思梦. 氮钾固定配施下施磷量对小麦光合、干物质转运及产量形成的影响. 麦类作物学报, 2020, 40: 473-481.
Yue J Q, Li X D, Shao Y H, Fang B T, Wang H F, Zhang S Y, Zhang D Q, Qin F, Shi Y H, Yang C, Du S M. Effect of different phosphorus levels under same nitrogen-potassium ratios on photosynthetic, dry matter transportation and yield of winter wheat. J Triticeae Crops, 2020, 40: 473-481 (in Chinese with English abstract).
[40] 吕广德, 王超, 靳雪梅, 徐加利, 王瑞霞, 孙宪印, 钱兆国, 吴科. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31: 2593-2603.
doi: 10.13287/j.1001-9332.202008.029
Lyu G D, Wang C, Jin X M, Xu J L, Wang R X, Sun X Y, Qian Z G, Wu K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat. Chin J Appl Ecol, 2020, 31: 2593-2603 (in Chinese with English abstract).
[1] ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733.
[2] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[3] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[4] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[5] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[6] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[7] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[8] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[9] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[10] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[11] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[12] WANG Xue, GU Shu-Bo, LIN Xiang, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of supplemental irrigation with micro-sprinkling hoses and water and fertilizer integration on yield and water and nitrogen use efficiency in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(3): 784-794.
[13] GAO Chun-Hua, FENG Bo, LI Guo-Fang, LI Zong-Xin, LI Sheng-Dong, CAO Fang, CI Wen-Liang, ZHAO Hai-Jun. Effects of nitrogen application rate on starch synthesis in winter wheat under high temperature stress after anthesis [J]. Acta Agronomica Sinica, 2023, 49(3): 821-832.
[14] MENG Yu, TIAN Wen-Zhong, WEN Peng-Fei, DING Zhi-Qiang, ZHANG Xue-Pin, HE Li, DUAN Jian-Zhao, LIU Wan-Dai, GUO Tian-Cai, FENG Wei. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages [J]. Acta Agronomica Sinica, 2023, 49(2): 570-582.
[15] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .