[1] 万书波. 花生产业形势与对策. 山东农业科学, 2014, 46(10): 128–132.
Wan S B. Situation and developing strategies of peanut industry. Shandong Agric Sci, 2014, 46(10):
128–132 (in Chinese with English abstract).
[2] 赵健鑫, 殷祥贞, 姜骁, 陈娜, 赵旭红, 王明清, 宋虎成, 钟文, 梁成伟, 迟晓元. 不同花生品种烤仁加工特性分析. 花生学报, 2024, 53(2): 91–97.
Zhao J X, Yin X Z, Jiang X, Chen N, Zhao X H, Wang M Q, Song H C, Zhong Wen,
Liang C W, Chi X Y. Processing characteristics of roasted kernel of different peanut
varieties. J Peanut Sci, 2024, 53(2):
91–97 (in Chinese with English abstract).
[3] 吴列洪, 李付振, 吴学龙,
宋度林,
王美兴.
花生ω-3△15-脂肪酸脱氧酶基因AhFAD3A的克隆及其表达. 中国油料作物学报, 2015,
37: 41–47.
Wu L H, Li F Z, Wu X L, Song D L, Wang M X. Cloning and expression
characteristics of one ω-3 cis15fatty acid dehydrogenase gene Ah FAD3A in Arachis hypogaea L. Chin J Oil Crop Sci, 2015, 37: 41–47 (in Chinese with English
abstract).
[4] 阮建. 花生ω-3 FAD对提高多不饱和脂肪酸含量的研究. 山东大学硕士毕业论文, 山东济南, 2018.
Ruan J. Functional Research of Peanut ω-3 FAD on Increasing the Content of
Polyunsaturated Fatty Acids. MS Thesis of Shandong University, Jinan, Shandong,
China, 2018 (in Chinese with English abstract).
[5] Collados R, Andreu V, Picorel R, Alfonso M. A
light-sensitive mechanism differently regulates transcription and transcript
stability of ω3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean
photosynthetic cell suspensions. FEBS
Lett, 2006, 580: 4934–4940.
[6] Yang Q Y, Fan C C, Guo Z H, Qin J, Wu J Z, Li Q Y, Fu T
D, Zhou Y M. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low
linolenic acid contents. Theor Appl Genet,
2012, 125: 715–729.
[7] 高继国, 惠识瑶, 耿丽丽,
张蕊,
孙长坡,
张杰.
花生AhFAD8基因的克隆、表达及活性分析. 东北农业大学学报, 2013,
44(10): 82–87.
Gao J G, Hui S Y, Geng L L, Zhang R, Sun C P, Zhang J. Cloning, expression and
activity assay of AhFAD8 gene from Arachis
hypogaea L. J Northeast Agric Univ,
2013, 44(10): 82–87 (in Chinese with English abstract).
[8] Tovuu A, Zulfugarov I S, Wu G X, Kang I S, Kim C, Moon B
Y, An G, Lee C H. Rice mutants deficient in ω-3 fatty acid desaturase (FAD8)
fail to acclimate to cold temperatures. Plant
Physiol Biochem, 2016, 109: 525–535.
[9] Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K.
Genetic enhancement of cold tolerance by expression of a gene for chloroplast
[omega]-3 fatty acid desaturase in transgenic tobacco. Plant Physiol, 1994, 105: 601–605.
[10] Domínguez T, Hernández M L, Pennycooke J C, Jiménez P,
Martínez-Rivas J M, Sanz C, Stockinger E J, Sánchez-Serrano J J, Sanmartín M.
Increasing omega-3 desaturase expression in tomato results in altered aroma
profile and enhanced resistance to cold stress. Plant Physiol, 2010, 153: 655–665.
[11] Chi X Y, Zhang Z M, Chen N, Zhang X
W, Wang M, Chen M N, Wang T, Pan L J, Chen J, Yang Z, et al. Isolation and functional analysis of fatty
acid desaturase genes from peanut (Arachis
hypogaea L.). PLoS One, 2017, 12:
e0189759.
[12] 东金玉, 万勇善, 刘风珍. 花生Δ9-硬脂酰-ACP脱氢酶基因(SAD)的序列分析. 作物学报, 2012, 38: 1167–1177.
Dong J Y, Wan Y S, Liu F Z. Sequence
analysis of Δ9-Stearoyl-ACP desaturase gene (SAD) in peanut. Acta
Agron Sin, 2012, 38: 1167–1177 (in Chinese with English abstract).
[13] Chi X Y, Yang Q L, Pan L J, Chen M N, He Y N, Yang Z, Yu
S L. Isolation and characterization of fatty acid desaturase genes from peanut
(Arachis hypogaea L.). Plant Cell Rep, 2011, 30: 1393–1404.
[14] Wang Y, Zhang X G, Zhao Y L, Prakash C S, He G H, Yin D
M. Insights into the novel members of the FAD2 gene family involved in
high-oleate fluxes in peanut. Genome,
2015, 58: 375–383.
[15] Clough S J, Bent A F. Floral dip: a simplified method
for Agrobacterium-mediated
transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743.
[16] 陈四龙. 花生油脂合成相关基因的鉴定与功能研究. 中国农业科学院博士学位论文, 北京, 2012.
Chen S L. Idenitfication and Functional Analysis of Lipid Biosynthesis Related
Genes in Peanut (Arachis hypogaea L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,
China, 2012 (in Chinese with English abstract).
[17] Dash S, Cannon E, Kalberer S, Farmer
A, Cannon S. Peanuts: Genetics, Processing, and Utilization. New York: Elsevier Inc Academic Press and AOCS Press, 2016. pp 241–252.
[18] Pattee H, Johnss E B, Singleton J
A, Sanders T H. Composition changes of peanut fruit parts during maturation. Peanut
Sci, 1974, 1: 57–64.
[19] Saini R K, Keum Y S. Omega-3 and
omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and
significance: a review. Life Sci,
2018, 203: 255–267.
[20] Alvarenga T I R C, Chen Y Z,
Furusho-Garcia I F, Perez J R O, Hopkins D L. Manipulation of omega-3 PUFAs in
lamb: phenotypic and genotypic views. Compr
Rev Food Sci Food Saf, 2015, 14: 189–204.
[21] Hernández M L, Sicardo M D,
Martínez-Rivas J M. Differential contribution of endoplasmic reticulum and
chloroplast ω-3 fatty acid desaturase genes to the linolenic acid content of
olive (Olea europaea) fruit. Plant Cell Physiol, 2016, 57: 138–151.
[22] Browse J, McConn M, Jr D J, Miquel M. Mutants of Arabidopsis deficient in the synthesis of alpha-linolenate. Biochemical and genetic
characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem, 1993, 268: 16345–16351.
[23] 刘训言, 孟庆伟, 李滨. 植物ω-3脂肪酸去饱和酶的研究进展. 细胞生物学杂志, 2004, 26: 34–38.
Liu X Y, Meng Q W, Li B. Advances in ω-3 fatty acid desaturases of plants. Chin
J Cell Biol, 2004, 26: 34–38 (in Chinese with English abstract).
[24] Guan L L, Wu W, Hu B, Li D, Chen J W, Hou K, Wang L.
Devolopmental and growth temperature regulation of omega-3 fatty acid
desaturase genes in safflower (Carthamus
tinctorius L.). Genet Mol Res,
2014, 13: 6623–6637.
[25] Bhunia R K, Chakraborty A, Kaur R, Gayatri T,
Bhattacharyya J, Basu A, Maiti M K, Sen S K. Seed-specific increased expression
of 2S albumin promoter of sesame qualifies it as a useful genetic tool for
fatty acid metabolic engineering and related transgenic intervention in sesame
and other oil seed crops. Plant Mol Biol,
2014, 86: 351–365.
[26] Wang J J, Liu Z J, Liu H, Peng D S, Zhang J P, Chen M X. Linum usitatissimum FAD2A and FAD3A
enhance seed polyunsaturated fatty acid accumulation and seedling cold
tolerance in Arabidopsis thaliana. Plant Sci, 2021, 311: 111014.
[27] Liu G, Wu Z
H, Shang X H, Peng Y, Gao L Q. Overexpression of PvFAD3 gene from Plukenetia
volubilis promotes the biosynthesis of α-linolenic acid in transgenic
tobacco seeds. Genes, 2022, 13: 450.
[28] Yeom W W,
Kim H J, Lee K R, Cho H S, Kim J Y, Jung H W, Oh S W, Jun S E, Kim H U, Chung Y
S. Increased production of α-linolenic acid in soybean seeds by overexpression
of Lesquerella FAD3-1. Front Plant Sci, 2020, 10: 1812.
[29] Park M
E, Choi H A, Kim H U. Physaria fendleri FAD3-1 overexpression increases ɑ-linolenic acid content in Camelina sativa seeds. Sci Rep, 2023, 13: 7143.
[30] Lee K
R, Kim E H, Jeon I, Lee Y, Chen G Q, Kim H U. Lesquerella FAD3-1 gene is responsible for the biosynthesis of
trienoic acid and dienoic hydroxy fatty acids in seed oil. Ind Crops Prod, 2019, 134: 257–264.
[31] Li X N,
Xue L L, Liu H, Qu P Y, Zhao H H, Luo D D, Wang X B, Huang B Y, Zhang M N, Li C
Y, et al. AhFAD3-A01 enhances α-linolenic acid content in Arabidopsis and peanut. Gene,
2025, 949: 149336.
[32] Wakita Y, Otani M, Hamada T, Mori
M, Iba K, Shimada T. A tobacco microsomal ω-3 fatty acid desaturase gene
increases the linolenic acid content in transgenic sweet potato (Ipomoea batatas). Plant Cell Rep, 2001, 20: 244–249.
[33] 张嘉锡. 油茶亚麻酸合成关键基因CoFAD7的功能分析和优异等位变异挖掘. 中南林业科技大学硕士毕业论文, 湖南长沙, 2024.
Zhang J X. Functional Analysis of CoFAD7, A Key Gene for the Linolenic
Acid Synthesis in Camellia Oleifera , and Mining of Excellent Allelic
Variation. MS Thesis of Central South University of Forestry & Technology, Changsha, Hunan,
China, 2024 (in Chinese with English abstract).
[34] Andreu
V, Collados R, Testillano P S, Risueño M D, Picorel R, Alfonso M. In situ molecular identification of the
plastid omega3 fatty acid desaturase FAD7 from soybean: evidence of thylakoid
membrane localization. Plant Physiol,
2007, 145: 1336–1344.
[35] Andreu
V, Lagunas B, Collados R, Picorel R, Alfonso M. The GmFAD7 gene family from
soybean: identification of novel genes and tissue-specific conformations of the
FAD7 enzyme involved in desaturase activity. J Exp Bot, 2010, 61: 3371–3384.
[36] Peng Z
Y, Ruan J, Tian H Y, Shan L, Meng J J, Guo F, Zhang Z M, Ding H, Wan S B, Li X
G. The family of peanut fatty acid desaturase genes and a functional analysis
of four ω-3 AhFAD3 members. Plant Mol
Biol Report, 2020, 38: 209–221.
[37] Zou J, Abrams G D, Barton D L,
Taylor D C, Pomeroy M K, Abrams S R. Induction of lipid
and oleosin biosynthesis by (+)-abscisic acid and its metabolites in
microspore-derived embryos of Brassica
napus L.cv Reston (biological responses in the presence of 8 [prime]-hydroxyabscisic acid). Plant Physiol, 1995, 108: 563–571.
[38] Yamamoto K T. Further
characterization of auxin-regulated mRNAs in hypocotyl sections of mung bean [Vigna radiata (L.) Wilczek]: sequence
homology to genes for fatty-acid desaturases and atypical
late-embryogenesis-abundant protein, and the mode of expression of the mRNAs. Planta, 1994, 192: 359–364.
[39] Berberich T, Harada M, Sugawara K, Kodama H, Iba K,
Kusano T. Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to
temperature. Plant Mol Biol, 1998,
36: 297–306.
[40] Nishiuchi T, Hamada T, Kodama H, Iba K. Wounding changes
the spatial expression pattern of the Arabidopsis
plastid omega-3 fatty acid
desaturase gene (FAD7) through
different signal transduction pathways. Plant
Cell, 1997, 9: 1701–1712.
[41] Kirsch C, Takamiya-Wik M, Reinold S, Hahlbrock K, Somssich I E. Rapid,
transient, and highly localized induction of plastidial omega-3 fatty acid
desaturase mRNA at fungal infection sites in Petroselinum crispum. Proc
Natl Acad Sci USA, 1997, 94: 2079–2084.
[42] Hajiahmadi Z, Abedi A, Wei H, Sun W B, Ruan H H, Zhuge
Q, Movahedi A. Identification, evolution, expression, and docking studies of
fatty acid desaturase genes in wheat (Triticum
aestivum L.). BMC Genomics,
2020, 21: 778.
[43] Xue Y F, Chen B J, Win A N, Fu C, Lian J P, Liu X, Wang
R, Zhang X C, Chai Y R. Omega-3 fatty acid desaturase gene family from two ω-3
sources, Salvia hispanica and Perilla frutescens: Cloning,
characterization and expression. PLoS One,
2018, 13: e0191432.
[44] Zoong Lwe Z S, Welti R, Anco D, Naveed S, Rustgi S,
Narayanan S. Heat stress elicits remodeling in the anther lipidome of peanut. Sci Rep, 2020, 10: 22163.
[45] 刘婷婷. 玉米苗期干旱复水过程中叶片膜脂响应与干旱适应能力的关系. 中国科学院大学硕士毕业论文, 北京, 2018.
Liu T T. The Relationship between Membrane Lipids Alteration and Drought
Adaptation in Leaves of Maize Seedlings. MS Thesis of University of Chinese Academy of Sciences, Beijing, China, 2018 (in Chinese
with English abstract).
[46] Zaborowska Z, Starzycki M, Femiak I, Swiderski M,
Legocki A B. Yellow lupine gene encoding stearoyl-ACP desaturase--organization, expression and
potential application. Acta Biochim Pol,
2002, 49: 29–42.
[47] Nagano M, Kakuta C, Fukao Y, Fujiwara M, Uchimiya H,
Kawai-Yamada M. Arabidopsis Bax
inhibitor-1 interacts with enzymes related to very-long-chain fatty acid
synthesis. J Plant Res, 2019, 132:
131–143.
|