Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 900-913.doi: 10.3724/SP.J.1006.2025.42040

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of OsERF104 transcription factor in rice

PAN Ju-Zhong1(), WEI Ping1, ZHU De-Ping1, SHAO Sheng-Xue1, CHEN Shan-Shan1, WEI Ya-Qian1, GAO Wei-Wei1,2,3,*()   

  1. 1College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
    2State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, China
    3Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, Guangxi, China
  • Received:2024-08-26 Accepted:2025-01-23 Online:2025-04-12 Published:2025-02-07
  • Contact: E-mail: gaoweiwei@gxu.edu.cn
  • Supported by:
    Young Scientists Fund of Guangxi Natural Science Foundation(2024GXNSFBA010324);Young Scientists Fund of Guangxi Natural Science Foundation(2025GXNSFAA069066);Young Scientists Fund of the National Natural Science Foundation of China(32301749)

Abstract:

Ethylene Responsive Factor (ERF), a subfamily of the APETALA2/Ethylene Responsive Factor (AP2/ERF) family, plays critical roles in regulating diverse biological processes, including plant growth and development, hormone signaling, and responses to abiotic stresses. Investigating the functions of the ERF family in rice (Oryza sativa L.) provides valuable genetic resources for rice breeding. In this study, the OsERF104 gene (LOC_Os08g36920) was cloned. Bioinformatic analysis revealed that the full-length coding sequence of OsERF104 is 849 bp, encoding a protein of 283 amino acids. OsERF104 contains a conserved domain characteristic of the AP2/ERF family and shares the highest sequence similarity with the AtERF96 protein in Arabidopsis thaliana, which is known to be involved in salt tolerance. Subcellular localization analysis confirmed that the OsERF104 protein is localized in the nucleus, indicating that it functions as a nuclear transcription factor. Cis-acting element analysis of the OsERF104 promoter identified elements associated with hormone responses, abiotic stress, and light responses. To examine the role of OsERF104 under abiotic stress, its expression pattern was analyzed using RT-qPCR. OsERF104 was expressed in various rice tissues, with the highest expression observed in the leaf sheath. Its expression was downregulated by ABA and GA but upregulated by JA, PEG, and NaCl treatments. Transcriptional activation assays showed that the full-length and C-terminal fragments of OsERF104 exhibit transcriptional activity, while the N-terminal fragment and the AP2 domain alone do not. Transgenic rice lines of overexpressing or knocking out OsERF104 were generated via genetic transformation. Phenotypic analysis demonstrated that OsERF104-overexpressing rice exhibited enhanced sensitivity to ABA and increased tolerance to salt stress during the seedling stage compared with the wild-type ZH11. In contrast, oserf104 mutant rice displayed the opposite phenotypes. In conclusion, OsERF104 positively regulates salt tolerance in rice. This study provides a strong foundation for further exploration of the biological functions and molecular mechanisms of OsERF104 in rice.

Key words: rice, OsERF104, transcription factor, salt stress, expression analysis, subcellular localization

Table1

Primers and sequences in this study"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
OsERF104-GFP ACTAGTGGATCCGGTACCATGACCAACCGGATCTCC CTTGCTCACCATGGTACCATTCCAAGAATCTGACGACTG
OsERF104-ox TCTCTCTCAAGCTTGGATCCATGACCAACCGGATCTCC ATACCGTCACTAGTGGATCCATTCCAAGAATCTGACGACTG
BD-OsERF104 GCCATGGAGGCCGAATTCATGACCAACCGGATCTCC CCGCTGCAGGTCGACGGATCCCATTCCAAGAATCTGACGACTG
BD-OsERF104-N GCCATGGAGGCCGAATTCATGACCAACCGGATCTCC CCGCTGCAGGTCGACGGATCCCGTTCTTCTTCTTCCTCCTCCT
BD-OsERF104-C GCCATGGAGGCCGAATTCATGAAGTACCGCGGCGT CCGCTGCAGGTCGACGGATCCCATTCCAAGAATCTGACGACTG
BD-OsERF104-AP2 GCCATGGAGGCCGAATTCATGAAGTACCGCGGCGT CCGCTGCAGGTCGACGGATCCCCGGGCCGCGGAACTCG
OsERF104-q CGCACGACGACAGCAATG GGCTGGGATCTAATCACAACG
e-EF-1α GCACGCTCTTCTTGCTTTC AGGGAATCTTGTCAGGGTTG

Fig. 1

Bioinformatics analysis of OsERF104 protein A: prediction of hydrophilic/hydrophobic. B: prediction of transmembrane domains. C: schematic diagram of protein. D: prediction of phosphorylation site."

Fig. 2

Analysis of conserved motifs and domains of ERF family genes in rice and Arabidopsis A: analysis of conserved protein motifs, different colored boxes represent different conserved motifs, and the black line indicates protein length; B: protein domain analysis, different colored boxes represent different domains."

Table 2

The cis-acting elements of OsERF104 promotor"

顺式作用元件
Cis-acting element
序列
Sequence (5′-3′)
功能
Function
数量
Number
G-box ACACGTGGC 参与光响应的顺式调节元件
Cis-acting regulatory element involved in light responsiveness
9
ATCT-motif AATCTAATCC 参与光响应的保守DNA模块的一部分
Part of a conserved DNA module involved in light responsiveness
10
GT1-motif GGTTAA 拟南芥光响应元件
Arabidopsis thaliana light responsive element
6
TATA-box TACAAAA 转录起始位点-30附件的核心启动子元件
Core promoter element around -30 of transcription start
7
CGTCA-motif CGTCA JA响应元件
Cis-acting regulatory element involved in the MeJA-responsiveness
5
TCA-element CCATCTTTTT SA响应元件
Cis-acting element involved in salicylic acid responsiveness
9
TGACG-motif TGACG JA响应元件
Cis-acting regulatory element involved in the MeJA-responsiveness
5
MBS CAACTG 干旱响应元件
Arabidopsis thaliana MYB binding site involved in drought-inducibility
6
ABRE GACACGTGGC ABA响应元件
Cis-acting element involved in the abscisic acid responsiveness
9
P-box CCTTTTG GA响应元件
Oryza sativa gibberellin-responsive element
7
DRE TACCGACAT 缺水、低温、盐响应元件
Cis-acting element involved in dehydration, low-temp, and salt stresses
9
TGA-element AACGAC 生长素响应元件
Auxin-responsive element
6
LTR CCGAAA 参与低温响应的顺式作用元件
Cis-acting element involved in low-temperature responsiveness
6
CAAT-box CAAAT 启动子和增强子区域的通用的顺式作用元件
Common cis-acting element in promoter and enhancer regions
5

Fig. 3

Subcellular localization of OsERF104 protein A: subcellular localization of OsERF104 protein in rice protoplasts. Scale bar: 3 μm. B: subcellular localization of OsERF104 protein in Nicotona benthamiana. Scale bar: 10 μm."

Fig. 4

Transcriptional activity assay of OsERF104"

Fig. 5

Expression patterns of OsERF104 A-B: expression patterns of OsERF104 in various organs of rice. Data are from the Rice eFP Browser. The shade of color represents the level of expression. C: expression patterns of OsERF104 in various organs of ZH11 by qRT-PCR. e-EF-1α was used as the reference gene. Values represent means ± SD of three biological replicates."

Fig. 6

Expression level of OsERF104 under hormone and stress treatment A: expression of OsERF104 under 50 mmol L-1 ABA treatment. B: expression of OsERF104 under 10 μmol L-1 JA treatment. C: expression of OsERF104 under 10 μmol L-1 GA treatment. D: expression of OsERF104 under 20% PEG-4000 treatment. E: expression of OsERF104 under 150 mmol L-1 NaCl treatment, Re: recovery. e-EF-1α was used as the reference gene. Values represent means ± SD of three biological replicates. CK represents the expression of OsERF104 under normal conditions."

Fig. 7

Nucleotide structure and DNA amplification bands of OsERF104 A: OsERF104 nucleotide structure. B: amplification and banding of OsERF104."

Fig. 8

OsERF104 mediate salt tolerance of rice A: expression levels of OsERF104 in OsERF104-ox lines. e-EF-1α was used as the reference gene. B: generation of target site mutations in representative knockout lines of OsERF104 rice plants using the CRISPR/Cas9 system. Filled black bars indicate exons of the OsERF104 gene. C-D: phenotypes and survival rates of OsERF104-ox transgenic rice seedlings under salt treatment. Scale bar is 6 cm. E-F: phenotypes and survival rates of oserf104 mutant transgenic rice seedlings under salt treatment. Scale bar is 6 cm. The experiments were performed in three replicates with similar results, each repeat was measured in 16-24 independent plants. G-H: germination phenotypes of OsERF104 transgenic rice after seven days under 5 μmol L-1 ABA and distilled water treatment. Scale bar is 0.5 cm. I-J: the length of shoot and root of OsERF104 transgenic rice after seven days under 5 μmol L-1 ABA and distilled water treatment. The experiments were performed in three replicates, each replicate containing 30-40 seeds. The values represent means ± SD of three biological replicates."

Fig. 9

Water loss rate of OsERF104 transgenic rice under salt treatment and the expression of key genes of ROS scavenging A: water loss rate of OsERF104 transgenic rice. B: expression of OsCatA, OsCatB and OsCatC in OsERF104 transgenic rice. e-EF-1α was used as the reference gene. Values represent means ± SD of three biological replicates."

[1] 牛淑琳, 唐苗苗, 杜晨阳, 王增兰, 谢先芝, 郑崇珂. 稻米品质调控的分子基础及非生物胁迫对稻米品质的影响. 中国稻米, 2022, 28(3): 10-19.
doi: 10.3969/j.issn.1006-8082.2022.03.003
Niu S L, Tang M M, Du C Y, Wang Z L, Xie X Z, Zheng C K. Molecular bases of rice quality regulation and effects of abiotic stress on rice quality. China Rice, 2022, 28(3): 10-19 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2022.03.003
[2] Guo H, Wang R, Garfin G M, Zhang A Y, Lin D G, Liang Q O, Wang J A. Rice drought risk assessment under climate change: based on physical vulnerability a quantitative assessment method. Sci Total Environ, 2021, 751: 141481.
[3] Xie Z Z, Jin L, Sun Y, Zhan C H, Tang S Q, Qin T, Liu N, Huang J L. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. Plant Commun, 2024, 5: 100782.
[4] Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi F B, Azad R K, Mittler R, Zandalinas S I. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiol, 2019, 181: 1668-1682.
doi: 10.1104/pp.19.00956 pmid: 31594842
[5] Gao W W, Li M K, Yang S G, Gao C Z, Su Y, Zeng X, Jiao Z L, Xu W J, Zhang M Y, Xia K F. miR2105 and the kinase OsSAPK10 co-regulate OsbZIP86 to mediate drought-induced ABA biosynthesis in rice. Plant Physiol, 2022, 189: 889-905.
[6] Yang L J, Xu L, Guo J Z, Li A P, Qi H Y, Wang J X, Song S Y. SNAC1-OsERF103-OsSDG705 module mediates drought response in rice. New Phytol, 2024, 241: 2480-2494.
[7] Jung H, Chung P J, Park S H, Redillas M C F R, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15: 1295-1308.
[8] Ramegowda V, Basu S, Krishnan A, Pereira A. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol, 2014, 166: 1634-1645.
doi: 10.1104/pp.114.248203 pmid: 25209982
[9] Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Choi Y D, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol, 2016, 172: 575-588.
[14] Huang S Z, Ma Z M, Hu L J, Huang K, Zhang M X, Zhang S H, Jiang W Z, Wu T, Du X L. Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses. Plant Physiol Biochem, 2021, 167: 22-30.
[15] Tezuka D, Kawamata A, Kato H, Saburi W, Mori H, Imai R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol Biochem, 2019, 135: 263-271.
[16] Pillai S E, Kumar C, Dasgupta M, Kumar B K, Vungarala S, Patel H K, Sonti R V. Ectopic expression of a cell-wall-degrading enzyme-induced OsAP2/ERF152 leads to resistance against bacterial and fungal infection in Arabidopsis. Phytopathology, 2020, 110: 726-733.
[17] Kong L F, Song Q, Wei H B, Wang Y H, Lin M H, Sun K, Zhang Y Q, Yang J R, Li C F, Luo K M. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytol, 2023, 240: 1848-1867.
[18] An J P, Zhang X W, Bi S Q, You C X, Wang X F, Hao Y J. The ERF transcription factor MdERF38 promotes drought stress- induced anthocyanin biosynthesis in apple. Plant J, 2020, 101: 573-589.
[19] Zhu Y Q, Liu Y, Zhou K M, Tian C Y, Aslam M, Zhang B L, Liu W J, Zou H W. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J Plant Physiol, 2022, 275: 153763.
[20] Khan M, Dahro B, Wang Y, Wang M, Xiao W, Qu J, Zeng Y K, Fang T, Xiao P, Xu X Y, et al. The transcription factor ERF110 promotes cold tolerance by directly regulating sugar and sterol biosynthesis in Citrus. Plant J, 2024, 119: 2385-2401.
[21] Wang X, Hou C, Zheng K, Li Q, Chen S, Wang S. Overexpression of ERF96 a small ethylene response factor gene, enhances salt tolerance in Arabidopsis. Biol Plant, 2017, 61: 693-701.
[22] Zhu Y X, Zhang X M, Zhang Q H, Chai S Y, Yin W C, Gao M, Li Z, Wang X P. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Mol Plant Pathol, 2022, 23: 1415-1432.
[23] Lu W Q, Deng F Y, Jia J B, Chen X K, Li J F, Wen Q J, Li T T, Meng Y L, Shan W X. The Arabidopsis thaliana gene AtERF019 negatively regulates plant resistance to Phytophthora parasitica by suppressing PAMP-triggered immunity. Mol Plant Pathol, 2020, 21: 1179-1193.
[24] Távora F T P K, Meunier A C, Vernet A, Portefaix M, Milazzo J, Adreit H, Tharreau D, Franco O L, Mehta A. CRISPR/Cas9- targeted knockout of rice susceptibility genes OsDjA2 and OsERF104 reveals alternative sources of resistance to Pyricularia oryzae. Rice Sci, 2022, 29: 535-544.
[25] Zong W, Tang N, Yang J, Peng L, Ma S Q, Xu Y, Li G L, Xiong L Z. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiol, 2016, 171: 2810-2825.
doi: 10.1104/pp.16.00469 pmid: 27325665
[26] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[27] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411-432.
[28] 陈悦, 陈茜, 董伟峰, 才晓溪, 沈阳, 杨珺凯, 贾博为, 孙明哲, 孙晓丽. 水稻AP2/ERF转录因子基因OsERF096启动子克隆及活性分析. 土壤与作物, 2022, 11(2): 159-169.
Chen Y, Chen X, Dong W F, Cai X X, Shen Y, Yang J K, Jia B W, Sun M Z, Sun X L. Cloning and activity analysis of promoter of an AP2/ERF transcription factor gene OsERF096 in rice. Soils Crops, 2022, 11(2): 159-169 (in Chinese with English abstract).
[29] Yu Y W, Yang D X, Zhou S R, Gu J T, Wang F R, Dong J G, Huang R F. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 2017, 254: 401-408.
doi: 10.1007/s00709-016-0960-4 pmid: 27040682
[30] Liu D F, Chen X J, Liu J Q, Ye J C, Guo Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63: 3899-3911.
[31] Jiang L, Yang J, Liu C X, Chen Z P, Yao Z C, Cao S Q. Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Biochem, 2020, 149: 294-300.
[32] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展. 作物学报, 2022, 48: 781-790.
doi: 10.3724/SP.J.1006.2022.12026
[10] Ahn H, Jung I, Shin S J, Park J, Rhee S, Kim J K, Jung W, Kwon H B, Kim S. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front Plant Sci, 2017, 8: 1044.
doi: 10.3389/fpls.2017.01044 pmid: 28663756
[11] Jin Y, Pan W Y, Zheng X F, Cheng X, Liu M M, Ma H, Ge X C. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol, 2018, 98: 51-65.
doi: 10.1007/s11103-018-0762-5 pmid: 30143992
[12] Zhang H W, Zhang J F, Quan R D, Pan X W, Wan L Y, Huang R F. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237: 1443-1451.
[13] Greco M, Chiappetta A, Bruno L, Bitonti M B. In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot, 2012, 63: 695-709.
[32] Chen Y, Sun M Z, Jia B W, Leng Y, Sun X L. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response. Acta Agron Sin, 2022, 48: 781-790 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.12026
[33] Donde R, Gupta M K, Gouda G, Kumar J, Vadde R, Sahoo K K, Dash S K, Behera L. Computational characterization of structural and functional roles of DREB1A, DREB1B and DREB1C in enhancing cold tolerance in rice plant. Amino Acids, 2019, 51: 839-853.
doi: 10.1007/s00726-019-02727-0 pmid: 30900088
[34] Zhang X, Long Y, Huang J J, Xia J X. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice (N Y), 2020, 13: 79.
doi: 10.1186/s12284-020-00440-1 pmid: 33284415
[35] Li Y X, Han S C, Sun X M, Khan N U, Zhong Q, Zhang Z Y, Zhang H L, Ming F, Li Z C, Li J J. Variations in OsSPL10 confer drought tolerance by directly regulating OsNAC2 expression and ROS production in rice. J Integr Plant Biol, 2023, 65: 918-933.
[36] Li R Q, Jiang M, Song Y, Zhang H L. Melatonin alleviates low-temperature stress via ABI5-mediated signals during seed germination in rice (Oryza sativa L.). Front Plant Sci, 2021, 12: 727596.
[1] LI Xue-Ting, REN Hao, WANG Hong-Zhang, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, LIU Ying, YAO Hai-Yan, LIU Peng. Effects of salt stress on photosynthetic performance and dry matter accumulation and distribution in leaves of different salt-tolerant maize varieties [J]. Acta Agronomica Sinica, 2025, 51(4): 1091-1101.
[2] ZHU Jian-Ping, LI Wen-Qi, XU Yang, WANG Fang-Quan, LI Xia, JIANG Yan-Jie, FAN Fang-Jun, TAO Ya-Jun, CHEN Zhi-Hui, WU Ying-Ying, YANG Jie. Phenotypic analysis and gene mapping of a floury endosperm mutant we2 in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 1110-1117.
[3] XIAO Zheng-Wu, ZHANG Ke-Qian, CAO Fang-Bo, CHEN Jia-Na, ZHENG Hua-Bin, WANG Wei-Qin, HUANG Min. Relationships between cooking and eating quality of brown rice noodles and starch component contents and pasting properties of brown rice grains [J]. Acta Agronomica Sinica, 2025, 51(4): 1102-1109.
[4] FANG Ying-Hao, ZHOU Bo, CHEN Ru-Mei, YANG Wen-Zhu, QIN Hui-Min. Integrative analysis of RNA-seq and PER-seq to elucidate regulatory network of ZmHDZ6 expression [J]. Acta Agronomica Sinica, 2025, 51(4): 958-968.
[5] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[6] HOU Tian-Yu, DU Xiao-Jing, ZHAO Zhi-Qiang, REYIM Anwar, YIDAYETULA Abula, BUHALIQIEMU Abulizi, YUAN Jie, ZHANG Yan-Hong, WANG Feng-Bin. Evaluation of cold tolerance of japonica rice varieties at germination stage and construction of identification system [J]. Acta Agronomica Sinica, 2025, 51(3): 812-822.
[7] YANG Cui-Hua, LI Shi-Hao, YI Xu-Xu, ZHENG Fei-Xiong, DU Xue-Zhu, SHENG Feng. Effects of poly-γ-glutamic acid on rice yield, quality, and nutrient uptake [J]. Acta Agronomica Sinica, 2025, 51(3): 785-796.
[8] XIONG Qiang-Qiang, SUN Chang-Hui, GU Wen-Fei, LU Yan-Yao, ZHOU Nian-Bing, GUO Bao-Wei, LIU Guo-Dong, WEI Hai-Yan, ZHU Jin-Yan, ZHANG Hong-Cheng. Comprehensive evaluation of 70 japonica glutinous rice varieties (lines) based on growth period, yield, and quality [J]. Acta Agronomica Sinica, 2025, 51(3): 728-743.
[9] SU Chang, MAN Fu-Yuan, WANG Jing-Bo, FENG Jing, JIANG Si-Xu, ZHAO Ming-Hui. Response of osalr3 mutant to exogenous organic acids and plant growth regulators under aluminum stress [J]. Acta Agronomica Sinica, 2025, 51(3): 676-686.
[10] HUO Ru-Xue, GE Xiang-Han, SHI Jia, LI Xue-Rui, DAI Sheng-Jie, LIU Zhen-Ning, LI Zong-Yun. Functional analysis of the sweetpotato histidine kinase protein IbHK5 in response to drought and salt stresses [J]. Acta Agronomica Sinica, 2025, 51(3): 650-666.
[11] LIU Jian-Guo, CHEN Dong-Dong, CHEN Yu-Yu, YI Qin-Qin, LI Qing, XU Zheng-Jin, QIAN Qian, SHEN Lan. Effects of different alleles and natural variations of OsMKK4, a member of the rice MKKs family gene, on grains [J]. Acta Agronomica Sinica, 2025, 51(3): 598-608.
[12] ZHANG Zheng-Kang, SU Yan-Hong, RUAN Sun-Mei, ZHANG Min, ZHANG Pan, ZHANG Hui, ZENG Qian-Chun, LUO Qiong. Cloning and functional study of OgXa13 in Oryza meyeriana [J]. Acta Agronomica Sinica, 2025, 51(2): 334-346.
[13] LI Chun-Mei, CHEN Jie, LANG Xing-Xuan, ZHUANG Hai-Min, ZHU Jing, DU Zi-Jun, FENG Hao-Tian, JIN Han, ZHU Guo-Lin, LIU Kai. Map-based cloning and functional analysis of Dwarf and Tillering 1 (DT1) gene in rice [J]. Acta Agronomica Sinica, 2025, 51(2): 347-357.
[14] HU Ya-Jie, GUO Jing-Hao, CONG Shu-Min, CAI Qin, XU Yi, SUN Liang, GUO Bao-Wei, XING Zhi-Peng, YANG Wen-Fei, ZHANG Hong-Cheng. Effect of low temperature and weak light stress during early grain filling on rice yield and quality [J]. Acta Agronomica Sinica, 2025, 51(2): 405-417.
[15] WANG Chong-Ming, LU Zhi-Feng, YAN Jin-Yao, SONG Yi, WANG Kun-Kun, FANG Ya-Ting, LI Xiao-Kun, REN Tao, CONG Ri-Huan, LU Jian-Wei. Effect of phosphorus fertilizer rates on crop yield, phosphorus uptake and its stability in rapeseed-rice rotation system [J]. Acta Agronomica Sinica, 2025, 51(2): 447-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!