Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 1882-1894.doi: 10.3724/SP.J.1006.2023.24172


Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress

WANG Hui-Wei(), ZHANG Xiang-Ge, LI Chun-Xin, XU Xin-Ran, HU Hai-Yan, ZHU Ya-Jing, WANG Yan, ZHANG Xin-You*()   

  1. Industrial Crop Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2022-08-01 Accepted:2022-10-10 Online:2023-07-12 Published:2022-10-24
  • Contact: *E-mail: haasz@126.com E-mail:whuiweiw@163.com;haasz@126.com
  • Supported by:
    The National Key Research and Development Project(2019YFD1002600);The Henan Major Science and Technology Project(211100110100);The Excellent Youth Science and Technology Fund of Henan Academy of Agricultural Sciences(2022YQ19)


Cyperus esculentus is a new industrial crop with the high comprehensive utilization value, which is a strongly resistant to stresses and has a great potential to grow in saline soil. In order to clarify its salt tolerance, five NaCl concentrations (0, 0.3%, 0.6%, 0.9%, and 1.2%) were set in this study to analyze the effects of NaCl stress on morphological and physiological indexes during germination and seedling growth. The results showed that the germination percentage, root length, and seedling height were less affected under 0.3% and 0.6% NaCl stresses. Meanwhile, the contents of indicator of membrane damage degree, malondialdehyde (MDA), and oxidative stress substance, hydrogen peroxide (H2O2), did not increase significantly. However, the contents of osmoregulation substances [glycine betaine (GB), and proline (Pro)] and the activities of antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] were significantly increased, and the damage of salt stress was less on the whole. However, under 0.9% and 1.2% NaCl stresses, the salt stress injury was very obvious and the germination and seedling growth of Cyperus esculentus were severely inhibited. In order to further identify the genes related to salt tolerance, RNA-seq technology was used to detect the gene expression in roots under 0, 0.3%, and 0.6% NaCl stresses. 24 GO terms mainly related to oxidoreduction, transmembrane transport, chitin hydrolysis was significantly enriched, among which 15 significantly up-regulated genes were involved, through gene differential expression analysis, weighted gene co-expression network analysis (WGCNA), and GO enrichment analysis. Among them, DN23985_c0_g1, DN2960_c0_g1, and DN8384_c1_g1 encoded zeaxanthin epoxidase, L-ascorbate peroxidase, and glutathione S-transferase, respectively, which had antioxidant effects and participated in antioxidant regulation. Both DN21785_c1_g1 and DN6596_c0_g1 encoded amino acid transporters, which may enhance osmoregulation by accumulating small amino acid molecules such as Pro. DN14393_c0_g1 encoded chitinase, which hydrolyzed chitin and promoted plant response to stress. In this study, it was confirmed that Cyperus esculentus had a good salt tolerance under 0.6% or less NaCl stress, and the salt-tolerance related genes were further screened out, which provided an important reference for the cultivation in saline soil and the breeding of salt-tolerant varieties.

Key words: Cyperus esculentus, salt tolerance, NaCl stress, transcriptomics, salt-tolerance related gene

Fig. 1

Effects of different NaCl concentrations on germination of Cyperus esculentus tubers A: germination morphology of Cyperus esculentus tubers under NaCl stress with different concentrations. B: the germination rate and salt tolerance index of Cyperus esculentus tubers under NaCl stress with different concentrations. Bar: 2 cm. YYS2: Yuyousha 2; YYS3: Yuyousha 3."

Fig. 2

Effects of different NaCl concentrations on seedling growth of Cyperus esculentus A: the characteristics of seedling growth of YYS2 under NaCl stress with different concentrations. B: the characteristics of seedling growth of YYS3 under NaCl stress with different concentrations. Bar: 5 cm. YYS2: Yuyousha 2; YYS3: Yuyousha 3."

Table 1

Effects on seedling height and root length of two Cyperus esculentus varieties under NaCl stress"

NaCl stress treatment
苗高Seedling height (cm) 根长Root length (cm)
Yuyousha 2
Yuyousha 3
Yuyousha 2
Yuyousha 3
0 (CK) 18.00 ± 1.16 a 15.75 ± 1.25 a 16.56 ± 1.37 a 19.28 ± 1.68 a
0.3% 15.26 ± 1.08 b 13.53 ± 1.17 b 14.16 ± 1.12 b 17.54 ± 1.34 b
0.6% 14.65 ± 0.96 b 13.56 ± 0.85 b 13.53 ± 1.03 c 14.56 ± 1.23 c
0.9% 12.92 ± 1.12 c 11.50 ± 1.23 c 12.85 ± 0.93 d 13.26 ± 1.08 c
1.2% 10.93 ± 0.84 d 9.75 ± 0.99 d 8.92 ± 0.78 e 9.58 ± 0.93 d

Fig. 3

Variation of physiological indexes of Cyperus esculentus roots under different NaCl concentrations * represents significant difference at P < 0.05. YYS2: Yuyousha 2; YYS3: Yuyousha 3."

Table 3

Statistic analysis of transcriptome sequencing data"

Total reads number
Clean reads number
Mapped ratio (%)
CK-1 46,067,738 42,556,954 92.37 97.55 93.77 30,191
CK-2 42,308,034 39,254,802 92.78 97.71 94.06
CK-3 50,830,434 47,129,824 92.71 97.59 93.79
0.3%-1 57,271,072 53,011,182 92.56 97.70 93.93
0.3%-2 43,325,228 40,182,946 92.74 97.76 94.00
0.3%-3 52,217,758 48,377,604 92.64 97.48 93.43
0.6%-1 43,209,368 40,018,352 92.61 97.59 93.73
0.6%-2 46,496,392 43,155,836 92.81 97.52 93.58
0.6%-3 41,707,820 38,775,376 92.96 97.39 93.37

Fig. 4

Correlation analysis of gene relative expression levels among duplicate samples Red box represents three replicates under the same treatment."

Fig. 5

Differential relative expression level of genes under different concentrations of NaCl stress A: the number of DEGs in different treatment groups (0.3% vs CK and 0.6% vs CK); B: Venn analysis of DEGs between different treatment groups."

Fig. 6

Screening of salt tolerance-related genes A: the WGCNA based on superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glycine betaine (GB), and proline (Pro). Each row represents a module and each column represents a trait; the correlation coefficient and the corresponding P-value are shown in each rectangular box. B: Venn analysis between the overlapped DEGs and the salt tolerance-related yellow module genes."

Fig. 7

GO enrichment analysis of salt tolerance-related genes A: the bubble diagram of GO enrichment based on MF (molecular function). B: the relative expression level and functional annotation of all genes in significantly enriched GO terms."

[1] Zhu J K. Plant salt tolerance. Trends Plant Sci, 2001, 6: 66-71.
doi: 10.1016/s1360-1385(00)01838-0 pmid: 11173290
[2] Shrivastava P, Kumar R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci, 2015, 22: 123-131.
doi: 10.1016/j.sjbs.2014.12.001 pmid: 25737642
[3] 姚荣江, 杨劲松, 刘广明. 东北地区盐碱土特征及其农业生物治理. 土壤, 2006, 38: 256-262.
Yao S J, Yang J S, Liu G M. Characteristics and agro-biological management of saline-alkalized land in Northeast China. Soils, 2006, 38: 256-262. (in Chinese with English abstract)
[4] 俞仁培, 陈德明. 我国盐渍土资源及其开发利用. 土壤通报, 1999, 30: 158-159.
Yu R P, Chen D M. The development and utilization of saline soil resources. Chin J Soil Sci, 1999, 30: 158-159. (in Chinese with English abstract)
[5] 张英虎, 沈会权, 周春霖, 栾海业, 臧慧, 乔海龙, 陈健, 陶红, 陈和. 大麦种质资源株高和耐盐性分析. 江苏农业科学, 2018, 46(19): 56-58.
Zhang Y H, Shen H Q, Zhou C S, Luan H Y, Zang H, Qiao H L, Chen J, Tao H, Chen H. Analysis on plant height and salt tolerance of barley germplasm resources. Jiangsu Agric Sci, 2018, 46(19): 56-58. (in Chinese with English abstract)
[6] 杨帆, 朱文学. 油莎豆研究现状及展望. 粮食与油脂, 2020, 33(7): 4-6.
Yang F, Zhu W X. Research status and prospect of Cyperus esculentus. Grains Oils, 2020, 33(7): 4-6.. (in Chinese with English abstract)
[7] 王瑞元, 王晓松, 相海. 一种多用途的新兴油料作物——油莎豆. 中国油脂, 2019, 44(1): 1-4.
Wang R Y, Wang X S, Xiang H. A new multiuse oil crops—Cyperus esculentus. China Oils Fats, 2019, 44(1): 1-4. (in Chinese)
[8] 刘玉兰, 王小宁, 舒垚, 马宇翔. 不同产地油莎豆性状及组成分析研究. 中国油脂, 2020, 45(8): 125-129.
Liu Y L, Wang X N, Shu Y, Ma Y X. Character and composition of Cyperus esculentus from different origins. China Oils Fats, 2020, 45(8): 125-129. (in Chinese with English abstract)
[9] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar cultivars. Environ Exp Bot, 2002, 47: 39-50.
doi: 10.1016/S0098-8472(01)00109-5
[10] 张相锋, 杨晓绒, 焦子伟. 植物耐盐性评价研究进展及评价策略. 生物学杂志, 2018, 35(6): 91-94.
Zhang X F, Yang X R, Jiao Z W. Research progress of salt tolerance evaluation in plants and tolerance evaluation strategy. J Biol, 2018, 35(6): 91-94. (in Chinese with English abstract)
[11] 徐涵, 郭容芳, 张玉苗, 李蓉, 肖学宸, 曹子谊, 王姗姗, 张可轩, 陈晓慧, 陈晓东, 陈裕坤, 叶炜, 叶开温, 林玉玲, 赖钟雄. 植物耐盐性: 演化和盐基因组学. 热带作物学报, 2020, 41: 1979-1989.
Xu H, Guo R F, Zhang Y M, Li R, Xiao X C, Cao Z Y, Wang S S, Zhang K X, Chen X H, Chen X D, Chen Y K, Ye W, Ye K W, Lin Y L, Lai Z X. Plant halotolerance: evolution and halogenomics. Chin J Trop Crops, 2020, 41: 1979-1989. (in Chinese with English abstract)
[12] 张晓婷, 王雪松, 贾文飞, 徐振彪, 王颖, 吴林. 植物在盐处理下的研究进展. 北方园艺, 2021, (6): 137-143.
Zhang X T, Wang X S, Jia W F, Xu Z B, Wang Y, Wu L. Research progress of plants under salt treatment. Northern Hortic, 2021, (6): 137-143. (in Chinese with English abstract)
[13] Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics, 2014, 2014: 701596-701614.
[14] Zhao C, Zhang H, Song C, Zhu J K, Shabala S. Mechanisms of plant responses and adaptation to soil salinity. Innovation, 2020, 1: 100017.
[15] Yousefirad S, Soltanloo H, Ramezanpour S S, Nezhad K Z, Shariati V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS One, 2020, 15: e0229513.
[16] Luo Y, Reid R, Freese D, Li C B, Watkins J, Shi H Z, Zhang H Y, Loraine A, Song B H. Salt tolerance response revealed by RNA-seq in a diploid halophytic wild relative of sweet potato. Sci Rep, 2017, 7: 9624.
doi: 10.1038/s41598-017-09241-x pmid: 28852001
[17] Yong H Y, Zou Z W, Kok E P, Kwan B H, Chow K, Nasu S, Nanzyo M, Kitashiba H, Nishio T. Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int, 2014, 2014: 467395.
[18] Shen X Y, Wang Z, Song X, Xu J, Jiang C, Zhao Y, Ma C, Zhang H. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis. Plant Mol Biol, 2014, 86: 303-317.
doi: 10.1007/s11103-014-0230-9
[19] Barbieri G, Stefanello R, Menegaes J, Munareto J, Nunes U. Seed germination and initial growth of quinoa seedlings under water and salt stress. J Agric Sci, 2019, 11(15): 153.
doi: 10.1002/(ISSN)1097-0010
[20] 申吴燕, 吐尔逊娜依·热依木, 雪热提江·麦提努日, 邓婷婷, 黄长福, 王梦, 马伊王利, 麻浩. 12种植物萌发期耐盐性筛选. 新疆农业科学, 2020, 57: 1912-1920.
doi: 10.6048/j.issn.1001-4330.2020.10.017
Shen W Y, Tuerxunnayi R, Xueretijiang M, Deng T T, Huang C F, Wang M, Ma Y L, Ma H. Selection of salt tolerance of 12 forage species in Xinjiang during germination period. Xinjiang Agric Sci, 2020, 57: 1912-1920. (in Chinese with English abstract)
doi: 10.6048/j.issn.1001-4330.2020.10.017
[21] 郝雪峰, 高惠仙, 燕平梅, 李晓春, 李珊珊. 盐胁迫对大豆种子萌发及生理的影响. 湖北农业科学, 2013, 52: 1263-1266.
Hao X F, Gao H X, Yan P M, Li X C, Li S S. Effects of salt stress on seed germination and physiology of soybean. Hubei Agric Sci, 2013, 52: 1263-1266. (in Chinese with English abstract)
[22] 张相锋, 杨晓绒, 焦子伟. 植物耐盐性评价研究进展及评价策略. 生物学杂志, 2018, 5(6): 91-94.
Zhang X F, Yang X R, Jiao Z W. Advances and strategies of salt tolerance evaluation in plants. J Biol, 2018, 5(6): 91-94. (in Chinese with English abstract)
[23] 付恩光, 刘宏伟, 马震, 郭旭. 山东寿光北部地区土壤盐渍化特征与现状评价. 地质调查与研究, 2016, 39: 300-304.
Fu E G, Liu H W, Ma Z, Guo X. Characteristics and status assessment of soil salinization in the northern Shouguang area, Shandong province. Geol Surv Res, 2016, 39: 300-304. (in Chinese with English abstract)
[24] 张俊华, 贾萍萍, 孙媛, 贾科利. 基于高光谱特征的盐渍化土壤不同土层盐分离子含量预测. 农业工程学报, 2019, 35(12): 106-115.
Zhang J H, Jia P P, Sun Y, Jia K L. Prediction of salinity ion content in different soil layers based on hyperspectral data. Trans CSAE, 2019, 35(12):106-115. (in Chinese with English abstract)
[25] 高宗军, 任晓辉, 安永会, 吴玺, 赫明浩, 刘久潭. 黑河中游明花乡北部盐渍化地区土壤盐分特征分析. 北方园艺, 2020, (21): 71-79.
Gao Z J, Ren X H, An Y H, Wu X, He M H, Liu J T. Analysis of soil salinity characteristics in salinized areas of northern Minghua township in the middle reaches of Heihe River. Northern Hortic, 2020, (21): 71-79. (in Chinese with English abstract)
[26] 唐晓倩, 刘广全. NaCl胁迫对圆柏幼苗生长和离子吸收及分配的影响. 西北植物学报, 2017, 37: 1372-1380.
Tang X Q, Liu G Q. Effects of NaCl stress on the growth, ion absorption and distribution of Juniperus chinensis seedlings. Acta Bot Boreali-Occident Sin, 2017, 37: 1372-1380. (in Chinese with English abstract)
[27] 王亦菲, 杜志钊, 马运涛, 许建华, 余飞宇, 陆瑞菊, 刘成洪, 陈志伟. NaCl预处理对糯玉米发芽期耐盐性的影响. 上海农业学报, 2020, 36(3): 20-24.
Wang Y F, Du Z Z, Ma Y T, Xu J H, Yu F Y, Lu R J, Liu C H, Chen Z W. Effects of seed pretreatments with different NaCl concentrations on salt tolerance in two waxy maize varieties under different salt stresses at germination stage. Acta Agric Shanghai, 2020, 36(3): 20-24. (in Chinese with English abstract)
[28] 杨春葆, 原红军. NaCl胁迫西藏青稞芽期幼苗根系生长特性及其耐盐性分析. 广东农业科学, 2021, 48(2): 26-32.
Yang C B, Yuan H J. Analysis of root growth characteristics and salt resistance of Tibetan highland barley at bud stage under NaCl stress. Guangdong Agric Sci, 2021, 48(2): 26-32. (in Chinese with English abstract)
[29] 陈敏, 李海云, 吕福堂. 植物耐盐性研究进展. 聊城大学学报(自然科学版), 2011, 24(3): 47-50.
Chen M, Li H Y, Lyu F T. Research advances in mechanisms of plant salinity tolerance. J Liaocheng Univ (Nat Sci Edn), 2011, 24(3): 47-50. (in Chinese with English abstract)
[30] 邵桂花. 大豆种质资源耐盐性田间鉴定方法. 作物杂志, 1986, (3): 36-37.
Shao G H. Field identification method for salt tolerance of soybean germplasm resources. Crops, 1986, (3): 36-37. (in Chinese with English abstract)
[31] 姚佳, 刘信宝, 郭米山, 王晓彤, 曹冲, 李志华. 不同浓度NaCl胁迫对扁蓿豆苗期生长及生理指标的影响. 草地学报, 2014, 22: 564-571.
doi: 10.11733/j.issn.1007-0435.2014.03.019
Yao J, Liu X B, Guo M S, Wang X T, Cao C, Li Z H. Effects of different NaCl concentrations on the growth and physiological indexes of Melilotoides ruthenica seedlings. Acta Agrest Sin, 2014, 22: 564-571. (in Chinese with English abstract)
[32] 周璐璐, 伏兵哲, 许冬梅, 陈丽萍, 吴小娟, 高雪芹. 盐胁迫对沙芦草萌发特性影响及耐盐性评价. 草业科学, 2015, 32: 1252-1259.
Zhou L L, Fu B Z, Xu D M, Chen L P, Wu X J, Gao X Q. Effects of salt stress on germination characteristics of Agropyron mongolicum and salt-tolerance evaluation. Pratacult Sci, 2015, 32: 1252-1259. (in Chinese with English abstract)
[33] 杨宏伟, 刘文瑜, 沈宝云, 李朝周. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017, 26(8): 146-153.
doi: 10.11686/cyxb2016394
Yang X W, Liu W Y, Shen B Y, Li C Z. Seed germination and physiological characteristics of Chenopodium quinoa under salt stress. Acta Pratacult Sin, 2017, 26(8): 146-153. (in Chinese with English abstract)
[34] 慈敦伟, 张智猛, 丁红, 宋文武, 符方平, 康涛, 戴良香. 花生苗期耐盐性评价及耐盐指标筛选. 生态学报, 2015, 35: 805-814.
Ci D W, Zhang Z M, Ding H, Song W W, Fu F P, Kang T, Dai L X. Evaluation and selection indices of salinity tolerance in peanut seedling. Acta Ecol Sin, 2015, 35: 805-814. (in Chinese with English abstract)
[35] 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展. 内蒙古民族大学学报(自然科学版), 2014, 29: 315-318.
Meng F H, Wang C, Xu S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance. J Inner Mongolia Univ Nationalities (Nat Sci Edn), 2014, 29: 315-318. (in Chinese with English abstract)
[36] 王聪, 朱月林, 杨立飞, 杨恒山. NaCl胁迫对菜用大豆种子膨大过程中抗氧化系统及渗透调节物质的影响. 西北植物学报, 2012, 32: 297-305.
Wang C, Zhu Y L, Yang L F, Yang H S. Effects of NaCl stress on antioxidant system and osmotic regulation substances during seed filling period. Acta Bot Boreali-Occident Sin, 2012, 32: 297-305. (in Chinese with English abstract)
[37] 任丽丽, 任春明, 赵自国. 植物耐盐性研究进展. 山西农业科学, 2010, 38(5): 87-90.
Ren L L, Ren C M, Zhao Z G. Research advances in plant salt-tolerance. J Shanxi Agric Sci, 2010, 38(5): 87-90. (in Chinese with English abstract)
[38] 宋丹, 张华新, 耿来林, 刘涛, 白淑兰. 植物耐盐种质资源评价及耐盐生理研究进展. 世界林业研究, 2006, 19(3): 27-32.
Song D, Zhang H X, Geng L L, Liu T, Bai S L. Advances in assessment of salt tolerance and physiological mechanism in plants. World For Res, 2006, 19(3): 27-32. (in Chinese with English abstract)
[39] Qi W C, Zhang L, Xu H B, Wang L, Jiao Z. Physiological and molecular characterization of the enhanced salt tolerance induced by low-dose gamma irradiation in Arabidopsis seedlings. Biochem Biophys Res Commun, 2014, 450: 1010-1015.
doi: 10.1016/j.bbrc.2014.06.086
[40] 王军, 李筠, 王龙, 任立凯, 刘耀鸿, 迟铭, 浦汉春. 不同基因型小麦品种(系)耐盐性筛选. 江苏农业科学, 2009, (3): 77-79.
Wang J, Li Y, Wang L, Ren L K, Liu Y H, Chi M, Pu H C. Screening of salt tolerance of wheat varieties (lines) of different genotypes. Jiangsu Agric Sci, 2009, (3): 77-79. (in Chinese with English abstract)
[41] 辛承松, 罗振, 孔祥强, 王江伟. 不同基因型陆地棉亲本及其杂交后代的耐盐性差异. 棉花学报, 2011, 23: 235-240.
Xin C S, Luo Z, Kong X Q, Wang J W. Salt tolerant variation among parents of different genotype upland cotton and their hybrids. Cotton Sci, 2011, 23: 235-240. (in Chinese with English abstract)
[42] Shi Y L, Zhang R, Wu X P, Meng Z G, Guo S D. Cloning and characterization of a somatic embryogenesis receptor-like kinase gene in cotton (Gossypium hirsutum). J Integr Agric, 2012, 11: 898-909.
doi: 10.1016/S2095-3119(12)60080-X
[43] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 41: 437-448.
[44] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报, 2022, 48: 1583-1611.
doi: 10.3724/SP.J.1006.2022.14121
Li P T, Zhao Z L, Huang C H, Huang G Q, Xu L N, Deng Z H, Zhang Y, Zhao X W. Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA. Acta Agron Sin, 2022, 48: 1583-1600. (in Chinese with English abstract)
[45] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因. 作物学报, 2022, 48: 1645-1657.
doi: 10.3724/SP.J.1006.2022.14107
Han S, Huo Y Q, Li H, Han H R, Hou S Y, Sun Z X, Han Y H, Li H Y. Identification of regulatory genes related to flavonoids synthesis by weighted gene correlation network analysis in the panicle of foxtail millet. Acta Agron Sin, 2022, 48: 1645-1657. (in Chinese with English abstract)
[46] 金伊楠, 许自成, 张环纬, 王发展, 陈思昂, 熊亚南, 魏烁果. 烟草盐胁迫与耐盐相关基因的研究进展. 中国烟草学报, 2018, 24(6): 112-118.
Jin Y N, Xu Z C, Zhang H W, Wang F Z, Chen S A, Xiong Y N, Wei S G. Research progress on salt stress of and salt-resistance-related genes in tobacco. Acta Tabac Sin, 2018, 24(6): 112-118. (in Chinese with English abstract)
[47] 郑崇珂, 窦玉慧, 解丽霞, 谢先芝. 水稻耐盐相关基因的研究进展. 分子植物育种, 2017, 15: 4411-4422.
Zheng C K, Dou Y H, Xie L X, Xie X Z. Research progress on the genes related to salt tolerance in rice. Mol Plant Breed, 2017, 15: 4411-4422. (in Chinese with English abstract)
[48] 赖伟, 何鹏, 徐明远, 陈梁海, 刘世强, 杨寅桂. 黄瓜耐盐性与耐盐相关基因的研究进展. 中国蔬菜, 2020, (6): 16-22.
Lai W, He P, Xu M Y, Chen L H, Liu S Q, Yang Y G. Research progress on cucumber salt tolerance and salt tolerance related genes. China Vegetables, 2020, (6): 16-22. (in Chinese with English abstract)
[49] 张秋玉. 盐胁迫下番茄玉米黄质环氧化酶基因与光保护关系的研究. 山东农业大学硕士学位论文, 山东泰安, 2012.
Zhang Q Y. Analysis of the Relationship between LeZE and Photoprotection under Salt Stress. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2012. (in Chinese with English abstract)
[50] 孙卫红, 李风, 束德峰, 董新纯, 杨秀梅, 孟庆伟. 转番茄正义抗坏血酸过氧化物酶基因提高烟草耐盐能力. 中国农业科学, 2009, 42: 1165-1171.
Sun W H, Li F, Shu D F, Dong X C, Yang X M, Meng Q W. Tobacco plants transformed with tomato sense LetAPX enhanced salt tolerance. Sci Agric Sin, 2009, 42: 1165-1171. (in Chinese with English abstract)
[51] 戚元成, 张慧, 赵彦修. 植物谷胱甘肽转移酶和盐胁迫. 山东师范大学学报(自然科学版), 2002, (2): 71-75.
Qi Y C, Zhang H, Zhao Y X. Plant glutathione S-transferases and salt stress. J Shandong Norm Univ (Nat Sci Edn), 2002, (2): 71-75. (in Chinese with English abstract)
[52] 杨晓慧, 蒋卫杰, 魏珉, 余宏军. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报(自然科学版), 2006, (2): 302-305.
Yang X H, Jiang W J, Wei M, Yu H J. Review on plant response and resistance mechanism to salt stress. J Shandong Agric Univ (Nat Sci Edn), 2006, (2): 302-305. (in Chinese with English abstract)
[53] Deinlein U, Stephan A B, Horie T, Luo W, Xu G, Schroeder J I. Plant salt-tolerance mechanisms. Trends Plant Sci, 2014, 19: 371-379.
doi: 10.1016/j.tplants.2014.02.001 pmid: 24630845
[54] 王志英, 张福丽, 王占斌. 小黑杨转几丁质酶基因及酶活性. 林业科学, 2010, 46(2): 147-151.
Wang Z Y, Zhang F L, Wang Z B. Transformation of chitinase gene into Populus simonii × P. nigra and chitinase activity of transgenic plants. Sci Silvae Sin, 2010, 46(2): 147-151. (in Chinese with English abstract)
[55] 周桦楠, 孙思凡, 杨颖慧, 聂楠, 何绍贞, 刘庆昌, 翟红. 甘薯几丁质酶基因IbChi的克隆及其耐盐性分析. 分子植物育种, 2022, 20: 2812-2820.
Zhou H N, Sun S F, Yang Y H, Nie N, He S Z, Liu Q C, Zhai H. Cloning and salt tolerance analysis of chitinase gene IbChi from sweet-potato. Mol Plant Breed, 2022, 20: 2812-2820. (in Chinese with English abstract)
[56] 周洁, 黄婧. 柳树几丁质酶基因SlChi的克隆和功能验证. 分子植物育种, 2018, 16: 8013-8021.
Zhou J, Huang J. Cloning and functional identification of chitinase gene SlChi in Salix. Mol Plant Breed, 2018, 16: 8013-8021. (in Chinese with English abstract)
[1] DING Hong-Yan, FENG Xiao-Xi, WANG Bai-Yu, ZHANG Ji-Sen. Evolution and relative expression pattern of LRRII-RLK gene family in sugarcane Saccharum spontaneum [J]. Acta Agronomica Sinica, 2023, 49(7): 1769-1784.
[2] LI Hui, LU Yi-Ping, WANG Xiao-Kai, WANG Lu-Yao, QIU Ting-Ting, ZHANG Xue-Ting, HUANG Hai-Yan, CUI Xiao-Yu. GmCIPK10, a CBL-interacting protein kinase promotes salt tolerance in soybean [J]. Acta Agronomica Sinica, 2023, 49(5): 1272-1281.
[3] XIA Xiu-Zhong, ZHANG Zong-Qiong, YANG Xing-Hai, ZHUANG Jie, ZENG Yu, DENG Guo-Fu, SONG Guo-Xian, HUANG Yu-Xiao, NONG Bao-Xuang, LI Dan-Ting. Genome wide association study of salt tolerance at the germination stage for core Germplasm of rice landrace in Guangxi, China [J]. Acta Agronomica Sinica, 2022, 48(8): 2007-2015.
[4] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[5] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[6] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[7] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[8] XIN Zheng-Qi, DAI Huan-Huan, XIN Yu-Feng, HE Xiao, XIE Hai-Yan, WU Neng-Biao. Effects of exogenous 2,4-Epibrassinolide on nitrogen metabolism and TAs metabolism of Atropa belladonna L. under NaCl stress [J]. Acta Agronomica Sinica, 2021, 47(10): 2001-2011.
[9] LI Jian, WANG Yi-Ru, ZHANG Ling-Xiao, SUN Ming-Hao, QIN Yang, ZHENG Jun. Functional analysis of ZmCIPK24-2 gene from maize in response to salt stress [J]. Acta Agronomica Sinica, 2020, 46(9): 1351-1358.
[10] Li-Ge BAO,Ping LU,Meng-Sha SHI,Yue XU,Min-Xuan LIU. Screening and identification of Chinese sorghum landraces for salt tolerance at germination and seedling stages [J]. Acta Agronomica Sinica, 2020, 46(5): 734-744.
[11] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[12] LIU Xie-Xiang,CHANG Ru-Zhen,GUAN Rong-Xia,QIU Li-Juan. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm [J]. Acta Agronomica Sinica, 2020, 46(01): 1-8.
[13] SUN Xian-Jun,JIANG Qi-Yan,HU Zheng,ZHANG Hui-Yuan,XU Chang-Bing,DI Yi-Huan,HAN Long-Zhi,ZHANG Hui. Screening and identification of salt-tolerant rice germplasm in whole growth period [J]. Acta Agronomica Sinica, 2019, 45(11): 1656-1663.
[14] Jing DONG,Xiao-Ping LU,Kun-Ming ZHANG,Chun-Lei XUE,Rui-Xia ZHANG. Analysis of SNP and Allele-specific Expression in Transcriptome of Sorghum bicolor × Sorghum sudanense and Their Parents [J]. Acta Agronomica Sinica, 2018, 44(12): 1809-1817.
[15] PENG Zhen,HE Shou-Pu,GONG Wen-Fang,PAN Zhao-E,JIA Yin-Hua,LU Yan-Li,DU Xiong-Ming. Transcriptome Analysis of Transcription Factors Expression PatterninUpland Cotton Seedlings under NaCl Stress [J]. Acta Agron Sin, 2017, 43(03): 354-370.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .