Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Metabolomic analysis of wild oats and cultivated oats

Guo Ying1,Zhang Da-Xiao1,Chen Mei-Lin1,Chen Guan-Yu1,Liu Jian-Min1,Yang Xiao-Hong2,Han Bing1,*   

  1. 1 College of Pratacultural Science, Inner Mongolia Agricultural University / Key Laboratory of Grassland Resources, Ministry of Education / Key Laboratory of Innovation and Utilization of Wheat Germplasm Resources, Inner Mongolia Autonomous Region Higher Education Institutions, Hohhot 010018, Inner Mongolia, China; 2 Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
  • Received:2025-05-07 Revised:2025-11-18 Accepted:2025-11-18 Published:2025-11-28
  • Contact: HAN Bing, E-mail: hb_nmg@163.com E-mail:2587864967@qq.com
  • Supported by:
    This study was supported by the Key Project of the Natural Science Foundation of Inner Mongolia (2025ZD022), the National Key Research and Development Program of China (2022YFE0119800), the Natural Science Foundation of Inner Mongolia (2024SHZR2466), the First-Class Discipline Research Program of Inner Mongolia Autonomous Region (YLXKZX-NND-003), and the Platform Project for Grassland Science (BR221207, BR221036).

Abstract:

A wide-targeted metabolomics approach was employed to investigate differences in leaf metabolites between wild and cultivated oats 15 days after heading. A total of 1821 metabolites were detected in both wild and cultivated oats, among which 318 were identified as differential metabolites, spanning 13 categories including phenolic acids (65), flavonoids (59), and amino acids and their derivatives (34). The relative abundances of these metabolites were quantified. The results showed that flavonoids represented the most diverse group, while amino acids and their derivatives exhibited the highest overall abundance. Two metabolites—isorhamnetin-7-O-glucoside (santonin) and apigenin-7-O-(2''-glucuronidyl) glucuronide—were unique to wild oats, whereas 3'-glucosyl-6,7-dihydroxy-N-methyl-benzyltetrahydroisoquinoline, glucosylshikimic acid, and myristoleic acid were unique to cultivated oats. Several detected metabolites, including caffeic acid phenethyl ester, salidroside, and chrysin, are known for their antioxidant, anti-inflammatory, anti-tumor, and antibacterial activities, and their levels were higher in wild oats than in cultivated oats. Fourteen oat alkaloids were identified in both types, with 13 of them reaching their highest concentrations in local naked oat varietyThis study provides a valuable reference for the scientific introduction and comprehensive utilization of wild oat resources.

Key words: wild oats, cultivated oats, wide-targeted metabolomics, differential metabolites, medicinal value

[1] 石振兴, 朱莹莹, 任贵兴. 燕麦中减肥降脂的功能成分研究进展. 食品安全质量检测学报, 2018, 9: 1567–1571.
Shi Z X, Zhu Y Y, Ren G X. Research on the anti-obesity functional components of oat. J Food Saf Qual, 2018, 9: 1567–1571 (in Chinese with English abstract).

[2] 佚名. 食知识与保健功能(). 黑龙江粮食, 2006(1): 44.
Yi M. Food knowledge and health care function (1). Heilongjiang Grain, 2006(1): 44 (in Chinese).

[3] 李明李吉宁刘华六盘山中药材田间杂草种类及药用植物资源宁夏农林科技, 2019, 60(9): 54–63.
Li M, Li J N, Liu H, et al. Species of field weeds and medicinal plant resources in traditional Chinese medicine planting areas of Liupan Mountain. Ningxia J Agric For Sci Technol, 2019, 60(9): 54–63 (in Chinese with English abstract).

[4] 赵国平, 戴慎陈仁寿. 中药大辞典. 上海: 上海科学技术出版社2006.
Zhao G P, Dai S, Chen R S, et al. Dictionary of Traditional Chinese Medicine. Shanghai: Shanghai Science and Technology Press, 2006 (in Chinese).

[5] Quiñones-Muñoz T A, Villanueva-Rodríguez S J, Torruco-Uco J G. Nutraceutical properties of Medicago sativa L., Agave spp., Zea mays L. and Avena sativa L.: a review of metabolites and mechanisms. Metabolites, 2022, 12: 806.

[6] 陈志敏, 胡昌江, 郑午, . 代谢组学在中药炮制机制研究中的应用概述. 中华中医药学刊, 2018, 36: 275–279.
Chen Z M, Hu C J, Zheng W, et al. Overview on application of metabonomics in study on processing mechanism of traditional Chinese materia Medica. Chin Arch Tradit Chin Med, 2018, 36: 275–279 (in Chinese with English abstract).

[7] Chen W, Gong L, Guo Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant, 2013, 6: 1769–1780.

[8] 霍冬敖, 田瑞丰, 任永权, . 基于UPLC-MS/MS技术的野生及栽培韭菜籽的代谢组学研究. 广西植物, 2022, 42: 1995–2006.
Huo D A, Tian R F, Ren Y Q, et al. UPLC-MS/MS-based metabolomic characterization and contrastive analysis between Allium wallichii and A. tuberosum seeds. Guihaia, 2022, 42: 1995–2006 (in Chinese with English abstract).

[9] 兰天, 段国珍, 祁有朝, . 红果枸杞和黄果枸杞广泛靶向代谢组学分析. 食品工业科技, 2024, 45(24): 9–20.
Lan T, Duan G Z, Qi Y C, et al. Extensively targeted metabolomics analysis of red and yellow wolfberries. Sci Technol Food Ind, 2024, 45(24): 9–20 (in Chinese with English abstract).

[10] 王嘉, 赵玉姣, 彭华胜. 基于广泛靶向代谢组学的何首乌块根和叶片代谢物差异分析. 中国中药杂志, 2024, 49: 3484–3492.
Wang J, Zhao Y J, Peng H S. Widely targeted metabolomics reveals differential metabolites between root Tuber and leaf of Fallopia multiflora. China J Chin Mater Med, 2024, 49: 3484–3492 (in Chinese with English abstract).

[11] Pei B, Sun J. Pinocembrin alleviates cognition deficits by inhibiting inflammation in diabetic mice. J Neuroimmunol, 2018, 314: 42–49.

[12] Chen X L, Wan W G, Ran Q, et al. Pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling. Eur J Pharmacol, 2022, 920: 174799.

[13] Naz S, Imran M, Rauf A, et al. Chrysin: pharmacological and therapeutic properties. Life Sci, 2019, 235: 116797.

[14] 周禹柠, 徐培杰, 邓楚凡, . 白杨素通过SIRT1/AMPK信号通路缓解乙醇诱导的酒精性肝损伤. 中国药理学通报, 2022, 38: 159160.
Zhou Y N, Xu P J, Deng C F, et al. Chrysin alleviated ethanol-induced alcoholic liver injury via SIRT1/AMPK signaling pathway. Chin Pharmacol Bull, 2022, 38: 159–160 (in Chinese with English abstract).

[15] 王建业. 珍稀泌盐植物长叶红砂盐胁迫下转录组与代谢组学分析及RtMYBC1功能验证. 内蒙古大学博士学位论文, 内蒙古呼和浩特, 2023.
Wang J Y. Transcriptomics and Metabonomics Analysis of Salt Stress and Functional Verification of RtMYBC1 in a Rare Relic Recretohalophyte Reaumuria trigyna. PhD Dissertation of Inner Mongolia University, Hohhot, Inner Mongolia, China, 2023 (in Chinese with English abstract).

[16] Michaluart P, Masferrer J L, Carothers A M, et al. Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res, 1999, 59: 2347–2352.

[17] 王成麟, 刘爽. 红景天苷防治帕金森病的药理作用研究进展. 现代药物与临床, 2023, 38: 2903–2908.
Wang C L, Liu S. Advances in pharmacological effects of salidroside in prevention and treatment of Parkinson’s disease. Drugs Clin, 2023, 38: 2903–2908 (in Chinese with English abstract).

[18] 刘瑞雪, 褚秀玲, 苏建青. 黄酮类化合物的提取及其在畜牧生产上的应用. 饲料研究, 2021, 44(3): 127130.
Liu R X, Chu X L, Su J Q. Advance in extraction techniques for flavonoids and its application in animal production. Feed Res, 2021, 44(3): 127–130 (in Chinese with English abstract).

[19] 苏圆圆, 王雪艳, 李成林, . 中药中黄酮类化合物的药理药效研究进展. 中兽医医药杂志, 2023, 42(6): 42–46.
Su Y Y, Wang X Y, Li C L, et al. Pharmacology and efficacy of flavonoid from traditional Chinese medicine. J Tradit Chin Vet Med, 2023, 42(6): 42–46 (in Chinese with English abstract).

[20] Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145: 187–196.

[21] Rani N, Arya D S. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur J Pharmacol, 2020, 883: 173389.

[22] 唐楚煜, 李秀璋, 陈建博, . 冬虫夏草菌菌丝体中的氨基酸及其衍生物的代谢组学分析. 微生物学杂志, 2024, 44(1): 12–22.
Tang C Y, Li X Z, Chen J B, et al. Metabolomic analysis of amino acids and their derivatives in Mycelium of Ophiocordyceps sinensis strains. J Microbiol, 2024, 44(1): 12–22 (in Chinese with English abstract).

[23] Chen Y, Zhang B B, Wang B W, et al. Effects of dietary arginine supplementation on production performance, serum biochemicals, antioxidant capacity, and immunity of laying Wulong geese. Poult Sci, 2023, 102: 102727.

[24] Cheng Z Y, Gatlin D M, Buentello A. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops × Morone saxatilis). Aquaculture, 2012, 362/363: 39–43.

[25] 谢佳颖, 韩潆仪, 任虹. 燕麦生物碱研究进展. 食品安全质量检测学报, 2016, 7: 4536–4541.
Xie J Y, Han Y Y, Ren H. Research progress of avenanthramides. J Food Saf Qual, 2016, 7: 4536–4541 (in Chinese with English abstract).

[26] 任祎, 平华, 任贵兴. 裸燕麦核心种质的抗氧化特性. 作物学报, 2010, 36: 988–994.
Ren Y, Ping H, Ren G X. Antioxidant property of naked oat core collections. Acta Agron Sin, 2010, 36: 988–994 (in Chinese with English abstract).

[27] Boz H. Phenolic amides (avenanthramides) in oats: review. Czech J Food Sci, 2015, 33: 399–404.

[28] Jastrebova J, Skoglund M, Nilsson J, et al. Selective and sensitive LC-MS determination of avenanthramides in oats. Chromatographia, 2006, 63: 419–423.

[29] Franks A G. Skin manifestations of internal disease. Med Clin North Am, 2009, 93: 1265–1282.

[30] Emmons C L. Studying simple and complex traits using pedigrees produced from a large database. J Microbiol Biol Educ, 2010, 11: 156–157.

[31] 唐娅茹, 王力伟, 安江红, . 燕麦生物碱的研究进展与应用. 北方农业学报, 2023, 51(6): 37–50.
Tang Y R, Wang L W, An J H, et al. Research progress and application of avenanthramide. J North Agric, 2023, 51(6): 37–50 (in Chinese with English abstract).

[32] 徐微, 张宗文, 吴斌, . 裸燕麦种质资源AFLP标记遗传多样性分析. 作物学报, 2009, 35: 2205–2212.
Xu W, Zhang Z W, Wu B, et al. Genetic diversity in naked oat (Avena nuda) germplasm revealed by AFLP markers. Acta Agron Sin, 2009, 35: 2205–2212 (in Chinese with English abstract).

[33] Tu F, Xie C Y, Li H N, et al. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: the relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chem, 2021, 363: 130277.

[34] 张娜贤, 刘柳, 李刚, . 芹菜素7-O-葡萄糖苷对抗TRAIL乳腺癌细胞凋亡的作用机制研究. 天津中医药大学学报, 2023, 42: 761–768.
Zhang N X, Liu L, Li G, et al. Action mechanism of apigenin 7-O-glucoside on the apoptosis of anti-TRAIL breast cancer cells. J Tianjin Univ Tradit Chin Med, 2023, 42: 761–768 (in Chinese with English abstract).

[1] JIANG Huan-Qi, DUAN Ao, GUO Chao, HUANG Xiao-Meng, AI De-Jun, LIU Xiao-Xue, TAN Jing-Yi, PENG Cheng-Lin, LI Man-Fei, DU He-Wei. Effects of waterlogging stress on root metabolism of maize seedlings [J]. Acta Agronomica Sinica, 2025, 51(9): 2295-2306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!