Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1569-1581.doi: 10.3724/SP.J.1006.2025.43056
• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
YUAN Xin1,ZHAO Zhuo-Fan2,ZHAO Rui-Qing1,LIU Xiao-Wei1,ZHENG Ming-Min3,LIU Yu-Sheng4,DONG Hao-Sheng4,DENG Li-Juan4,CAO Mo-Ju1,*,HUANG Qiang4,*
[1] Dai D W, Ma Z Y, Song R T. Maize kernel development. Mol Breed, 2021, 41: 2. [2] Doll N M, Depège Fargeix N, Rogowsky P M, Widiez T. Signaling in early maize kernel development. Mol Plant, 2017, 10: 375–388.
[3] 刘京, 朱凯丽, 岳海旺, 李贺勤, 张海艳, 赵延明, 杨然兵, 尚书旗, 江绪文. 玉米果种皮对其种子萌发及生理特性的影响. 种子, 2021, 40(9): 40–47. [4] Wallace J G. Maize seed endophytes. Mol Plant Pathol, 2023, 24: 801–810.
[5] 孙琴. ZmEXPB15调控玉米籽粒粒型的生物学功能及分子机理. 华中农业大学博士学位论文, 湖北武汉, 2022. [6] Dai D W, Ma Z Y, Song R T. Maize endosperm development. J Integr Plant Biol, 2021, 63: 613–627.
[7] 徐阿慧. 玉米角质和粉质胚乳淀粉的发育和特性. 扬州大学硕士学位论文, 江苏扬州, 2020. [8] Chatterjee D, Wittmeyer K, Lee T F, Cui J, Yennawar N H, Yennawar H P, Meyers B C, Chopra S. Maize unstable factor for orange1 is essential for endosperm development and carbohydrate accumulation. Plant Physiol, 2021, 186: 1932–1950. [9] Zheng Y K. Molecular mechanisms of maize endosperm transfer cell development. Plant Cell Rep, 2022, 41: 1171–1180. [10] Wang Y Y, Shi D S, Zhu H, Yin H X, Wang G Y, Yang A Q, Song Z X, Jing Q Q, Shuai B L, Xu N K, et al. Revisiting maize Brittle endosperm-2 reveals new insights in BETL development and starchy endosperm filling. Plant Sci, 2023, 332: 111727. [11] Neuffer M G, Sheridan W F. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics, 1980, 95: 929–944.
[12] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位. 作物学报, 2021, 47: 285–293. [13] Ding S, Liu X Y, Wang H C, Wang Y, Tang J J, Yang Y Z, Tan B C. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. J Plant Physiol, 2019, 240: 152992. [14] Yuan N N, Wang J C, Zhou Y, An D, Xiao Q, Wang W Q, Wu Y R. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Sci, 2019, 287: 110203. [15] Miclaus M, Wu Y R, Xu J H, Dooner H K, Messing J. The maize high-lysine mutant opaque7 is defective in an acyl-CoA synthetase-like protein. Genetics, 2011, 189: 1271–1280. [16] Long Y, Wang C, Liu C, Li H G, Pu A Q, Dong Z Y, Wei X, Wan X Y. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res, 2024, 62: 27–46. [17] Li X J, Zhang Y F, Hou M M, Sun F, Shen Y, Xiu Z H, Wang X M, Chen Z L, Sun S S M, Small I, et al. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797–809. [18] Zhang S S, Zhan J P, Yadegari R. Maize opaque mutants are no longer so opaque. Plant Reprod, 2018, 31: 319–326. [19] Wang P, Clark N M, Nolan T M, Song G Y, Bartz P M, Liao C Y, Montes-Serey C, Katz E, Polko J K, Kieber J J, et al. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. Plant Cell, 2022, 34: 2594–2614. [20] Boehlein S K, Shaw J R, Boehlein T J, Boehlein E C, Curtis Hannah L. Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. Plant J, 2018, 96: 595–606. [21] Wu J W, Wang X Y, Yan R Y, Zheng G M, Zhang L, Wang Y, Zhao Y J, Wang B H, Pu M L, Zhang X S, et al. A MYB-related transcription factor ZmMYBR29 is involved in grain filling. BMC Plant Biol, 2024, 24: 458. [22] Ma B, Zhang L, He Z H. Understanding the regulation of cereal grain filling: The way forward. J Integr Plant Biol, 2023, 65: 526–547. [23] Chourey P S, Li Q B, Kumar D. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (Mn1) seed mutant in maize. Mol Plant, 2010, 3: 1026–1036. [24] Hu M J, Zhao H M, Yang B, Yang S, Liu H H, Tian H, Shui G H, Chen Z L, Lizhu E, Lai J S, et al. ZmCTLP1 is required for the maintenance of lipid homeostasis and the basal endosperm transfer layer in maize kernels. New Phytol, 2021, 232: 2384–2399. [25] Sun C H, Wang Y, Yang X R, Tang L, Wan C M, Liu J Q, Chen C P, Zhang H S, He C C, Liu C Q, et al, MATE transporter GFD1 cooperates with sugar transporters, mediates carbohydrate partitioning and controls grain-filling duration, grain size and number in rice. Plant Biotechnol J, 2023, 21: 621–634. [26] Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992, 4: 297–305. [27] Cheng W H, Taliercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 1996, 8: 971–983. [28] Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J H, Xiao L T, Zhang H X. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11: 1080–1091. [29] Lowe J, Nelson O E. Miniature seed-a study in the development of a defective caryopsis in maize. Genetics, 1946, 31: 525–533. [30] Vilhar B, Kladnik A, Blejec A, Chourey P S, Dermastia M. Cytometrical evidence that the loss of seed weight in the miniature1 seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol, 2002, 129: 23–30. [31] Kang B H, Xiong Y Q, Williams D S, Pozueta-Romero D, Chourey P S. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiol, 2009, 151: 1366–1376. [32] Lei B, Shao J L, Zhang F, Wang J, Xiao Y H, Cheng Z J, Tang W B, Wan J M. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S. J Integr Agric, 2024, 23: 2155–2163.
[33] 高友军, 刘文婷, 陶勇生, 郑用琏. 玉米Mu转座因子及其应用. 作物学报, 2006, 32: 1236–1243.
[34] 丁孟丽, 王茹茵, 施栋晟, 李莹博, 雷洁, 陈洪宇, 申清文, 王桂凤. 玉米小籽粒突变体mn-Mu的基因克隆与转录组分析. 作物学报, 2023, 49: 3122–3130.
[35] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 等. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析. 作物学报, 2023, 49: 2088–2096.
[36] 陆璐, 陶雅军, 罗学娅, 马君燕. 糖苷水解酶32家族结构与功能的研究进展. 中国酿造, 2019, 38(8): 14–19. [37] Angela Sainz-Polo M, Ramírez-Escudero M, Lafraya A, González B, Marín-Navarro J, Polaina J, Sanz-Aparicio J. Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. J Biol Chem, 2013, 288: 9755–9766. [38] Álvaro-Benito M, Angela Sainz-Polo M, González-Pérez D, González B, Plou F J, Fernández-Lobato M, Sanz-Aparicio J. Structural and kinetic insights reveal that the amino acid pair Gln-228/Asn-254 modulates the transfructosylating specificity of Schwanniomyces occidentalis β-fructofuranosidase, an enzyme that produces prebiotics. J Biol Chem, 2012, 287: 19674–19686. [39] Yang B, Wang J, Yu M, Zhang M L, Zhong Y T, Wang T Y, Liu P, Song W B, Zhao H M, Fastner A, et al. The sugar transporter ZmSUGCAR1 of the nitrate transporter 1/peptide transporter family is critical for maize grain filling. Plant Cell, 2022, 34: 4232–4254. [40] Shen S, Ma S, Chen X M, Yi F, Li B B, Liang X G, Liao S J, Gao L H, Zhou S L, Ruan Y L. A transcriptional landscape underlying sugar import for grain set in maize. Plant J, 2022, 110: 228–242. [41] Yi F, Gu W, Li J F, Chen J, Hu L, Cui Y, Zhao H M, Guo Y, Lai J S, Song W B. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiol, 2021, 185: 985–1001. |
[1] | YAN Shang-Long, WANG QI-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675. |
[2] | YANG Si-Jie, DU Qi-Di, CHAI Shou-Xi, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, GUO Hui-Jun, LIU Lu-Xiang. Genetic mapping of mutant genes on flag leaf length and width in wheat [J]. Acta Agronomica Sinica, 2025, 51(6): 0-. |
[3] | YANG Xiao-Hui, YAN Xuan-Jun, YANG Wen-Yan, FU Jun-Jie, YANG Qin, XIE Yu-Xin. Effect evaluation and investigation on molecular mechanism of the ZmKL1 favorable allele in regulating maize kernel size [J]. Acta Agronomica Sinica, 2025, 51(6): 0-. |
[4] | ZHANG Shi-Bo, LI Hong-Yan, LI Pei-Fu, REN Rui-Hua, LU Hai-Dong. Effects of a 3–4°C increase in air temperature under natural conditions on root-shoot senescence and yield in plastic-film mulched maize [J]. Acta Agronomica Sinica, 2025, 51(6): 0-. |
[5] | ZHENG Hao-Fei, YANG Nan, DU Jian, JIA Gai-Xiu, ZOU Yue, MA Wen-Hao, WANG Yan-Ting, SUO Dong-Rang, ZHAO Jian-Hua, SUN Ning-Ke, ZHANG Jian-Wen. Long-term combined application of organic and inorganic fertilizers achieving high yield and high quality of maize in northwest irrigated oasis [J]. Acta Agronomica Sinica, 2025, 51(6): 0-. |
[6] | JIANG Yu-Zhou, WANG Jia, ZHANG Hong-Yuan, FENG Wen-Hao, WANG Peng, LI Yu-Yi. Effects of combined application of chemical fertilizer and organic materials on the soil bacterial and fungal community structure in maize fields [J]. Acta Agronomica Sinica, 2025, 51(5): 1378-1388. |
[7] | ZHOU Ke, CHEN Peng-Fei. Maize SPAD estimation by combining multi-source unmanned aerial vehicle remote sensing data and machine learning methods [J]. Acta Agronomica Sinica, 2025, 51(5): 1389-1399. |
[8] | SHENG Qian-Nan, FANG Ya-Ting, ZHAO Jian, DU Si-Yao, HU Xing-Zhen, YU Qiu-hua, ZHU Jun, REN Tao, LU Jian-Wei. Effects of different nutrient management practices on oilseed rape yield and their response to freezing stress between upland and paddy-upland rotations [J]. Acta Agronomica Sinica, 2025, 51(5): 1286-1298. |
[9] | MENG Fan-Qi, FANG Meng-Ying, LUO Yi, LU Lin, DONG Xue-Rui, WANG Ya-Fei, GUO Li-Na, YAN Peng, DONG Zhi-Qiang, ZHANG Feng-Lu. Effect of ethephon betaine salicylic acid mixture on heat resistance and yield of summer maize [J]. Acta Agronomica Sinica, 2025, 51(5): 1299-1311. |
[10] | LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101. |
[11] | SONG Li, LIU Guang-Zhou, ZHANG Hua, LU Ting-Qi, QING Chun-Yan, YANG Yun-Shan, GUO Xiao-Xia, Hu Dan, LI Shao-Kun, HOU Peng. Effects of drip fertigation with dense planting on yield and soil bacterial community of summer maize in Southwest China [J]. Acta Agronomica Sinica, 2025, 51(4): 992-1004. |
[12] | WANG Yan, BAI Chun-Sheng, LI Bo, FAN Hong, HE Wei, YANG Li-Li, CAO Yue, ZHAO Cai. Effects of no-tillage with plastic film and the amount of irrigation water on yield and photosynthetic characteristics of maize in oasis irrigation area of Northwest China [J]. Acta Agronomica Sinica, 2025, 51(3): 755-770. |
[13] | LI Xiang-Yu, JI Xin-Jie, WANG Xue-Lian, LONG An-Ran, WANG Zheng-Yu, YANG Zi-Hui, GONG Xiang-Wei, JIANG Ying, QI Hua. Effects of straw returning combined with nitrogen fertilizer on yield and grain quality of spring maize [J]. Acta Agronomica Sinica, 2025, 51(3): 696-712. |
[14] | XIN Yu-Ning, REN Hao, WANG Hong-Zhang, LIANG Ming-Lei, YU Tao, LIU Peng. Effects of spraying 6-benzylaminopurine (6-BA) on grain filling and yield of summer maize under post-pollination high temperature stress [J]. Acta Agronomica Sinica, 2025, 51(2): 418-431. |
[15] | CHEN Chen, FU Xiu-Yi, CHEN Chuan-Yong, WU Shan-Shan, ZHANG Hua-Sheng, ZHANG Chun-Yuan, CHEN Shao-Jiang, ZHAO Jiu-Ran, WANG Yuan-Dong. Study on the haploid breeding performance of maize inbred lines [J]. Acta Agronomica Sinica, 2025, 51(2): 526-533. |
|