Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Isolation and identification of a new pathogen Trichoderma asperellum causing ear rot in maize

XIAO Sen-Lin1,**,QUE Fan2,**,ZHOU Zhi-Huan2,**,ZHANG Hai-Xia1,XING Jin-Feng1,ZHU Xiang-Zhang2,ZHANG Yan-Bing2,ZHANG Nan2,SUN Xuan1,WANG Rong-Huan1,SONG Wei1,WANG Wei-Xiang2,*,ZHAO Jiu-Ran1,*#br#   

  1. 1 Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; 2 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 100096, China
  • Received:2025-02-27 Revised:2025-07-09 Accepted:2025-07-09 Published:2025-07-28
  • Supported by:
    This study was supported by the Special Project for Science and Technology Innovation Capacity Building of Beijing Academy of Agricultural and Forestry Sciences (KJCX20240332) and the National Natural Science Foundation of China (31871638).

Abstract:

Maize ear rot, caused by pathogenic fungi, significantly reduces both yield and grain quality. More than 20 pathogens have been reported to cause this disease, with F. verticillioides and F. graminearum being the most prevalent in China. In recent years, a distinct form of ear and grain rot, characterized by white hyphae and greenish-blue spores, has been frequently observed in various maize-growing regions across the country. However, the specific pathogen responsible for this type of ear rot had not been clearly identified. In this study, we identified the pathogen using a combination of morphological characterization, rDNA-ITS sequencing, and whole-genome sequencing. The results revealed that T. asperellum is the causative agent of maize greenish ear rot. A representative strain, Tr.10, was selected for pathogenicity re-evaluation by inoculating 419 maize inbred lines with a conidial suspension using ear needle-inoculation. The results confirmed that Tr.10 conidia successfully reinfected a wide range of inbred lines, inducing typical T. asperellum ear rot symptoms. Significant variation in disease resistance was observed across the tested lines. Among the 419 genotypes, 6.8% were classified as highly resistant, 30.4% as resistant, 30.7% as moderately resistant, 24.9% as susceptible, and 7.1% as highly susceptible. Notably, 25 inbred lines, including PHN47, F321, and Jing 2416K, exhibited high levels of resistance. These findings provide important insights into resistance mechanisms and offer a foundation for molecular breeding of Trichoderma ear rot-resistant maize cultivars.

Key words: maize ear rot, T. asperellum, pathogenesis, needle spike cob inoculation, resistance identification

[1]李小平,董怀玉,陶烨,姜钰,王丽娟,刘旸,刘延军.玉米穗粒腐病研究概况.杂粮作, 2007, 27(2): 130–132.

Li X P, Dong H Y, Tao Y, Jiang Y, Wang L J, Liu Y, Liu Y J. General situation of corn ear rot research.Rain Fed Crops, 2007, 27(2): 130–132 (in Chinese).

[2]张帆,万雪琴,潘光堂.玉米抗穗粒腐病QTL定位.作物学报, 2007, 33: 491–496.

Zhang F, Wan X Q, Pan G T. Molecular mapping of QTL for resistance to maize ear rot caused byFusarium moniliforme.Acta Agron Sin, 2007, 33: 491–496 (in Chinese with English abstract).

[3]张帆,万雪琴,潘光堂.玉米穗粒腐病研究进展及分子标记辅助选择策略.分子植物育种, 2004, 2: 122–126.

Zhang F, Wan X Q, Pan G T. Advances on research of maize ear rot and strategies for its QTL mapping and marker-assisted selection (MAS).Mol Plant Breed, 2004, 2: 122–126 (in Chinese with English abstract).

[4]张海剑,索相敏.河北省玉米穗腐病的发生情况及防治建议. 现代农村科技, 2016, (10): 23.

Zhang H J, Suo X M. Occurrence and control suggestions of maize ear rot in Hebei Province.Xiandai Nongcun Keji, 2016, (10): 23 (in Chinese).

[5] Balconi C, Berardo N, Locatelli S, Lanzanova C, Torri A, Redaelli R, Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines.Phytopathol Mediterr, 2014, 53: 14–26.

[6] Jiang B W, Wang D Y, Zhou J, Cai J, Jiang J J, Wang L X, Li Y G. First report of corn ear rot caused byFusarium asiaticum in China.Plant Dis, 2022.

[7] Cao Y Y, Ma J, Han S B, Hou M W, Wei X, Zhang X R, Zhang Z J, Sun S L, Ku L X, Tang J H, et al. Single-cell RNA sequencing profiles reveal cell type-specific transcriptional regulation networks conditioning fungal invasion in maize roots.Plant Biotechnol J, 2023, 21: 1839–1859.

[8] Zhu M, Zhong T, Xu L, Guo C Y, Zhang X H, Liu Y L, Zhang Y, Li Y C, Xie Z J, Liu T T, et al. The ZmCPK39-ZmDi19-ZmPR10 immune module regulates quantitative resistance to multiple foliar diseases in maize.Nat Genet, 2024, 56: 2815–2826.

[9] Scott G E. Site of action of factors for resistance to Fusarium moniliforme in maize.Plant Dis, 1984, 68: 804.

[10] Giomi G M, Kreff E D, Iglesias J, Fauguel C M, Fernandez M, Oviedo M S, Presello D A. Quantitative trait loci forFusarium andGibberella ear rot resistance in Argentinian maize germplasm.Euphytica, 2016, 211: 287–294.

[11] Wen J, Shen Y Q, Xing Y X, Wang Z Y, Han S P, Li S J, Yang C M, Hao D Y, Zhang Y. QTL mapping ofFusarium ear rot resistance in maize.Plant Dis, 2021, 105: 558–565.

[12] Shang G F, Yu H, Yang J, Zeng Z, Hu Z Q. First report ofFusarium miscanthi causing ear rot on maize in China.Plant Dis, 2021, 105: 1565.

[13] Sanna M, Pugliese M, Gullino M L, Mezzalama M. First report ofTrichoderma afroharzianum causing seed rot on maize in Italy.Plant Dis, 2022, 106:1982.

[14] Chavéz-Díaz I F, Cruz-Cárdenas C I, Sandoval-Cancino G, Calvillo-Aguilar F F, Ruíz-Ramírez S, Blanco-Camarillo M, Rojas-Anaya E, Ramírez-Vega H, Arteaga-Garibay R I, Zelaya-Molina L X. Seedling growth promotion and potential biocontrol against phytopathogenicFusarium by native rhizosphericPseudomonas spp. strains from Amarillo Zamorano maize Landrace.Rhizosphere, 2022, 24: 100601.

[15] Ma P P, Liu E P, Zhang Z R, Li T, Zhou Z J, Yao W, Chen J F, Wu J Y, Xu Y F, Zhang H Y. Genetic variation in ZmWAX2 confers maize resistance toFusarium verticillioides.Plant Biotechnol J, 2023, 21: 1812–1826.

[16]贾娇,隋晶,张伟,孟玲敏,白雪,吴宏斌,王义生,张玉榕,苏前富.玉米禾谷镰孢穗腐病抗性鉴定接种方法比较.玉米科学, 2022, 30(5): 149–155.

Jia J, Sui J, Zhang W, Meng L M, Bai X, Wu H B, Wang Y S, Zhang Y R, Su Q F. Comparison of two inoculation methods for resistance ofFusarium graminearum ear rot.J Maize Sci, 2022, 30(5): 149–155 (in Chinese with English abstract).

[17]魏景超.真菌鉴定手册.上海:上海科学技术出版社, 1979.

Wei J C. Handbook of Fungal Identification. Shanghai: Shanghai Scientific & Technical Publishers, 1979 (in Chinese).

[18]薛德星,李美,高兴祥,李健.生防菌棘孢木霉的分离鉴定及生物学特性研究.山东农业科学, 2023, 55(10): 118–123.

Xue D X, Li M, Gao X X, Li J. Isolation, identification and biological characteristics ofTrichoderma asperellum GT30.Shandong Agric Sci, 2023, 55(10): 118–123 (in Chinese with English abstract).

[19]张成,廖文敏,薛鸣,陈迪,侯巨梅,刘铜.棘孢木霉DQ-1分生孢子固体发酵优化及其对4种作物幼苗生长的影响.中国生物防治学报, 2021, 37: 315–322.

Zhang C, Liao W M, Xue M, Chen D, Hou J M, Liu T. Optimization of solid substrate and conditions ofTrichoderma asperellum DQ-1 and effect on four crop seedlings growth.Chin J Biol Control, 2021, 37: 315–322 (in Chinese with English abstract).

[20]孙丽丽,曹传旺,薛绪亭,王志英,杜春艳.棘孢木霉可湿性粉剂研制及杀菌活性测定.北京林业大学学报, 2015, 37(6): 45–52.

Sun L L, Cao C W, Xue X T, Wang Z Y, Du C Y. Preparation and fungicidal bioactivity of wettable powder formulations ofTrichoderma asperellum.J Beijing For Univ, 2015, 37(6): 45–52 (in Chinese with English abstract).

[21]邹佳迅,范晓旭,宋福强.木霉(Trichodermaspp.)对植物土传病害生防机制的研究进展.大豆科学, 2017, 36: 970–977.

Zou J X, Fan X X, Song F Q. Biocontrol mechanism ofTrichoderma spp. against soilborn plant disease.Soybean Sci, 2017, 36: 970–977 (in Chinese with English abstract).

[22] Verma M, Brar S K, Tyagi R D, Surampalli R Y, Valéro J R. Antagonistic fungi,Trichoderma spp. panoply of biological control.Biochem Eng J, 2007, 37: 1–20.

[23] Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A. Circos: an information aesthetic for comparative genomics.Genome Res, 2009, 19: 1639–1645.

[24] Saha S, Bridges S, Magbanua Z V, Peterson D G. Empirical comparison ofab initio repeat finding programs.Nucleic Acids Res, 2008, 36: 2284–2294.

[25] Benson G. Tandem repeats finder: a program to analyze DNA sequences.Nucleic Acids Res, 1999, 27: 573–580.

[26]方中达.植病研究方法.第3版.北京:中国农业出版社, 1998.

Fang Z D. Research Methods of Plant Diseases. Beijing: China Agriculture Press, 1998 (in Chinese).

[27]李洪连,张新,袁红霞,李健强.玉米杂交种穗粒腐病原鉴定.植物保护学报, 1999, 26: 305–308.

Li H L, Zhang X, Yuan H X, Li J Q. Identification of pathogens causing ear and seed rot in corn hybrids.J Plant Prot, 1999, 26: 305–308 (in Chinese with English abstract).

[28]张小飞,邹成佳,崔丽娜,李晓,杨晓蓉,罗怀海.西南地区玉米穗腐病病原分离鉴定及接种方法研究.西南农业学报, 2012, 25: 2078–2082.

Zhang X F, Zou C J, Cui L N, Li X, Yang X R, Luo H H. Identification of pathogen causing maize ear rot and inoculation technique inSouthwest China.Southwest China J Agric Sci, 2012, 25: 2078–2082 (in Chinese with English abstract).

[29] Li Y M, Tao X B, Yao L S, Tang S, Zhang X H, Tong L X, Liu Q L, Song T, Zhang D F, Cao Y Y,et al. qRfv2, a quantitative resistance locus against Fusarium ear rot in maize.Crop J, 2025,13:41–50.

[30]李生杰.浅析玉米病虫害防治.农家科技, 2019, 9(2): 111.

Li S J. Analysis on the prevention and control of corn diseases and pests.Nongjia Keji, 2019, 9(2): 111 (in Chinese).

[31]王兴娥,赵永田,刘荣,刘善灵,方双燕,韩昕,唐贵福,刘恋.木霉菌防治植物真菌病害的研究进展. 植物医学, 2024, 3(4):11–19.

Wang X E, Zhao Y T, Liu R, Liu S L, Fang S Y, Han X, Tang G F, Liu L. Research progress on prevention and control of plant fungal diseases withTrichoderma.Plant Health Med, 2024, 3(4): 11–19 (in Chinese with English abstract).

[32]那明慧,赵睿杰,陈晓旭,王作英,高增贵.玉米木霉穗腐病接种方法及玉米新品种的抗性分析.玉米科学, 2024, 32(2):162–167.

Na M H, Zhao R J, Chen X X, Wang Z Y, Gao Z G. Analysis of the inoculation method ofTrichoderma ear rot and the resistance of new maize varieties.J Maize Sci, 2024, 32(2): 162–167 (in Chinese with English abstract).

[1] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[2] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[3] WU Lin-Kun,CHEN Jun,WU Hong-Miao,WANG Juan-Ying,QIN Xian-Jin,ZHANG Zhong-Yi,LIN Wen-Xiong. Comparative Proteomics Analysis of R. glutinosa Tuber Root in Response to Consecutive Monoculture [J]. Acta Agron Sin, 2016, 42(02): 243-254.
[4] MA Li-Gong,ZHANG Yun-Hua,MENG Qing-Lin,SHI Feng-Mei,LIU Jia,LI Yi-Chu,WANG Zhi-Ying. Cloning and Function Analysis of Pathogenesis Related Protein Gene HaPR1 from Sunflower (Helianthus annuus) [J]. Acta Agron Sin, 2015, 41(12): 1819-1827.
[5] WANG Shu-Wen,LU Jun-Xing,WAN Hua-Fang,WENG Chang-Mei,WANG Zhen,LI Jia-Na,LU KunLIANG Ying. Overexpression of BnMAPK1 Enhances Resistance to Sclerotinia sclerotiorum in Brassica napus [J]. Acta Agron Sin, 2014, 40(04): 745-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!