JIANG Huan-Qi1,2,DUAN Ao1,GUO Chao1,HUANG Xiao-Meng1,AI De-Jun1,LIU Xiao-Xue1,TAN Jing-Yi1,PENG Cheng-Lin²,LI Man-Fei1,*
[1] 谢伶俐, 李永铃, 许本波, 张学昆. 油菜耐渍机理解析及遗传改良研究进展. 作物学报, 2025, 51: 287–300. Xie L L, Li Y L, Xu B B, Zhang X K. Mechanisms of waterlogging tolerance and genetic improvement in rapeseed (Brassica napus L.): a review. Acta Agron Sin, 2025, 51: 287–300 (in Chinese with English abstract). [2] Karlova R, Boer D M, Hayes S, Testerink C. Root plasticity under abiotic stress. Plant Physiol, 2021, 187: 1057–1070. [3] Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions. Field Crops Res, 2009, 113: 246–255. [4] Yang M, Yang J, Su L, Sun K, Li D X, Liu Y Z, Wang H, Chen Z Q, Guo T. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Sci, 2019, 289: 110282. [5] Song J Y, Chen Y T, Jiang G S, Zhao J Y, Wang W J, Hong X F. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). J Plant Physiol, 2023, 291: 154120. [6] Luo Y, Wang Y, Xie Y Y, Gao Y M, Li W Q, Lang S P. Transcriptomic and metabolomic analyses of the effects of exogenous trehalose on heat tolerance in wheat. Int J Mol Sci, 2022, 23: 5194. [7] 吾木提汗. 豆科植物骆驼刺盐胁迫适应性研究. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2011. Wu M T H. Study on the Salt Stress Adaptaion of Leguminous Plant Alhagi pseudoalhagi. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2011 (in Chinese with English abstract). [8] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463–499. [9] Yu Y A, Wu Y X, He L Y. A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant. Plant Mol Biol, 2023, 113: 171–191. [10] Khalid M, Rehman H M, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana I A, Atif R M, Zaman Q U, et al. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. Int J Mol Sci, 2022, 23: 12913. [11] Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681. [12] Xu K N, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, MacKill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705–708. [13] Qi H H, Wang J, Wang X, Liang K, Ke M C, Zheng X Q, Tang W B, Chen Z Y, Ke Y G, Yang P F, et al. ZmEREB180 modulates waterlogging tolerance in maize by regulating root development and antioxidant gene expression. J Exp Bot, 2023, 74: 7052–7069. [14] Li C, Wang L, Su J, Li W, Tang Y, Zhao N, Lou L, Ou X, Jia D, Jiang J, et al. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum. J Exp Bot, 2024, 75: 1479–1492. [15] Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lyu C, Zhu J, Chen Z H, Xu R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in barley. BMC Plant Biol, 2024, 24: 385. [16] Chen Y H, Zhang R P, Song Y M, He J M, Sun J H, Bai J F, An Z L, Dong L J, Zhan Q M, Abliz Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, 2009, 134: 2003–2011. [17] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27–30. [18] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357–360. [19] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923–930. [20] Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot, 2000, 51: 89–97. [21] Linić I, Mlinarić S, Brkljačić L, Pavlović I, Smolko A, Salopek-Sondi B. Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in Chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants, 2021, 10: 2346. [22] Ozfidan-Konakci C, Yildiztugay E, Alp F N, Kucukoduk M, Turkan I. Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants. Plant Physiol Biochem, 2020, 157: 264–275. [23] Shah A, Smith D L. Flavonoids in agriculture: chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy, 2020, 10: 1209. [24] Wang M, Zhang Y, Zhu C Y, Yao X Y, Zheng Z, Tian Z N, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. Physiol Plant, 2021, 172: 1966–1982. [25] Liang S M, Hashem A, Abd-Allah E F, Wu Q S. Root-associated symbiotic fungi enhance waterlogging tolerance of peach seedlings by increasing flavonoids and activities and gene expression of antioxidant enzymes. Chem Biol Technol Agric, 2023, 10: 124.
[26] 程六龙, 黄永春, 王常荣, 刘仲齐, 黄益宗, 张长波, 王晓丽. S-烯丙基-L-半胱氨酸缓解水稻种子幼根和幼芽镉胁迫机制. 环境科学, 2021, 42: 3037–3045. [27] Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan D K, Hasanuzzaman M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 2022, 11: 3158. [28] Li S X, Yang W Y, Guo J H, Li X N, Lin J X, Zhu X C. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol Biochem, 2020, 154: 1–10. [29] Hartman S, Liu Z G, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H T, van Dongen N, Bosman F, Bassel G W, et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun, 2019, 10: 4020.
[30] 史社坡, 高博闻, 王晓晖, 海燕, 屠鹏飞, 丁宁. 白木香查尔酮异构酶基因的克隆鉴定与表达分析. 药学学报, 2021, 56: 630–638. [31] Pan J W, Sharif R, Xu X W, Chen X H. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci, 2021, 11: 627331. [32] Zou X L, Jiang Y Y, Liu L, Zhang Z X, Zheng Y L. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biol, 2010, 10: 189. [33] Gibbs D J, Lee S C, Isa N M, Gramuglia S, Fukao T, Bassel G W, Correia C S, Corbineau F, Theodoulou F L, Bailey-Serres J, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 2011, 479: 415–418. [34] 闫雅如, 杨洪芸, 齐博文, 徐溪平, 刘雨雨, 王晓晖, 赵云芳, 史社坡, 刘晓, 屠鹏飞. 干旱胁迫对管花肉苁蓉组织培养体系中苯乙醇苷类成分含量的影响. 中草药, 2019, 50: 2452–2460. Yan Y R, Yang H Y, Qi B W, Xu X P, Liu Y Y, Wang X H, Zhao Y F, Shi S P, Liu X, Tu P F. Effect of drought stress on accumulation of two respective phenylethanoid glycosides in tissue culture of Cistanche tubulosa. Chin Tradit Herb Drugs, 2019, 50: 2452–2460 (in Chinese with English abstract). [35] Zou X R, Wei Y Y, Jiang S, Xu F, Wang H F, Zhan P P, Shao X F. ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-phenylethanol against Botrytis cinerea. J Agric Food Chem, 2022, 70: 14468–14479.
[36] 刘美玲, 刘玉冰, 曹波. 液质联用法测定干旱胁迫下红砂(Reaumuria soongorica)叶片F3H、DFR酶活性. 生态学杂志, 2012, 31: 2158–2162. [37] 火兴宇, 张宇, 王常荣, 齐麟, 刘斌, 黄雁飞, 黄永春. 硫化氢信号分子介导S-烯丙基-L-半胱氨酸调控水稻镉胁迫. 农业环境科学学报, 2021, 40: 1–11. Huo X Y, Zhang Y, Wang C R, Qi L, Liu B, Huang Y F, Huang Y C. Hydrogen sulfide signaling molecule mediates the regulation of cadmium stress in rice by S-allyl-L-cysteine. J Agro-Environ Sci, 2021, 40: 1–11 (in Chinese with English abstract). [38] Huo X Y, Wang C R, Huang Y C, Kong W Y, Wang X L. Effect of s-allyl-l-cysteine on nitric oxide and cadmium processes in rice (Oryza sativa L. sp. Zhongzao35) seedlings. Toxics, 2024, 12: 805. [39] Zhou J L, Tian L, Wang S X, Li H P, Zhao Y L, Zhang M B, Wang X L, An P P, Li C H. Ovary abortion induced by combined waterlogging and shading stress at the flowering stage involves amino acids and flavonoid metabolism in maize. Front Plant Sci, 2021, 12: 778717. [40] Song Z H, Yang Q, Dong B Y, Li N, Wang M Y, Du T T, Liu N, Niu L L, Jin H J, Meng D, et al. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot, 2022, 73: 5992–6008. [41] Wang H H, Liang X L, Wan Q, Wang X M, Bi Y R. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta, 2009, 230: 293–307. [42] Wang M Y, Dong B Y, Song Z H, Qi M, Chen T, Du T T, Cao H Y, Liu N, Meng D, Yang Q, et al. Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (Linn.) Millsp). Plant Physiol Biochem, 2023, 196: 381–392. [43] Yu F, Tan Z D, Fang T, Tang K Y, Liang K, Qiu F Z. A comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize. Genes, 2020, 11: 267. [44] Jackson M, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol (Stuttg), 1999, 1: 274–287. [45] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163–190. [46] Drew M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 223–250. [47] Sairam R K, Kumutha D, Ezhilmathi K, Deshmukh P S, Srivastava G C. Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant, 2008, 52: 401–412. [48] Yordanova R Y, Popova L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant, 2007, 29: 535–541. [49] Zhao Z X, Qin T, Zheng H J, Guan Y, Gu W, Wang H, Yu D S, Qu J T, Wei J H, Xu W. Mutation of ZmDIR5 reduces maize tolerance to waterlogging, salinity, and drought. Plants, 2025, 14: 785. [50] Kreuzwieser J, Rennenberg H. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ, 2014, 37: 2245–2259. [51] Loreti E, van Veen H, Perata P. Plant responses to flooding stress. Curr Opin Plant Biol, 2016, 33: 64–71. [52] Licausi F, Kosmacz M, Weits D A, Giuntoli B, Giorgi F M, Voesenek L A C J, Perata P, van Dongen J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479: 419–422. [53] Zeng R E, Chen T T, Wang X Y, Cao J, Li X, Xu X Y, Chen L, Xia Q, Dong Y L, Huang L P, et al. Physiological and expressional regulation on photosynthesis, starch and sucrose metabolism response to waterlogging stress in peanut. Front Plant Sci, 2021, 12: 601771. [54] 王暄, 陈海霞. 植物ABCB转运蛋白研究进展. 生物技术通报, 2020, 36: 223–229. Wang X, Chen H X. Research progress on plant ABCB transporter. Biotechnol Bull, 2020, 36: 223–229 (in Chinese with English abstract). [55] 刘文献, 刘志鹏, 谢文刚, 王彦荣. 脂肪酸及其衍生物对植物逆境胁迫的响应. 草业科学, 2014, 31: 1556–1565. Liu W X, Liu Z P, Xie W G, Wang Y R. Responses of fatty acid and its derivatives to stress in plants. Pratacultural Sci, 2014, 31: 1556–1565 (in Chinese with English abstract). [56] Shu S, Tang Y Y, Yuan Y H, Sun J, Zhong M, Guo S R. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Biochem, 2016, 107: 344–353. [57] Liu W C, Song R F, Zheng S Q, Li T T, Zhang B L, Gao X, Lu Y T. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Mol Plant, 2022, 15: 973–990. [58] Kumari A, Fatnani D, Seth C S, Parida A K. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114. |
[1] | YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675. |
[2] | YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 1501-1513. |
[3] | YUAN Xin, ZHAO Zhuo-Fan, ZHAO Rui-Qing, LIU Xiao-Wei, ZHENG Ming-Min, LIU Yu-Sheng, DONG Hao-Sheng, DENG Li-Juan, CAO Mo-Ju, HUANG Qiang. Genetic analysis and molecular identification of a small kernel mutant mn-like1 in maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1569-1581. |
[4] | ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3-4℃ increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 1599-1617. |
[5] | ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 1618-1628. |
[6] | JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388. |
[7] | ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399. |
[8] | SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298. |
[9] | MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311. |
[10] | LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101. |
[11] | SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004. |
[12] | WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770. |
[13] | YANG Xin-Yue, XIAO Ren-Hao, ZHANG Lin-Xi, TANG Ming-Jun, SUN Guang-Yan, DU Kang, LYU Chang-Wen, TANG Dao-Bin, WANG Ji-Chun. Effects of waterlogging at different growth stages on the stress-resistance physiological characteristics and yield formation of sweet potato [J]. Acta Agronomica Sinica, 2025, 51(3): 744-754. |
[14] | LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712. |
[15] | XIE Ling-Li, LI Yong-Ling, XU Ben-Bo, ZHANG Xue-Kun. Progress on waterlogging tolerance mechanism and genetic improvement in rapeseed [J]. Acta Agronomica Sinica, 2025, 51(2): 287-300. |
|