Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 3017-3028.doi: 10.3724/SP.J.1006.2023.31003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of the forage performance of polish wheat on the Qinghai-Tibet Plateau

ZHAO Cai-Xia1,2,3(), SHEN Ji-Cheng1,2(), YIN Shu-Xiang1,2,3, YE Fa-Hui1,2,3, YANG Miao-Si4, LIU Rui-Juan1,2, LIU De-Mei1,2, ZHANG Huai-Gang1,2, SHEN Yu-Hu1,2, CHEN Wen-Jie1,2,*()   

  1. 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining 810008, Qinghai, China
    2Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
    3University of Chinese Academy of Sciences, Beijing 100049, China
    4Qinghai University, Xining 810016, Qinghai, China
  • Received:2023-01-06 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-08
  • About author:First author contact:

    **Contributed equally to this study

  • Supported by:
    Project of Qinghai Science and Technology Department(2022-NK-106);Strategic Priority Research Program of the Chinese Academy of Sciences(XDA24030102);Second Tibetan Plateau Scientific Expedition and Research (STEP) Program(2019QZKK0303);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019420);Construction Project for Innovation Platform of Qinghai Province(2022-ZJ-Y01);Construction Project for Innovation Platform of Qinghai Province(2022-ZJ-Y04)

Abstract:

The Qinghai-Tibet Plateau is a typical alpine grazing area in the world, which is cold and arid, with fragile ecological environment, low level of primary productivity of natural grasslands, single suitable grass species for artificial pastures, and low quality, which can hardly suit the nutritional needs of grazing livestock. It is urgent to screen and cultivate high-quality forage crops. The objective of this study is to measure the forage traits of 40 polish wheat (Triticum polonicum L.), the entropy weighting method was applied to determine the weights of the measurement indicators, and use the gray correlation degree for a multivariate evaluation, to identify excellent forage germplasm resources of polish wheat varieties most suitable for planting in Qinghai. The main findings were as follows: (1) The grain yield of the test material had the highest weight of 7.04%, followed by 6.98% for fresh grass yield at flowering stage, also the coefficients of variation of grain and fresh forage yield were higher at 28.57% and 22.26%, respectively. (2) The forage quality analysis showed that the crude protein content of the plant and grain were higher by 23.86% and 20.28%, respectively. The acid detergent fibers and neutral detergent fiber of the plant were lower. (3) The multivariate evaluation of multiple indicators of the polish wheat revealed that three varieties with the best multivariate score among the 40 different Polish wheat were No. 9 from Argentina, No. 18 from Ethiopia, and No. 20 from Romania, and the highest multivariate score was 0.635 for No. 20, followed by 0.617 for No. 18, and 0.607 for No. 9. The materials with higher multivariate score of the test varieties and more outstanding forage traits can be the excellent test materials for the screening and breeding high quality forage grasses with high protein content on the Qinghai-Tibet Plateau according to production needs.

Key words: Polish wheat, forage yield, grain yield, forage quality, Qinghai-Tibetan Plateau

Table 1

Polish wheat variety used in this study"

序号No. 名称Name 来源地Origin 序号No. 名称Name 来源地Origin
1 PI29447 乌克兰Ukraine 21 CItr13919 埃塞俄比亚Ethiopia
2 PI384265 埃塞俄比亚Ethiopia 22 PI566593-1 美国USA
3 PI384345 埃塞俄比亚Ethiopia 23 PI272565-1 匈牙利Hungary
4 PI290512 葡萄牙Portugal 24 PI272565 匈牙利Hungary
5 PI225334 伊朗Iran 25 PI352488-1 意大利Italy
6 PI190951 葡萄牙Portugal 26 PI210845-1 伊朗Iran
7 CItr14140 未知Unknown 27 PI210845 伊朗Iran
8 PI387479 埃塞俄比亚Ethiopia 28 PI566593 美国USA
9 PI185309 阿根廷Argentina 29 PI384340-1 埃塞俄比亚Ethiopia
10 PI608017 美国USA 30 PI384340 埃塞俄比亚Ethiopia
11 PI266846 英国UK 31 PI352489-1 塞浦路斯Cyprus
12 PI191823 葡萄牙Portugal 32 PI56261 葡萄牙Portugal
13 PI366117 约旦Jordan 33 PI306548 罗马尼亚Romania
14 PI384268 未知Unknown 34 PI352489 塞浦路斯Cyprus
15 PI352487 葡萄牙Portugal 35 PI387457-1 葡萄牙Portugal
16 PI352488 澳大利亚Australia 36 PI387457 埃塞俄比亚Ethiopia
17 PI42209 匈牙利Hungary 37 PI56261-1 埃塞俄比亚Ethiopia
18 CItr13919-1 埃塞俄比亚Ethiopia 38 CItr17442 美国USA
19 PI298572-1 埃塞俄比亚Ethiopia 39 CItr17442-1 美国USA
20 PI306548-1 罗马尼亚Romania 40 CItr298572 埃塞俄比亚Ethiopia

Table 2

Changes in agronomic traits of Polish wheat"

指标
Index
株高
Plant height (cm)
穗长
Spike length (cm)
穗颈节长
SNL (cm)
分蘖
Tiller number
籽粒粗蛋白
GCP (%)
千粒重
1000-grain weight (g)
平均值Mean 134.84 12.49 57.43 22.80 20.28 47.26
最大Max. 159.79 17.86 68.47 35.64 23.72 63.32
最小Min. 99.42 7.00 43.67 8.37 17.17 30.37
变异系数CV (%) 11.15 20.34 10.12 28.51 7.61 17.84

Fig. 1

Changes in agronomic traits of Polish wheat Year (y): year effect; variety (v): variety effect; y × v: year × variety effect. *: P<0.05; **: P<0.01; ***: P<0.001."

Table 3

Changes in forage yield of Polish wheat"

序号
No.
花期Flower 收获Harvest 序号
No.
花期Flower 收获Harvest
鲜草产量
Fresh forage yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
鲜草产量
Fresh forage
yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
干草产量
Dry forage
yield (t hm-2)
1 6.98 ab 2.43 ab 1.86 bc 23 3.83 defg 1.31 efghijk 1.52 cdefghi
2 7.95 a 2.71 a 1.26 defghijk 24 3.45 efg 1.14 hijk 1.49 cdefghi
3 4.73 bcdefg 1.90 bcdefgh 1.05 hijk 25 4.99 bcdefg 1.68 cdefghijk 1.24 defghijk
4 4.84 bcdefg 1.93 bcdefg 1.23 defghijk 26 3.34 fg 1.16 ghijk 1.52 cdefghi
5 3.04 fg 1.25 fghijk 1.37 cdefghij 27 4.09 defg 1.05 k 1.48 cdefghij
6 4.28 defg 1.45 defghijk 1.50 cdefghi 28 3.79 defg 1.49 defghijk 1.44 cdefghij
7 3.94 defg 1.10 jk 1.64 cdefg 29 4.65 bcdefg 1.36 defghijk 2.26 ab
8 3.19 fg 1.16 ghijk 1.28 defghijk 30 3.75 defg 1.20 ghijk 1.72 cd
9 6.00 abcde 1.88 bcdefghi 1.71 cde 31 3.86 defg 1.34 efghijk 1.70 cde
10 5.40 bcdef 1.80 bcdefghijk 1.53 cdefghi 32 4.61 bcdefg 2.01 bcdefg 1.65 bcdefg
11 7.01 ab 1.49 defghijk 1.50 defghijk 33 4.39 cdefg 1.69 cdefghijk 1.29 cdefghijk
12 3.56 efg 1.18 ghijk 1.19 ghijk 34 2.44 g 1.14 hijk 1.34 cdefghijk
13 3.64 defg 1.41 defghijk 0.96 ijk 35 3.26 fg 1.41 defghijk 1.13 efghijk
14 3.26 fg 1.03 k 0.90 jk 36 4.46 cdefg 2.03 bcde 1.16 defghijk
15 3.38 fg 1.26 efghijk 0.97 ijk 37 3.00 fg 1.13 ijk 1.07 ghijk
16 3.68 defg 1.08 k 0.80 k 38 3.53 efg 1.39 defghijk 1.25 defghijk
17 3.56 efg 1.19 ghijk 1.06 ghijk 39 3.38 fg 1.40 defghijk 1.08 fghijk
18 6.79 abc 2.24 abc 1.74 cd 40 4.05 defg 2.11 abcd 1.07 ghijk
19 6.15 abcd 1.85 bcdefghij 1.43 cd 平均值Mean 4.36 1.52 1.41
20 4.95 bcdefg 1.78 bcdefghijk 2.69 a Max. 7.95 2.71 2.69
21 4.39 cdefg 1.20 ghijk 1.68 cde Min. 2.44 1.03 0.80
22 4.76 bcdefg 1.45 defghijk 1.58 cdefgh CV (%) 28.57 27.13 25.87

Table 4

Changes in grain yield and harvest index of Polish wheat"

序号
No.
籽粒产量
Grain yield (kg hm-2)
收获指数
Harvest index
序号
No.
籽粒产量
Grain yield (kg hm-2)
收获指数
Harvest index
1 406.26 bcdefghij 0.22 f 23 320.48 hijk 0.21 g
2 460.19 abcde 0.37 b 24 314.95 hijkl 0.21 g
3 338.96 fghijk 0.32 b 25 307.48 ijkl 0.25 e
4 477.84 abcd 0.39 ab 26 307.23 ijkl 0.20 g
5 487.61 abc 0.36 b 27 331.56 ghijk 0.22 fg
6 447.45 bcdefg 0.30 cd 28 377.55 cdefghij 0.26 e
7 572.75 a 0.35 b 29 519.67 ab 0.23 ef
8 486.45 abc 0.38 b 30 351.15 efghijk 0.20 g
9 515.92 ab 0.30 cd 31 494.92 abc 0.29 cd
10 431.13 bcdefgh 0.28 d 32 289.16 ijkl 0.18 h
11 453.27 bcdef 0.30 cd 33 317.23 hijk 0.25 ef
12 324.05 hijk 0.27 d 34 247.25 kl 0.19 gh
13 356.38 efghijk 0.37 b 35 453.37 bcdef 0.40 a
14 336.06 fghijk 0.37 b 36 463.47 abcde 0.40 a
15 291.08 ijkl 0.30 cd 37 403.85 bcdefghij 0.38 b
16 284.39 jkl 0.36 b 38 385.58 cdefghij 0.31 cd
17 359.99 defghijk 0.34 b 39 329.77 ghijk 0.31 cd
18 452.38 bcdefg 0.26 e 40 298.61 ijkl 0.28 d
19 462.39 abcde 0.32 b 平均值Mean 388.85 0.29
20 486.18 abc 0.18 h Max. 572.75 0.40
21 410.02 bcdefghi 0.24 ef Min. 200.11 0.13
22 200.11 l 0.13 i CV (%) 22.26 24.85

Table 5

Changes in forage yield of Polish wheat (%)"

指标
Index
叶Leaf 茎秆Stem
ADF NDF CP ADF NDF CP
平均值Mean 40.79 59.45 23.86 43.71 58.47 7.58
最大值Max. 49.30 66.46 27.94 50.92 65.48 12.98
最小值Min. 30.51 50.22 16.33 30.03 49.60 4.04
变异系数CV (%) 9.59 7.31 9.59 10.36 8.08 28.94

Fig. 2

Changes in forage quality of Polish wheat"

Fig. 3

Correlation with different agronomy traits of the of Polish wheat Different color indicates the correlation between indicators, darker color indicates higher correlation, and lighter color indicates the opposite. *: P < 0.05; **: P < 0.01. ADF: acid detergent fiber; NDF: netural detergent fiber."

Table 6

Weights and rank of each index of Polish wheat"

指标
Index
权重
Weight (%)
排名Rank 指标
Index
权重
Weight (%)
排名
Rank
株高Plant height 6.88 4 籽粒粗蛋白Grain crude protein 6.37 8
穗长Spike length 6.52 5 籽粒产量Grain yield 7.04 1
穗颈节长Spike stem nodes length 6.88 4 叶片粗蛋白Crude protein (leaf) 6.37 7
分蘖Tiller 5.31 14 叶片酸性洗涤纤维Acid detergent fibe (leaf) 5.77 12
花期鲜草产量Fresh forage yield (flower) 6.98 2 叶片中性洗涤纤维Neutral detergent fiber (leaf) 6.45 6
花期干草产量Dry forage yield (flower) 6.96 3 茎秆粗蛋白Crude protein (stem) 6.30 9
收获期干草产量Dry forage yield (harvest) 5.59 13 茎秆酸性洗涤纤维Acid detergent fibe (stem) 4.91 15
千粒重1000-grain weight 5.83 11 茎秆中性洗涤纤维Neutral detergent fiber (stem) 6.22 10

Table 7

Weight relevance and rank of tested varieties"

序号
No.
加权关联度
Weighted relevance
排名
Rank
序号
No.
加权关联度
Weighted relevance
排名
Rank
1 0.490 21 21 0.507 19
2 0.545 12 22 0.545 12
3 0.407 31 23 0.522 14
4 0.564 8 24 0.507 19
5 0.508 18 25 0.547 11
6 0.482 23 26 0.446 27
7 0.572 6 27 0.573 5
8 0.420 30 28 0.550 10
9 0.607 3 29 0.510 16
10 0.560 9 30 0.470 25
11 0.602 4 31 0.533 13
12 0.494 20 32 0.390 32
13 0.451 26 33 0.568 7
14 0.432 30 34 0.521 15
15 0.483 22 35 0.347 35
16 0.341 36 36 0.445 28
17 0.389 33 37 0.424 29
18 0.617 2 38 0.479 24
19 0.568 7 39 0.350 34
20 0.635 1 40 0.509 17
[1] 李祥妹, 彭元柳, 岳洁. 旅游产业发展背景下高寒牧区退化草地生态治理途径. 草业科学, 2019, 36: 1435-1444.
Li X M, Peng Y L, Yue J. Ecological management pathways of degraded grasslands in alpine pasture areas in the context of tourism industry development. Pratac Sci, 2019, 36: 1435-1444 (in Chinese with English abstract).
[2] 董全民, 赵新全, 马玉寿. 江河源区高寒草地畜牧业现状及可持续发展策略. 农业现代化研究, 2007, 28: 438-442.
Dong Q M, Zhao X Q, Ma Y S. Current situation and sustainable development strategy of alpine grassland animal husbandry in the river source area. Agric Mod Res, 2007, 28: 438-442 (in Chinese with English abstract).
[3] 陈鹏飞, 李潮流, 康世昌, 张强弓, 郭军明, 米决, 巴桑普赤, 洛桑曲珍. 青藏高原纳木错和安多牧区室内空气污染研究. 环境科学, 2011, 32: 1231-1236.
Chen P F, Li C L, Kang S C, Zhang Q G, Guo J M, Mi J, Basang P C, Luosang Q Z. Indoor air pollution in the Nam Co and Ando Regions in the Tibetan Plateau. Environ Sci, 2011, 32: 1231-1236 (in Chinese with English abstract).
[4] 彦星, 郑群英, 晏兆莉, 卢涛. 气候变化背景下草原产权制度变迁对畜牧业的影响——以青藏高原东缘牧区为例. 草业科学, 2015, 32: 1687-1694.
Yan X, Zheng Q Y, Yan Z L, Lu T. The impact of changes in grassland property rights system on livestock farming in the context of climate change: a case study of pastoral areas on the eastern edge of the Qinghai-Tibet Plateau. Pratac Sci, 2015, 32: 1687-1694 (in Chinese with English abstract).
[5] 张秀云, 姚玉璧, 邓振镛, 尹东, 王润元, 陈昌平. 青藏高原东北边缘牧区气候变化及其对畜牧业的影响. 草业科学, 2007, 24: 66-73.
Zhang X Y, Yao Y B, Deng Z Y, Yin D, Wang R Y, Chen C P. Climate change and its impact on animal husbandry in the northeastern margin of the Qinghai-Tibet Plateau. Pratac Sci, 2007, 24: 66-73 (in Chinese with English abstract).
[6] 刘振恒, 武高林, 仁青草, 巩晓兰, 靳瑞芳, 刘明清. 发展以燕麦为支柱产业的可持续高寒草地畜牧业. 草业科学, 2007, 24: 67-69.
Liu Z H, Wu G L, Ren Q C, Gong X L, Jin R F, Liu M Q. Development of sustainable alpine grassland animal husbandry with oats as the pillar industry. Pratac Sci, 2007, 24: 67-69 (in Chinese with English abstract).
[7] 王东霞, 王伟, 李春喜, 宗渊, 曹东, 刘宝龙. 青海省不同海拔生态区饲用小黑麦生产性能分析. 分子植物育种, 2020, 18: 6216-6228.
Wang D X, Wang W, Li C X, Zong Y, Cao D, Liu B L. Analysis of production performance of forage triticale in different altitude ecological zones in Qinghai province. Mol Plant Breed, 2020, 18: 6216-6228 (in Chinese with English abstract).
[8] 唐剑, 刘晓鹰, 陈祥碧. 青藏高原藏族牧区畜牧业发展问题研究——以阿坝州若尔盖县为例. 经济界, 2016, (3): 71-76.
Tang J, Liu X Y, Chen X B. Study on the development of animal husbandry in Tibetan pastoral areas on the Qinghai-Tibet Plateau—A case study of Ruoerge county, Aba prefecture. Econ Affairs, 2016, (3): 71-76 (in Chinese with English abstract).
[9] 何龙娟, 陈伟忠, 康永兴, 栾义君. 青藏高原生态农牧区农村综合发展能力评价与分析. 生态经济, 2013, 29(3): 122-125.
He L J, Chen W Z, Kang Y X, Luan Y J. Evaluation and analysis of integrated rural development capacity in ecological agricultural and pastoral areas on the Qinghai-Tibet Plateau. Ecol Econ, 2013, 29(3): 122-125 (in Chinese with English abstract).
[10] 周华坤, 赵新全, 周立, 唐艳鸿, 刘伟, 师燕. 层次分析法在江河源区高寒草地退化研究中的应用. 资源科学, 2005, 29: 63-70.
Zhou H H, Zhao X Q, Zhou L, Tang Y H, Liu W, Shi Y. Application of hierarchical analysis in the study of alpine grassland degradation in the river source area. Resour Sci, 2005, 29: 63-70 (in Chinese with English abstract).
[11] 陈勤, 孙雨珍, 董玉琛. “新疆小麦”种间杂种的细胞遗传学研究. 作物学报, 1985, 67: 23-29.
Chen Q, Sun Y Z, Dong Y C. Cytogenetic study on interspecific hybrids of Xinjiang wheat. Acta Agron Sin, 1985, 67: 23-29 (in Chinese with English abstract).
[12] 杨瑞武, 周永红, 郑有良, 胡超. 波兰小麦醇溶蛋白遗传差异及其与新疆稻麦的关系. 麦类作物学报, 2000, 20: 1-5.
Yang R W, Zhou Y H, Zhen Y L, Hu C. Genetic differences and the relationship of gliadin between T. polonicum and T. petropavlovskyi. J Triticeae Crops, 2000, 20: 1-5 (in Chinese with English abstract).
[13] 李美霞, 杨睿, 李有梅, 崔桂宾, 王竹林, 奚亚军, 刘曙东. 波兰小麦×普通小麦品系“中13”RIL群体籽粒特性的QTL定位. 麦类作物学报, 2012, 32: 813-819.
Li M X, Yang R, Li Y M, Cui G B, Wang Z L, Xi Y J, Liu S D. QTL analysis of kernel characteristics using a recombinant inbred lines (RILs) population derived from the cross of Tiriticum polonicum L. and Triticum aestivum L.line “Zhong 13’’. J Triticeae Crops, 2012, 32: 813-819 (in Chinese with English abstract).
[14] 杨睿, 刘联正, 李华, 钟欢, 杨兴圣, 王竹林, 刘曙东. 波兰小麦×普通小麦品系中13重组自交系(RIL)群体穗部性状的QTL分析. 农业生物技术学报, 2012, 20: 506-513.
Yang R, Liu L Z, Li H, Zhong H, Yang X S, Wang Z L, Liu S D. QTL analysis of spike traits in the 13 recombinant inbred lines (RIL) population of Tiriticum polonicum L. and Triticum aestivum L.lines. J Agric Biotech, 2012, 20: 506-513 (in Chinese with English abstract).
[15] 沈玮囡, 王竹林, 杨睿, 李美霞, 梁子英, 奚亚军, 孙风丽, 刘曙东. 波兰小麦品系XN555×普通小麦品系中13衍生重组自交系(RILs)群体中籽粒品质相关性状QTL定位. 农业生物技术学报, 2014, 22: 561-571.
Shen W Y, Wang Z L, Yang R, Li M X, Liang Z Y, Xi Y J, Sun F L, Liu S D. QTL analysis of grain quality related traits using recombinant inbred lines (RILs)derived from the cross of Triticum polonicumL. line XN555×T. aestivum L. line Zhong 13. J Agric Biotech, 2014, 22: 561-571 (in Chinese with English abstract).
[16] Michał K, Maciej M, Joanna M, Jolanta B, Elżbieta S, Urszula W, Marian W, Halina W. Intraspecific polymorphisms of cytogenetic markers mapped on chromosomes of Triticum polonicum L. PLoS One, 2016, 11: 1-14.
[17] Peng F, Wang C, Cheng Y, Kang H, Fan X, Sha L, Zhang H, Zeng J, Zhou Y and Wang Y. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. Planta, 2018, 247: 1395-1406.
doi: 10.1007/s00425-018-2872-3 pmid: 29523961
[18] Jiang Y, Chen X, Chai S, Sheng H, Sha L, Fan X, Zeng J, Kang H, Zhang H, Xiao X, Zhou Y, Vatamaniuk O K, Wang Y. TpIRT1from polish wheat (Triticum polonicum L.) enhances the accumulation of Fe, Mn, Co, and Cd in Arabidopsis. Plant Sci, 2021, 312: 111058-111071.
doi: 10.1016/j.plantsci.2021.111058
[19] 沈吉成, 李亚鑫, 赵彩霞, 叶发慧, 刘德梅, 刘瑞娟, 张怀刚, 陈文杰. 52份波兰小麦种子性状分析. 麦类作物学报, 2021, 41: 834-841.
Shen J C, Li Y X, Zhao C X, Ye F H, Liu D M, Liu R J, Zhang H G, Chen W J. Analysis of seed traits of 52 wheat varieties (Triticum polonicum L.). J Triticeae Crops, 2021, 41: 834-841 (in Chinese with English abstract).
[20] 董攀, 李伟, 郑有良. 波兰小麦主要农艺性状分析. 麦类作物学报, 2007, 27: 216-222.
Dong P, Li W, Zheng Y L. Analysis on the agronomic traits of Triticum polonicum L. J Triticeae Crops, 2007, 27: 216-222 (in Chinese with English abstract).
[21] 王彦民, 王竹林, 奚亚军, 刘曙东. 波兰小麦对普通小麦醇溶蛋白的改良作用. 麦类作物学报, 2008, 28: 419-424.
Wang Y M, Wang Z L, Xi Y J, Liu S D. Improvement of alcoholic protein in common wheat by Triticum polonicum L. J Triticeae Crops, 2008, 28: 419-424 (in Chinese with English abstract).
[22] 余苗, 王卉, 问鑫, 高凤仙. 牧草品质的主要评价指标及其影响因素. 中国饲料, 2013, 24(13): 1-3.
Yu M, Wang H, Wen X, Gao F X. Main evaluation indexes of forage quality and influencing factors. China Feed, 2013, 24(13): 1-3 (in Chinese with English abstract).
[23] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.pp:30-38.
Bao S D. Soil Agrochemical Analysis. Beijing: China Agriculture Press, 2000.pp:30-38 (in Chinese with English abstract).
[24] 刘录祥, 孙其信, 王士芸. 灰色系统理论应用于作物新品种综合评估初探. 中国农业科学, 1989, 22: 22-27.
Liu L X, Sun Q X, Wang S Y. Application of grey system theory to comprehensive evaluation of new crop varieties. Sci Agric Sin, 1989, 22: 22-27 (in Chinese with English abstract).
[25] 汤瑞凉, 王䶮. 农作物品种综合评判的熵权系数法研究. 资源开发与市场, 2002, 18(5): 3-14.
Tang R L, Wang Y. Study on entropy coefficient method for comprehensive evaluation of crop varieties. Resourc Dev Market, 2002, 18(5): 3-14 (in Chinese with English abstract).
[26] 曹雯梅, 刘松涛, 路红卫. 灰色系统理论在小麦新品种综合评判中的应用. 中国种业, 2005, 24(11): 48-50.
Cao W M, Liu S T, Lu H W. Application of gray system theory in the comprehensive evaluation of new wheat varieties. China Seed Ind, 2005, 24(11): 48-50 (in Chinese with English abstract).
[27] 郭瑞林, 路志芳, 吴秋芳, 刘亚飞. 小麦育种目标性状几种权重确定方法的比较. 麦类作物学报, 2014, 34: 1049-1053.
Guo R L, Lu Z F, Wu Q F, Liu Y F. Comparison of several weight determination methods for wheat breeding target traits. J Triticeae Crops, 2014, 34: 1049-1053 (in Chinese with English abstract).
[28] 张凡, 刘国涛, 杨春玲. 620份小麦种质资源农艺性状调查及其遗传多样性分析. 山东农业科学, 2022, 54(3): 15-21.
Zhang F, Liu G T, Yang C L. Survey of 620 wheat germplasm resources for agronomic traits and their genetic diversity analysis. Shandong Agric Sci, 2022, 54(3): 15-21 (in Chinese with English abstract).
[29] 许娜丽, 王新华, 马冬花, 杨杰, 李清峰, 刘凤楼, 刘彩霞, 刘根红, 张晓岗, 王掌军. 251份小麦种质资源的主要农艺与品质性状遗传多样性分析. 南方农业学报, 2021, 52: 2404-2416.
Xu N L, Wang X H, Ma D H, Yang J, Li Q F, Liu F L, Liu C X, Liu G H, Zhang X G, Wang Z J. Genetic diversity analysis of 251 wheat germplasm resources for major agronomic and quality traits. Southern J Agric, 2021, 52: 2404-2416 (in Chinese with English abstract).
[30] 郑凯, 顾洪如, 沈益新, 丁成龙. 牧草品质评价体系及品质育种的研究进展. 草业科学, 2006, 23: 57-61.
Zheng K, Gu H R, Shen Y X, Ding C L. Evaluation system of forage quality and research advances in forage quality breeding. Pratac Sci, 2006, 23: 57-61 (in Chinese with English abstract).
[31] 崔雄雄, 侯扶江, 常生华, 王召锋. 高寒牧区两个燕麦品种的产量与品质比较. 草业科学, 2018, 35: 1489-1495.
Cui X X, Hou F J, Chang S H, Wang Z F. Comparison of yield and nutritional quality of two oat (Avena sativa) varieties grown in the alpine pastoral region of China. Pratac Sci, 2018, 35: 1489-1495 (in Chinese with English abstract).
[32] 李春喜, 叶润荣, 周玉碧, 林丽, 孙菁, 张法伟, 彭立新. 高寒牧区不同燕麦品种饲草产量及品质的研究. 草地学报, 2014, 22: 882-888.
doi: 10.11733/j.issn.1007-0435.2014.04.032
Li C X, Ye R R, Zhou Y B, Lin L, Sun J, Zhang F W, Peng L X. Study on the yield and quality of different oat varieties in alpine pasture area. Acta Agrest Sin, 2014, 22: 882-888 (in Chinese with English abstract).
[33] 马晓东, 孙金金, 汪鹏斌, 赵一珊, 宋美娟, 鱼小军. 青海果洛高寒地区燕麦和小黑麦最佳混播比例筛选. 草业科学, 2020, 37: 753-761.
Ma X D, Sun J J, Wang P B, Zhao Y S, Song M J, Yu X J. Screening of the best mixing ratio of Avena sativa and × Triticale Wittmack in the high-cold area of Guoluo, Qinghai province. Pratac Sci, 2020, 37: 753-761 (in Chinese with English abstract).
[34] 裴亚斌, 杜文华, 刘汉成, 刘翠, 田新会. 甘南高寒牧区3种饲草不同种植模式下的生产性能及经济效益. 草业科学, 2020, 37: 791-799.
Pei Y B, Du W H, Liu H C, Liu C, Tian X H. Comparison of the production performance and economic benefits of three different forage planting models in the alpine grazing area of Gannan. Pratac Sci, 2020, 37: 791-799 (in Chinese with English abstract).
[35] 丁明磊, 王京宏, 王伟伟, 李嵩, 王志成, 张超, 孙风丽, 刘曙东, 奚亚军. 粮饲兼用型小麦种质资源筛选与评价. 草地学报, 2022, 30: 2027-2036.
doi: 10.11733/j.issn.1007-0435.2022.08.012
Ding M L, Wang J H, Wang W W, Li S, Wang Z C, Zhang C, Sun F L, Liu S D, Xi Y J. Screening and evaluation of germplasm resources of grain-feeding wheat. Acta Agrest Sin, 2022, 30: 2027-2036 (in Chinese with English abstract).
[36] 康志钰. 甘肃河西灌区玉米播期对优质小麦与粮饲兼用玉米带田生产能力的影响. 草业科学, 2003, 20: 18-21.
Kang Z Y. The effects of maize sowing period on productivity of strip farmland growing high-quality wheat and grain-feed corn. Pratac Sci, 2003, 20: 18-21 (in Chinese with English abstract).
[37] 严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48: 2137-2154.
doi: 10.3724/SP.J.1006.2022.11105
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agron Sin, 2022, 48: 2137-2154 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.11105
[38] 宋志均, 关立, 侯俊红, 韩勇, 薛鑫, 薛志伟, 张凡. 灰关联度确定权重法在小麦品种区域试验分析中的应用. 中国种业, 2016, 35(3): 27-31.
Song Z J, Guan L, Hou J H, Han Y, Xue X, Xue Z W, Zhang F. Application of gray correlation degree determination weight method in the analysis of regional trials of wheat varieties. China Seed Ind, 2016, 35(3): 27-31 (in Chinese with English abstract).
[39] 范成方, 史建民. 基于熵权的粮食种植效益综合评价: 以山东省玉米、小麦为例. 中国农业资源与区划, 2015, 36(3): 39-47.
Fan C F, Shi J M. A comprehensive evaluation of grain planting efficiency based on entropy power: taking corn and wheat in Shandong province as an example. Chin J Agric Resour Region, 2015, 36(3): 39-47 (in Chinese with English abstract).
[1] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[2] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[3] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[4] XU Ran, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of nitrogen fertilizer rates on grain yield and nitrogen use efficiency of japonica-indica hybrid rice cultivar Yongyou 1540 and its physiological bases [J]. Acta Agronomica Sinica, 2023, 49(6): 1630-1642.
[5] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[6] SONG Jie, WANG Shao-Xiang, LI Liang, HUANG Jin-Ling, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of potassium application rate on NPK uptake and utilization and grain yield in summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2023, 49(2): 539-551.
[7] LIU Meng, ZHANG Yao, GE Jun-Zhu, ZHOU Bao-Yuan, WU Xi-Dong, YANG Yong-An, HOU Hai-Peng. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years [J]. Acta Agronomica Sinica, 2023, 49(2): 497-510.
[8] ZHANG Xiang-Yu, HU Xin-Hui, GU Shu-Bo, Lin Xiang, YIN Fu-Wei, WANG Dong. Effects of staged potassium application on grain yield and nitrogen use efficiency of winter wheat under reduced nitrogen conditions [J]. Acta Agronomica Sinica, 2023, 49(2): 447-458.
[9] CHEN Jia-Jun, LIN Xiang, GU Shu-Bo, WANG Wei-Yan, ZHANG Bao-Jun, ZHU Jun-Ke, WANG Dong. Effects of foliar spraying of urea post anthesis on nitrogen uptake and utilization and yield in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(1): 277-285.
[10] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[11] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[14] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[15] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .