Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 425-439.doi: 10.3724/SP.J.1006.2024.32016

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540

XU Ran1,2,**(), YANG Wen-Ye3,**, ZHU Jun-Lin1, CHEN Song1, XU Chun-Mei1, LIU Yuan-Hui1, ZHANG Xiu-Fu1, WANG Dan-Ying1, CHU Guang1,*()   

  1. 1State Key Laboratory of Rice Biology and breeding, China National Rice Research Institute, Hangzhou 311400, Zhejiang, China
    2Xiangyang Academy of Agricultural Science, Xiangyang 441057, Hubei, China
    3Hangzhou Agrotechnology Extension Center, Hangzhou 310000, Zhejiang, China
  • Received:2023-04-26 Accepted:2023-09-13 Online:2024-02-12 Published:2023-10-07
  • Contact: *E-mail: chuguang@caas.cn
  • About author:**Contributed equally to this work
  • Supported by:
    Key Research and Development Program of Zhejiang Province(2022C02034);National Natural Science Foundation of China(32101825);Zhejiang Ten Thousand Talents Plan Science and Technology Innovation Leading Talent Project(2020R52035);National Rice Industry Technology System(CARS-01)

Abstract:

The objective of this study is to understand how different irrigation regimes affected on grain yield and water use efficiency (WUE) of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. In the present study, Yongyou 1540 was used and three irrigation regimes were set up during the whole growth period, including continuous flooding (CF), alternate wetting and moderate drying (AWMD), and alternate wetting and severe drying (AWSD). The results showed that compared with CF, both AWMD and AWSD significantly improved WUE, with the increase of 22.6%-25.6% and 18.2%-23.1%, respectively. AWMD significantly increased yield by 8.6%-10.0%, while AWSD significantly decreased yield by 6.0%-7.5%. Compared with CF, AWMD significantly reduced the number of tillers, shoot dry weight and leaf area index (LAI) at the jointing stage, and reduced leaf area duration (LAD) from transplanting to heading, and the crop growth rate (CGR) from transplanting to jointing. However, AWMD significantly increased the percentage of productive tillers, CGR from jointing to heading, root length density, deep root ratio, root to shoot ratio, specific root length, root total absorbing area, and activity absorbing area during the whole growth period, and increased the net photosynthetic rate of flag leaves, root oxidation activity, and Z+ZR content in both roots and leaves, key enzymes involved in sucrose-starch metabolism in grains at two soil re-watering stages at grain filling stage. In conclusion, these results indicated that AWMD could increase both grain yield and WUE, promote root and shoot growth, and improve plant physiological activity at grain filling stage, and achieve high yield and high WUE, which was the best irrigation regime in this study.

Key words: japonica-indica hybrid rice, alternate wetting and soil drying, grain yield, water use efficiency, root morphological and physiological traits

Table 1

Soil physical and chemical properties in the experiment field"

年度
Year
pH 全氮含量
Total N content
(g kg-1)
有机质含量
Organic matter content (g kg-1)
速效养分含量Available nutrients content (mg kg-1)
氮N 磷P 钾K
2021 6.02 2.55 57.2 211 21.3 65.7
2022 6.14 2.52 56.7 204 20.8 63.6

Table 2

Monthly total precipitation and sunshine hours, and averages temperatures during the rice growing seasons"

年份/气象条件
Year/Meteorological condition
6月
June
7月
July
8月
August
9月
September
10
October
2021
降雨量Precipitation (mm) 221 317 315 125 68.6
日照时长Sunshine (h) 141 246 254 237 196
平均气温Temperature (°C) 26.6 29.3 28.6 26.8 20.0
2022
降雨量Precipitation (mm) 73.8 102 70.8 67.4 41.1
日照时长Sunshine (h) 145 264 266 160 158
平均气温Temperature (°C) 27.4 31.2 31.9 24.6 18.7

Table 3

Effects of different irrigation regimes on grain yield and its yield components of japonica-indica hybrid rice cultivar Yongyou 1540"

年度/处理
Year/treatment
产量
Grain yield
(t hm-2)
穗数
No. of panicles
(×104 hm-2)
每穗粒数
Spikelets per
panicle
总颖花量
Total spikelets
(×106 hm-2)
结实率
Filled grains
(%)
粒重
Grain weight
(mg)
2021
CF 11.9 b 215 a 312 b 6.58 b 78.1 b 22.8 a
AWMD 13.1 a 214 a 325 a 6.96 a 83.2 a 22.7 a
AWSD 11.0 c 204 b 300 c 6.12 c 78.4 b 22.9 a
2022
CF 11.6 b 210 a 301 b 6.32 b 80.2 b 22.9 a
AWMD 12.6 a 208 ab 317 a 6.59 a 84.1 a 22.8 a
AWSD 10.9 c 204 b 287 c 5.85 c 81.4 b 22.9 a
方差分析 ANOVA
年份 Year (Y) NS NS NS NS NS NS
处理 Treatment (T) ** ** ** ** ** NS
年份×处理 Y × T NS NS NS NS NS NS

Fig. 1

Effects of different irrigation regimes on the amount of irrigation water (A-B) and WUE (C-D) of japonica-indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying. Different lowercase letters mean significant difference at the 0.05 probability level."

Table 4

Effects of different irrigation regimes on the number of tillers and percentage of productive tillers of japonica-indica hybrid rice cultivar Yongyou 1540"

年度/处理
Year/treatment
茎蘖数 Number of tillers and mail stems per m2 茎蘖成穗率
Productive tillers (%)
拔节期Jointing 齐穗期Heading 成熟期Maturity
2021
CF 271 a 222 a 215 a 79.3 c
AWMD 256 a 225 a 214 a 83.6 b
AWSD 237 b 210 b 204 b 86.1 a
2022
CF 267 a 220 a 210 a 78.7 c
AWMD 251 b 219 a 208 a 82.9 b
AWSD 236 c 207 b 204 b 86.4 a
方差分析 ANOVA
年份 Year (Y) NS NS NS NS
处理 Treatment (T) ** ** ** **
年份×处理 Y × T NS NS NS NS

Table 5

Effects of different irrigation regimes on leaf area index (LAI) of japonica-indica hybrid rice cultivar Yongyou 1540"

年度/处理
Year/treatment
拔节期
Jointing
齐穗期 Heading 成熟期
Maturity
总叶面积指数
Total leaf area index
有效叶面积指数
Productive tillers plus main stems
2021
CF 4.25 a 8.47 a 6.52 a 2.15 b
AWMD 3.78 b 7.85 b 6.45 a 2.75 a
AWSD 3.26 c 6.15 c 5.22 b 1.59 c
2022
CF 4.62 a 8.55 a 6.71 a 2.32 b
AWMD 4.05 b 7.55 b 6.57 a 2.85 a
AWSD 3.24 c 6.24 c 5.19 b 1.45 c
方差分析 ANOVA
年份 Year (Y) NS NS NS NS
处理 Treatment (T) ** ** ** **
年份×处理 Y × T NS NS NS NS

Fig. 2

Effects of different irrigation regimes on shoot dry weight (A, B), root dry weight (C, D), and root-shoot ratio (E, F) of japonica-indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying; JT: jointing stage; HD: heading stage; MA: maturity stage; NS: non-significant at P < 0.05. Different lowercase letters mean significant difference at the 0.05 probability level."

Fig. 3

Effects of different irrigation regimes on LAD (A, B) and CGR (C, D) of japonica-indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying; TR-JT: transplanting- jointing stage; JT-HD: jointing stage-heading stage; HD-MA: heading stage-maturity stage. Different lowercase letters mean significant difference at the 0.05 probability level."

Fig. 4

Effects of different irrigation regimes on deep root distribution (A, B), root length density (C, D), and specific root length (E, F) of japonica-indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying; JT: jointing stage; HD: heading stage; MA: maturity stage. Different lowercase letters mean significant difference at the 0.05 probability level."

Fig. 5

Effects of different irrigation regimes on root total absorbing surface area (A, B) and root active absorbing surface area (C, D) of japonica indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying; JT: jointing stage; HD: heading stage; MG: the mid-grain filling stage. Different lowercase letters mean significant difference at the 0.05 probability level."

Fig. 6

Effects of different irrigation regimes on root oxidation activity (A, B) and flag leaf photosynthetic rate (C, D) of japonica-indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying; D1 and D2: soil drying period at grain filling stage; W1 and W2: re-watering period at grain filling stage. Different lowercase letters mean significant difference at the 0.05 probability level."

Fig. 7

Effects of different irrigation regimes on concentration of Z+ZR in roots (A, B) and concentration of Z+ZR in leaves (C, D) of japonica-indica hybrid rice cultivar Yongyou 1540 CF: continuous flooding; AWMD: alternate wetting and moderate drying; AWSD: alternate wetting and severe drying; D1 and D2: soil drying period at grain filling stage; W1 and W2: re-watering period at grain filling stage. Different lowercase letters mean significant difference at the 0.05 probability level."

Table 6

Effects of different irrigation regimes on the activities of SuSase and AGPase in grains of japonica-indica hybrid rice cultivar Yongyou 1540"

年度
Year
处理
Treatment
蔗糖合酶
SuSase (µmol g-1 DW min-1)
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase (µmol g-1 DW min-1)
D1 W1 D2 W2 D1 W1 D2 W2
2021 CF 42.3 a 42.0 b 26.9 a 27.0 b 29.1 a 28.4 b 16.6 a 17.3 b
AWMD 42.7 a 48.0 a 27.2 a 32.8 a 28.3 a 35.2 a 16.3 a 23.1 a
AWSD 35.8 b 41.2 b 22.3 b 27.8 b 22.4 b 28.0 b 13.2 b 16.9 b
2022 CF 41.8 a 41.2 b 28.7 a 27.8 b 27.6 a 26.6 b 17.1 a 16.4 b
AWMD 41.7 a 50.3 a 29.1 a 31.5 a 28.1 a 33.7 a 17.4 a 21.9 a
AWSD 34.8 b 40.5 b 22.0 b 26.3 b 21.5 b 26.2 b 12.3 b 16.9 b
方差分析 ANOVA
年份 Year (Y) NS NS NS NS NS NS NS NS
处理 Treatment (T) ** ** ** ** ** ** ** **
年份×处理 Y × T NS NS NS NS NS NS NS NS

Table 7

Correlation coefficients of physiological traits in rice shoot and root"

指标
Trait
叶片中Z+ZR含量
Z+ZR content in leaves
剑叶净光合速率
Flag leaf photosynthetic rate
蔗糖合酶
SuSase
腺苷二磷酸葡萄糖焦磷酸化酶
AGPase
2021
根系氧化力 ROA 0.72** 0.75** 0.81** 0.80**
根系中Z+ZR含量 Z+ZR in roots 0.80** 0.83** 0.84** 0.87**
2022
根系氧化力 ROA 0.78** 0.74** 0.79** 0.81**
根系中Z+ZR含量 Z+ZR in roots 0.81** 0.76** 0.75** 0.76**
[1] 张洪程, 胡雅杰, 杨建昌, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 郭保卫, 邢志鹏, 胡群. 中国特色水稻栽培学发展与展望. 中国农业科学, 2021, 54: 1301-1321.
doi: 10.3864/j.issn.0578-1752.2021.07.001
Zhang H C, Hu Y J, Yang J C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Guo B W, Xing Z P, Hu Q. Development and prospect of rice cultivation in China. Sci Agric Sin, 2021, 54: 1301-1321 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.001
[2] 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响. 中国水稻科学, 2019, 33: 293-302.
doi: 10.16819/j.1001-7216.2019.8116
Li T T, Feng Y F, Zhu A, Huang J, Wang H, Li S Y, Liu K, Peng R M, Zhang. H L, Liu L J. Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots. Chin J Rice Sci, 2019, 33: 293-302 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8116
[3] 吴汉, 柯健, 何海兵, 尤翠翠, 时光宇, 武立权. 不同间歇时间灌溉对水稻产量及水分利用效率的影响. 灌溉排水学报, 2020, 39: 37-44.
Wu H, Ke J, He H B, You C C, Shi G Y, Wu L Q. Experimental study on the effects of different intermittent irrigations on yield and water use efficiency of rice. J Irrig Drain, 2020, 39: 37-44 (in Chinese with English abstract).
[4] 李俊峰, 杨建昌. 水分与氮素及其互作对水稻产量和水肥利用效率的影响研究进展. 中国水稻科学, 2017, 31: 327-334.
doi: 10.16819/j.1001-7216.2017.6078 327
Li J F, Yang J C. Research advances in the effects of water, nitrogen and their interaction on the yield, water and nitrogen use efficiencies of rice. Chin J Rice Sci, 2017, 31: 327-334 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6078 327
[5] Zhang Y N, Liu M J, Saiz G, Dannenmann M, Guo L, Tao Y Y, Shi J C, Zuo Q, Butterbach K, Li G Y, Lin S. Enhancement of root systems improves productivity and sustainability in water saving ground cover rice production system. Field Crops Res, 2017, 213: 186-193.
doi: 10.1016/j.fcr.2017.08.008
[6] Liang K M, Zhong X H, Huang R R, Lampayan R M, Pan J F, Tian K, Liu Y. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric Water Manage, 2016, 163: 319-331.
doi: 10.1016/j.agwat.2015.10.015
[7] Zhang Y, Yu J, Tai A P K, Feng J F, Li Z J, Zhu X C, Chen J, Zhang J, Song Z W, Deng A X, Lal R, Zhang W J. Contribution of rice variety renewal and agronomic innovations to yield improvement and greenhouse gas mitigation in China. Enviro Res Lett, 2019, 14: 114020.
[8] Yao F X, Huang J L, Cui K H, Nie L X, Xiang J, Liu X J, Wu W, Chen M X, Peng S B. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res, 2011, 126: 16-22.
doi: 10.1016/j.fcr.2011.09.018
[9] 林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49: 207-218.
doi: 10.3864/j.issn.0578-1752.2016.02.002
Lin J R, Song X W, Wu M G, Cheng S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Sci Agric Sin, 2016, 49: 207-218 (in Chinese with English abstract).
[10] Zhang G Q. Prospects of utilization of inter-subspecific heterosis between indica and japonica rice. J Integr Agric, 2020, 19: 1-10.
doi: 10.1016/S2095-3119(19)62843-1
[11] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm-2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149-2159.
doi: 10.3724/SP.J.1006.2014.02149
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t hm-2). Acta Agron Sin, 2014, 40: 2149-2159 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.02149
[12] 胡雅杰, 朱大伟, 钱海军, 曹伟伟, 邢志鹏, 张洪程, 周有炎, 陈厚存, 汪洪洋, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 籼粳杂交稻甬优 2640 钵苗机插超高产群体若干特征探讨. 作物学报, 2014, 40: 2016-2027.
doi: 10.3724/SP.J.1006.2014.02016
Hu Y J, Zhu D W, Qian H J, Cao W W, Xing Z P, Zhang H C, Wei H Y, Zhou Y Y, Chen H C, Wang H Y, Dai Q G, Huo Z Y, Xu K, Guo B W. Some characteristics of mechanically transplanted pot seedlings in super high yielding population of indica-japonica hybrid rice Yongyou 2640. Acta Agron Sin, 2014, 40: 2016-2027 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.02016
[13] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[14] Wei H H, Meng T Y, Li C, Xu K, Huo Z Y, Wei H Y, Guo B W, Zhang H C, Dai Q G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res, 2017, 204: 101-109.
doi: 10.1016/j.fcr.2017.01.001
[15] Wei H Y, Zhang H C, Blumwald E, Li H L, Cheng J Q, Dai Q G, Huo Z Y, Xu M, Guo B W. Different characteristics of high yield formation between inbred japonica super rice and inter-sub- specific hybrid super rice. Field Crops Res, 2016, 198: 179-187.
doi: 10.1016/j.fcr.2016.09.009
[16] Meng T Y, Wei H H, Li X Y, Dai Q G, Huo Z Y. A better root morpho-physiology after heading contributing to yield superiority of japonica/indica hybrid rice. Field Crops Res, 2018, 228: 135-146.
doi: 10.1016/j.fcr.2018.08.024
[17] 周磊, 刘秋员, 田晋钰, 朱梦华, 程爽, 车阳, 王志杰, 邢志鹏, 胡雅杰, 刘国栋, 魏海燕, 张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异. 作物学报, 2020, 46: 772-786.
doi: 10.3724/SP.J.1006.2020.92051
Zhou L, Liu Q Y, Tian J Y, Zhu M H, Cheng S, Che Y, Wang Z J, Xing Z P, Hu Y J, Liu G D, Wei H Y, Zhang H C. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series. Acta Agron Sin, 2020, 46: 772-786 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.92051
[18] Chu G, Xu R, Chen S, Xu C M, Liu Y H, Abliz B, Zhang X F, Wang D Y. Root morphological-physiological traits for japonica/indica hybrid rice with better yield performance under low N conditions. Food Energy Security, 2022, 11: e355.
doi: 10.1002/fes3.v11.2
[19] 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英, 褚光. 施氮量对籼粳杂交稻甬优1540产量和氮肥利用效率的影响及其机制. 作物学报, 2023, 49: 1630-1642.
doi: 10.3724/SP.J.1006.2023.22040
Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y, Chu G. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases. Acta Agron Sin, 2023, 49: 1630-1642 (in Chinese with English abstract).
[20] 朱安, 高捷, 黄健, 汪浩, 陈云, 刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展. 作物杂志, 2020, (2): 1-8.
Zhu A, Huang J, Huang J, Wang H, Chen Y, Liu L J. Advances in morphology and physiology of root and their relationships with grain quality in rice. Crops, 2020, (2): 1-8 (in Chinese with English abstract).
[21] 陈云, 刘昆, 李婷婷, 李思宇, 李国明, 张伟杨, 张耗, 顾骏飞, 刘立军, 杨建昌. 结实期干湿交替灌溉对水稻根系、产量和土壤的影响. 中国水稻科学, 2022, 36: 269-277.
doi: 10.16819/j.1001-7216.2022.210309
Chen Y, Liu K, Li T T, Li S Y, Li G M, Zhang W Y, Zhang H, Gu J F, Liu L J, Yang J C. Effects of alternate wetting and moderate soil drying irrigation on root traits, grain yield and soil properties in rice, Chin J Rice Sci, 2022, 36: 269-277 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2022.210309
[22] 褚光, 徐冉, 陈松, 徐春梅, 王丹英, 章秀福. 干湿交替灌溉对籼粳杂交稻产量与水分利用效率的影响及其生理基础. 中国农业科学, 2021, 54: 1499-1511.
doi: 10.3864/j.issn.0578-1752.2021.07.014
Chu G, Xu R, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of alternate wetting and soil drying on the grain yield and water use efficiency of indica-japonica hybrid rice and its physiological bases. Sci Agric Sin, 2021, 54: 1499-1511 (in Chinese with English abstract).
[23] 张志良, 瞿伟菁. 植物生理学实验指导. 北京: 高等教育出版社, 2003. pp 38-39.
Zhang Z L, Qu W J. Plant Physiology Test Guide. Beijing: Higher Education Press, 2003. pp 38-39 (in Chinese).
[24] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 162: 108-119.
doi: 10.1016/j.fcr.2013.11.006
[25] Pan X Q, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high performance liquid chromatography-mass spectrometry. Nat Prot, 2010, 5: 986-992.
doi: 10.1038/nprot.2010.37
[26] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9
[27] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118
[28] 赵喜辉, 李雨阳, 郝威名, 江孟孟, 徐国伟. 干湿交替灌溉与施磷量耦合对水稻根系生长、产量与磷肥利用的影响. 植物生理学报, 2023, 59: 641-652.
Zhao X H, Li Y Y, Hao W M, Jiang M M, Xu G W. Effect of alternate wetting and drying irrigation and phosphorus rates interaction on rice root system, grain yield and phosphorus utilization, Plant Physiol J, 2023, 59: 641-652 (in Chinese with English abstract).
[29] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[30] Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002
[31] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01026
[32] 侯丹平, 谭金松, 毕庆宇, 张安宁, 刘毅, 王飞名, 刘国兰, 余新桥, 毕俊国, 罗利军. 水分胁迫对节水抗旱稻产量形成和根系形态生理特性的影响. 中国水稻科学, 2021, 35: 27-37.
doi: 10.16819/j.1001-7216.2021.0507
Hou D P, Tan J S, Bi Q Y, Zhang A N, Liu Y, Wang F M, Liu G L, Yu X Q, Bi J G, Luo L J. Effects of water stress on yield formation and root morphological and physiological characteristics of water-saving and drought-resistant rice. Chin J Rice Sci, 2021, 35: 27-37 (in Chinese with English abstract).
[33] Zhou Q, Ju C X, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric, 2017, 16: 1028-1043.
doi: 10.1016/S2095-3119(16)61506-X
[34] Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61: 3177-3189.
doi: 10.1093/jxb/erq112 pmid: 20421195
[35] Boyer J S, Westgate M E. Grain yields with limited water. J Exp Bot, 2004, 55: 2385-2394.
pmid: 15286147
[36] 刘立军, 周沈琪, 刘昆, 张伟杨, 杨建昌. 水稻大穗形成及其调控的研究进展. 作物学报, 2023, 49: 585-596.
doi: 10.3724/SP.J.1006.2023.22035
Liu L J, Zhou S Q, Liu K, Zhang W Y, Yang J C. Research progress on the formation of large panicles in rice and its regulation. Acta Agron Sin, 2023, 49: 585-596 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22035
[37] Yang J C, Zhang J H, Liu K, Wang Z Q, Liu L J. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. J Plant Growth Regul, 2007, 26: 318-328.
doi: 10.1007/s00344-007-9013-8
[38] González-Navarro O E, Griffiths S, Molero G, Reynolds M P, Slafer G A. Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Res, 2015, 172: 21-31.
doi: 10.1016/j.fcr.2014.12.001
[39] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用. 作物学报, 2021, 47: 894-903.
doi: 10.3724/SP.J.1006.2021.02048
Yao J Y, Yu J X, Wang Z Q, Liu L J, Zhou J, Zhang W Y, Yang J C. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice. Acta Agron Sin, 2021, 47: 894-903 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02048
[40] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63: 2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63: 2932-2943 (in Chinese with English abstract).
doi: 10.1360/N972018-00577
[41] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-59.
doi: 10.1016/j.fcr.2015.02.007
[42] Chu G, Chen S, Xu C M, Wang D Y, Zhang X F. Agronomic and physiological performance of indica/japonica hybrid rice cultivar under low nitrogen conditions. Field Crops Res, 2019, 243: 107625.
doi: 10.1016/j.fcr.2019.107625
[43] Chen M, Chen G, Di D W, Kronzucker H J, Shi W M. Higher nitrogen use efficiency (NUE) in hybrid “super rice” links to improved morphological and physiological traits in seedling roots. J Plant Physiol, 2020, 251: 153191.
doi: 10.1016/j.jplph.2020.153191
[44] Liu K, Chen Y, Li S Y, Wang W L, Zhang W Y, Zhang H, Gu J F, Yang J C, Liu L J. Differing responses of root morphology and physiology to nitrogen application rates and their relationships with grain yield in rice. Crop J, 2023, 11: 618-627.
doi: 10.1016/j.cj.2022.07.019
[45] 徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27: 1388-1396.
Xu G W, Zhao X H, Jiang M M, Lu D K, Chen M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. Plant Nutr Fert Sci, 2021, 27: 1388-1396 (in Chinese with English abstract).
[46] Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926.
doi: 10.1016/S2095-3119(12)60082-3
[47] Xu G W, Lu D K, Wang H Z, Li Y J. Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate. Agric Water Manage, 2018, 203: 385-394.
doi: 10.1016/j.agwat.2018.02.033
[48] 卞金龙, 蒋玉兰, 刘艳阳, 冯咏芳, 刘贺, 夏仕明, 刘立军. 干湿交替灌溉对抗旱性不同水稻品种产量的影响及其生理原因分析. 中国水稻科学, 2017, 31: 379-390.
doi: 10.16819/j.1001-7216.2017.7006 379
Bian J L, Jiang Y L, Liu Y Y, Feng Y F, Liu H, Xia S M, Liu L J. Effects of alternate wetting and drying irrigation on grain yield in rice cultivars with different drought resistance and its physiological mechanism. Chin J Rice Sci, 2017, 31: 379-390 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.7006 379
[49] 褚光, 徐冉, 陈松, 徐春梅, 刘元辉, 章秀福, 王丹英. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35: 586-594.
doi: 10.16819/j.1001-7216.2021.201213
Chu G, Xu R, Chen S, Xu C M, Liu Y H, Zhang X F, Wang D Y. Effects of improved crop management on growth characteristic of root and shoot, water and nitrogen use efficiency, and grain yield in rice. Chin J Rice Sci, 2021, 35: 586-594 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2021.201213
[1] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[2] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[3] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[4] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[5] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[6] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[7] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[8] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
[9] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[10] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[11] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[12] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[13] ZHAO Cai-Xia, SHEN Ji-Cheng, YIN Shu-Xiang, YE Fa-Hui, YANG Miao-Si, LIU Rui-Juan, LIU De-Mei, ZHANG Huai-Gang, SHEN Yu-Hu, CHEN Wen-Jie. Evaluation of the forage performance of polish wheat on the Qinghai-Tibet Plateau [J]. Acta Agronomica Sinica, 2023, 49(11): 3017-3028.
[14] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[15] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .