Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (6): 1489-1500.doi: 10.3724/SP.J.1006.2025.44191

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and expression analysis of the phosphatidylinositol transfer protein AhSFH gene in peanuts responsive to Aspergillus flavus infection

GUO Teng-Da1,2,CUI Meng-Jie2,*,CHEN Lin-Jie2,HAN Suo-Yi1,2,GUO Jing-Kun1,2,WU Chen-Di2,FU Liu-Yang1,HUANG Bing-Yan2,DONG Wen-Zhao2,ZHANG Xin-You1,2,*   

  1. 1 School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; 2 Henan Academy of Crop Molecular Breeding / Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, Henan, China
  • Received:2024-11-19 Revised:2025-03-26 Accepted:2025-03-26 Online:2025-06-12 Published:2025-04-07
  • Supported by:
    This study was supported by the Youth Fund Project of National Natural Science Foundation of China (32301851), the Excellent Youth Fund Project of Henan Academy of Agricultural Sciences (2024YQ03), and the Science and Technology Research Project of Henan Province (242102110308).

Abstract:

Phosphatidylinositol transfer proteins (PITPs) are a class of proteins responsible for transporting phosphatidylinositol and phosphatidylcholine monomers across the inner membrane systems of eukaryotic cells. They play essential roles in plant growth and development, signal transduction, stress responsesand other vital biological processes. To date, the involvement of PITP genes in peanut (Arachis hypogaea) responses to Aspergillus flavus infection has not been reported. In this study, the PITP gene was cloned from the highly resistant peanut variety “J11” using RT-PCR, and its molecular characterization and functional prediction were analyzed through bioinformatics, RT-qPCR, and subcellular localization studies. The results showed that the gene’s coding region is 1836 bp in length, encoding an unstable hydrophilic protein with the molecular formula C3114H4938N880O943S35. The protein consists of 611 amino acids, with a molecular weight of 70.91 kD and an isoelectric point of 7.84. It lacks signal peptide and transmembrane domains but contains typical Sec14 and nodulin domains. It belongs to the SFH subfamily of the plant PITP family and is closely related to soybean and ricinus SFH proteins. Subcellular localization analysis indicated that the AhSFH protein is primarily localized in the cytoplasm. Promoter cis-acting element analysis revealed that the AhSFH promoter contains large number of light-, hormone-, and stress-responsive elements. Transcriptome and RT-qPCR analyses showed that AhSFH expression increased sharply in resistant materials during the early stages of A. flavus infection (T2–T3), surpassing the expression levels observed in highly susceptible materials. Additionally, protein interaction prediction suggested that AhSFH is associated with several transferase-related family proteins. These findings indicate that the AhSFH gene in peanuts plays a crucial role in responding to A. flavus infection and may function as a positive regulator in enhancing peanut resistance to this pathogen.

Key words: peanut, phosphatidylinositol transport protein, AhSFH, Aspergillus flavus, expression analysis

[1] Huang J, Ghosh R, Bankaitis V A. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochim Biophys Acta, 2016, 1861: 1352–1364.

[2] Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell, 1980, 21: 205–215.

[3] Szolderits G, Hermetter A, Paltauf F, Daum G. Membrane properties modulate the activity of a phosphatidylinositol transfer protein from the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1989, 986: 301–309.

[4] Bankaitis V A, Aitken J R, Cleves A E, Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347: 561–562.

[5] Bankaitis V A, Mousley C J, Schaaf G. The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends Biochem Sci, 2010, 35: 150–160.

[6] Ren J H, Schaaf G, Bankaitis V A, Ortlund E A, Pathak M C. Crystallization and preliminary X-ray diffraction analysis of Sfh3, a member of the Sec14 protein superfamily. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67: 1239–1243.

[7] Aravind L, Iyer L M. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle, 2012, 11: 119–131.

[8] Anantharaman V, Aravind L. The GOLD domain, a novel protein module involved in Golgi function and secretion. Genome Biol, 2002, 3: research0023.

[9] Kapranov P, Routt S M, Bankaitis V A, de Bruijn F J, Szczyglowski K. Nodule-specific regulation of phosphatidylinositol transfer protein expression in Lotus japonicus. Plant Cell, 2001, 13: 1369–1382.

[10] Qin Y X, Zhang B, Wang Y N, Su R P. Characterization of SEC14 family in wheat and the function of TaSEC14-7B in salt stress tolerance. Plant Physiol Biochem, 2023, 202: 107926.

[11] Yang M L, Sakruaba Y, Ishikawa T, Ohtsuki N, Kawai-Yamada M, Yanagisawa S. Chloroplastic Sec14-like proteins modulate growth and phosphate deficiency responses in Arabidopsis and rice. Plant Physiol, 2023, 192: 3030–3048.

[12] Mao H Y, Wang W J, Su W H, Su Y C, Liu F, Li C N, Wang L, Zhang X, Xu L P, Que Y X. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep, 2019, 38: 637–655.

[13] 毛花英, 刘峰, 苏炜华, 黄宁, 凌辉, 张旭, 王文举, 李聪娜, 汤翰臣, 苏亚春, 等. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫. 作物学报, 2018, 44: 824–835.
Mao H Y, Liu F, Su W H, Huang N, Ling H, Zhang X, Wang W J, Li C N, Tang H C, Su Y C, et al. A sugarcane phosphatidylinositol transfer protein gene ScSEC14 responds to drought and salt stresses. Acta Agron Sin, 2018, 44: 824–835 (in Chinese with English abstract).

[14] 王晓宇, 李敏, 刘栩铭, 卜祥琪, 丁雪, 张继星. 蓖麻RcSEC14p基因的克隆及低温胁迫下的表达分析. 分子植物育种, 2019, 17: 4204–4209.
Wang X Y, Li M, Liu X M, Bu X Q, Ding X, Zhang J X. Cloning of RcSEC14p gene in Ricinus communis L. and expression analysis under cold stress. Mol Plant Breed, 2019, 17: 4204–4209 (in Chinese with English abstract).

[15] Kiba A, Nakano M, Vincent-Pope P, Takahashi H, Sawasaki T, Endo Y, Ohnishi K, Yoshioka H, Hikichi Y. A novel Sec14 phospholipid transfer protein from Nicotiana benthamiana is up-regulated in response to Ralstonia solanacearum infection, pathogen associated molecular patterns and effector molecules and involved in plant immunity. J Plant Physiol, 2012, 169: 1017–1022.

[16] Kiba A, Nakano M, Ohnishi K, Hikichi Y. The SEC14 phospholipid transfer protein regulates pathogen-associated molecular pattern-triggered immunity in Nicotiana benthamiana. Plant Physiol Biochem, 2018, 125: 212–218.

[17] Wang X Y, Shan X H, Xue C M, Wu Y, Su S Z, Li S P, Liu H K, Jiang Y, Zhang Y F, Yuan Y P. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.). Plant Cell Rep, 2016, 35: 1671–1686.

[18] 苏世超, 唐益苗, 徐磊, 王伟伟, 高世庆, 马锦绣, 孙辉, 王永波, 乔亚科, 赵昌平. 普通小麦TaSEC14p-5基因的克隆及表达分析. 农业生物技术学报, 2016, 24: 1129–1137.
Su S C, Tang Y M, Xu L, Wang W W, Gao S Q, Ma J X, Sun H, Wang Y B, Qiao Y K, Zhao C P. Cloning and expression analysis of TaSEC14p-5 gene from wheat (Triticum aestivum). J Agric Biotechnol, 2016, 24: 1129–1137 (in Chinese with English abstract).

[19] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.) broadening the gene pool of a monophyletic polyploid species. Genetics, 2001, 159: 823–837.

[20] Settaluri V S, Kandala C V K, Puppala N, Sundaram J. Peanuts and their nutritional aspects: a review. Food Nutr Sci, 2012, 3: 1644–1650.

[21] Huang L, He H Y, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X G, Liao B S, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128: 1103–1115.

[22] Huang R H, Li H Q, Gao C J, Yu W C, Zhang S C. Advances in omics research on peanut response to biotic stresses. Front Plant Sci, 2023, 14: 1101994.

[23] Patel J, Khandwal D, Choudhary B, Ardeshana D, Jha R K, Tanna B, Yadav S, Mishra A, Varshney R K, Siddique K H M. Differential physio-biochemical and metabolic responses of peanut (Arachis hypogaea L.) under multiple abiotic stress conditions. Int J Mol Sci, 2022, 23: 660.

[24] 王后苗, 廖伯寿. 农作物收获前黄曲霉毒素污染与控制措施. 作物学报, 2012, 38: 1–9.
Wang H M, Liao B S. Preharvest aflatoxin contamination in crops and its management. Acta Agron Sin, 2012, 38: 1–9 (in Chinese with English abstract).

[25] 王旭达, 张高华, 王鹤, 于树涛, 李怀梅, 王晓燕, 范琦. 锌指蛋白基因ZAT12提高转基因高油酸花生抗寒性. 分子植物育种, 2020, 18: 5351–5360.
Wang X D, Zhang G H, Wang H, Yu S T, Li H M, Wang X Y, Fan Q. Enhancing cold tolerance of transgenic high oleic peanut by zinc finger protein gene ZAT12. Mol Plant Breed, 2020, 18: 5351–5360 (in Chinese with English abstract).

[26] 王旭达, 于树涛, 张高华, 王鹤, 丰明, 都兴范, 范琦, 于国庆. 农杆菌介导花生转化体系的优化及转化AlDREB2A基因花生的耐旱性研究. 中国农业大学学报, 2018, 23(7): 26–35.
Wang X D, Yu S T, Zhang G H, Wang H, Feng M, Du X F, Fan Q, Yu G Q. Optimization of Agrobacterium tumerfaciens mediated peanut transformation system and studies on the drought tolerance of transgenic AIDREB2A peanut. J China Agric Univ, 2018, 23(7): 26–35 (in Chinese with English abstract).

[27] Kisyombe C T, Beute M K, Payne G A. Field evaluation of peanut genotypes for resistance to infection by Aspergillus parasiticus1, 2. Peanut Sci, 1985, 12: 12–17.

[28] Cui M J, Han S Y, Wang D, Haider M S, Guo J J, Zhao Q, Du P, Sun Z Q, Qi F Y, Zheng Z, et al. Gene co-expression network analysis of the comparative transcriptome identifies hub genes associated with resistance to Aspergillus flavus in cultivated peanut (Arachis hypogaea L.). Front Plant Sci, 2022, 13: 899177.

[29] Bjellqvist B, Hughes G J, Pasquali C, Paquet N, Ravier F, Sanchez J C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993, 14: 1023–1031.

[30] Bjellqvist B, Basse B, Olsen E, Celis J E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis, 1994, 15: 529–539.

[31] 代洪苇, 刘洁强, 张丽, 童华荣, 袁连玉. 茶树CsMCC1CsMCC2基因的克隆及表达特征性分析. 作物学报, 2024, 50: 656–668.
Dai H W, Liu J Q, Zhang L, Tong H R, Yuan L Y. Cloning and relative expression pattern analysis of CsMCC1 and CsMCC2 in tea plant (Camellia sinensis). Acta Agron Sin, 2024, 50: 656–668 (in Chinese with English abstract).

[32] Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer F T, de Beer T A P, Rempfer C, Bordoli L, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 2018, 46: W296–W303.

[33] Nielsen H, Teufel F, Brunak S, von Heijne G. SignalP: the evolution of a web server. Methods Mol Biol, 2024, 2836: 331–367.

[34] Krogh A, Larsson B, von Heijne G, Sonnhammer E L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001, 305: 567–580.

[35] Bailey T L, Johnson J, Grant C E, Noble W S. The MEME suite. Nucleic Acids Res, 2015, 43: W39–W49.

[36] Cui M J, Haider M S, Chai P P, Guo J J, Du P, Li H Y, Dong W Z, Huang B Y, Zheng Z, Shi L, et al. Genome-wide identification and expression analysis of AP2/ERF transcription factor related to drought stress in cultivated peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 750761.

[37] Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol, 2021, 38: 3022–3027.

[38] Yu C S, Chen Y C, Lu C H, Hwang J K. Prediction of protein subcellular localization. Proteins, 2006, 64: 643–651.

[39] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.

[40] Huang J, Ghosh R, Tripathi A, Lönnfors M, Somerharju P, Bankaitis V A. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Mol Biol Cell, 2016, 27: 2317–2330.

[41] Snoek G T. Phosphatidylinositol transfer proteins: emerging roles in cell proliferation, cell death and survival. IUBMB Life, 2004, 56: 467–475.

[42] Cockcroft S, Garner K. Potential role for phosphatidylinositol transfer protein (PITP) family in lipid transfer during phospholipase C signalling. Adv Biol Regul, 2013, 53: 280–291.

[43] Kaye Peterman T, Ohol Y M, McReynolds L J, Luna E J. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol, 2004, 136: 3080–3094.

[44] Peterman T K, Sequeira A S, Samia J A, Lunde E E. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). J Plant Physiol, 2006, 163: 1150–1158.

[45] Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova T N, Gilroy S, Bankaitis V A. A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol, 2005, 168: 801–812.

[46] Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One, 2014, 9: e98150.

[47] Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. Front Plant Sci, 2023, 14: 1181031.

[48] 毛花英, 苏亚春, 阙友雄. 植物Sec14-like磷脂酰肌醇转运蛋白: 变化的结构和多样的功能. 农业生物技术学报, 2019, 27: 348–360.
Mao H Y, Su Y C, Que Y X. Plant Sec14-1ike phosphatidylinositol transfer proteins: diverse structures and multi-functions. J Agric Biotechnol, 2019, 27: 348–360 (in Chinese with English abstract).

[49] Maiti S, Patro S, Pal A, Dey N. Identification of a novel salicylic acid inducible endogenous plant promoter regulating expression of CYR1 a CC-NB-LRR type candidate disease resistance gene in Vigna mungo. Plant Cell Tissue Organ Cult, 2015, 120: 489–505.

[50] Luo M, Dang P, Guo B Z, He G, Holbrook C C, Bausher M G, Lee R D. Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut. Crop Sci, 2005, 45: 346–353.

[51] Guo B Z, Chen X P, Dang P, Scully B T, Liang X Q, Corley Holbrook C, Yu J J, Culbreath A K. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection. BMC Dev Biol, 2008, 8: 12.

[52] Gelli M, Duo Y C, Konda A R, Zhang C, Holding D, Dweikat I. Identification of differentially expressed genes between Sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics, 2014, 15: 179.

[53] 陈文玲, 张晴晴, 唐韶华, 龚伟, 洪月云. 甘油-3-磷酸酰基转移酶在植物脂质代谢、生长及逆境反应中的作用. 植物生理学报, 2018, 54: 725–735.
Chen W L, Zhang Q Q, Tang S H, Gong W, Hong Y Y. Glycerol-3-phosphate acyltransferase in lipid metabolism, growth and response to stresses in plants. Plant Physiol J, 2018, 54: 725–735 (in Chinese with English abstract).

[1] LI Wen-Jia, LIAO Yong-Jun, HUANG Lu, LU Qing, LI Shao-Xiong, CHEN Xiao-Ping, JIN Jing-Wei, WANG Run-Feng. Genome-wide associate analysis of flowering traits and identification of candidate genes in peanut [J]. Acta Agronomica Sinica, 2025, 51(5): 1400-1408.
[2] LIN Wei-Jin, GUO Ze-Jia, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, CHEN Xiao-Ping, HONG Yan-Bin, LI Shao-Xiong, LU Qing. QTL mapping and candidate gene analysis of peanut pod yield-related traits [J]. Acta Agronomica Sinica, 2025, 51(4): 969-981.
[3] CHI Xiao-Yuan, BI Jing-Nan, ZHAO Jian-Xin, CHEN Na, PAN Li-Juan, JIANG Xiao, YIN Xiang-Zhen, ZHAO Xu-Hong, MA Jun-Qing, XU Jing. Evaluation of mechanical properties of peanut pods and screening of early maturing germplasm [J]. Acta Agronomica Sinica, 2025, 51(4): 943-957.
[4] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[5] JIN Gao-Rui, WU Xiao-Li, DENG Li, CHEN Yu-Ning, YU Bo-Lun, GUO Jian-Bin, DING Ying-Bin, LIU Nian, LUO Huai-Yong, CHEN Wei-Gang, HUANG Li, ZHOU Xiao-Jing, HUAI Dong-Xin, TAN Jia-Zhuang, JIANG Hui-Fang, REN Li, LEI Yong, LIAO Bo-Shou. Development and characterization of novel peanut genetic stocks with high oleic acid and enhanced resistance both to Aspergillus flavus infection and aflatoxin production [J]. Acta Agronomica Sinica, 2025, 51(3): 687-895.
[6] JIN Xin-Xin, SONG Ya-Hui, SU Qiao, YANG Yong-Qing, LI Yu-Rong, WANG Jin. Identification and comprehensive evaluation of drought resistance in high oleic acid Jihua peanut varieties [J]. Acta Agronomica Sinica, 2025, 51(3): 797-811.
[7] WANG Run-Feng, LI Wen-Jia, LIAO Yong-Jun, LU Qing, LIU Hao, LI Hai-Fen, LI Shao-Xiong, LIANG Xuan-Qiang, HONG Yan-Bin, CHEN Xiao-Ping. Evaluation of pod maturity and identification of early-maturing germplasm for core peanut germplasm resources [J]. Acta Agronomica Sinica, 2025, 51(2): 395-404.
[8] HU Peng-Ju, GUO Song, SONG Ya-Hui, JIN Xin-Xin, SU Qiao, YANG Yong-Qing, WANG Jin. Genetic and QTL mapping analysis of oil content in peanut across multiple environments [J]. Acta Agronomica Sinica, 2025, 51(2): 324-333.
[9] ZHAO Fei-Fei, LI Shao-Xiong, LIU Hao, LI Hai-Fen, WANG Run-Feng, HUANG Lu, YU Qian-Xia, HONG Yan-Bin, CHEN Xiao-Ping, LU Qing, CAO Yu-Man. Association mapping of internode and lateral branch internode length of peanut main stem and analysis of candidate genes [J]. Acta Agronomica Sinica, 2025, 51(2): 548-556.
[10] QI Jia-Min, XU Chun-Miao, XIAO Bin. Genome-wide identification and expression analysis of TIFY gene family in potato (Solanum tuberosum L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2297-2309.
[11] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[12] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[13] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[14] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[15] LI Hai-Fen, LU Qing, LIU Hao, WEN Shi-Jie, WANG Run-Feng, HUANG Lu, CHEN Xiao-Ping, HONG Yan-Bin, LIANG Xuan-Qiang. Genome-wide identification and expression analysis of AhGA3ox gene family in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(4): 932-943.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .