Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (4): 958-968.doi: 10.3724/SP.J.1006.2025.43055

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Integrative analysis of RNA-seq and PER-seq to elucidate regulatory network of ZmHDZ6 expression

FANG Ying-Hao1(), ZHOU Bo3(), CHEN Ru-Mei2, YANG Wen-Zhu2,*(), QIN Hui-Min1,*()   

  1. 1Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education / Tianjin Key Laboratory of Industrial Microbiology / College of Biotechnology, Tianjin University of Science and Technology / National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
    2Crop Functional Genome Research Center, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2024-12-01 Accepted:2025-01-23 Online:2025-04-12 Published:2025-02-07
  • Contact: E-mail: yangwenzhu@caas.cn; E-mail: huiminqin@tust.edu.cn
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32372064)

Abstract:

Maize is a crop with high water demand, and drought is a major factor limiting its productivity. Building on previous findings and related research, we identified that the ZmHDZ6 gene is strongly induced by drought, and transgenic plants overexpressing ZmHDZ6 exhibit enhanced drought resistance. To investigate the downstream regulatory mechanisms of the maize transcription factor ZmHDZ6, RNA-seq was performed on transgenic maize plants overexpressing ZmHDZ6, while PER-seq (protoplast transient expression-based RNA sequencing) was conducted using protoplasts from the B73 inbred line. An integrative analysis of these datasets revealed that the differentially expressed genes (DEGs) identified by both methods showed consistent results in GO analysis, with their functions primarily associated with redox reactions. KEGG pathway analysis further demonstrated consistency in the benzoxazinoid biosynthesis pathway. Notably, RNA-seq DEGs were additionally enriched in amino acid and nucleotide metabolism pathways, while PER-seq DEGs were enriched in ribosome biogenesis pathways. Based on these findings, we propose that ZmHDZ6 enhances drought resistance in maize by regulating genes involved in redox processes and benzoxazinoid metabolism. Furthermore, through an integrative analysis of DNA binding motifs of the HD-ZIP I family and the promoters of 129 common DEGs (Co-DEGs), combined with gene annotation and motif physical location information, we narrowed potential target genes down to 16, of which 8 are closely associated with stress responses in maize. This study provides a detailed analysis of the regulatory network of ZmHDZ6 expression, offering valuable insights into the drought resistance mechanisms mediated by ZmHDZ6 and a reference for further functional studies.

Key words: RNA-seq, PER-seq, transcription factor, ZmHDZ6, target gene, motif

Fig. 1

Vector construction map and detection of relative expression of transformants A: vector construction of PER-seq; B: vector construction of overexpression; C: relative expression of transgenic plants. EGFP: enhanced green fluorescent protein gene; Ter: terminator; Bar: herbicide resistance gene; Ltp2: aleurone-specific expression promoter; DsRed: red fluorescent protein gene; UBI: maize strong promoter; 3×Flag: protein label; WT: wild type; OE1/4/12: lines overexpressing ZmHDZ6. The data are presented as mean ± SD; t-test was used to analyze the significance of differences (**: P < 0.01, ****: P < 0.0001)."

Fig. 2

Heatmap of sample correlation analysis A: heatmap for correlation analysis of RNA-seq samples; B: heatmap for correlation analysis of PER-seq sample. OE12-1/2/3: OE12 positive samples; WT-1/2/3: wild type sample; ZmHDZ6-1/2/3: ZmHDZ6 protoplast transformation sample; Control-1/2/3: protoplasts were transformed into control samples."

Fig. 3

Volcano plot of DEGs A: volcano plot of DEGs by RNA-seq; B: volcano plot of DEGs by PER-seq. Each dot represents a differentially expressed gene, the x axis represents the fold change in expression between the two groups taking the value of log2, and the y axis represents the P-value of the t-test taking the value of log10."

Fig. 4

Venn plots of DEGs by RNA-seq and PER-seq A: venn plots of up-regulated genes; B: venn plots of down-regulated genes."

Fig. 5

Enrichment analysis of DEGs A: bar graph for GO enrichment analysis of DEGs by RNA-seq; B: bubble map for GO enrichment analysis of DEGs by PER-seq; C: bar graph of KEGG enrichment pathway of DEGs by RNA-seq; D: bubble map of KEGG enrichment pathway of DEGs by PER-seq; E: bar graph for GO enrichment analysis of cross genes; F: bubble map of KEGG pathway enrichment of cross genes. The x axis in panels A, C, and E represents the number of genes, and the y axis represents the entry annotation information in the database. In graphs B, D and F, the x axis represents the enrichment factors, the y axis represents the pathway annotation information in the database, the dot size represents the number of genes, and the color represents the P-value of the t-test is log10."

Fig. 6

HDZIP I family motif The x axis represents the relative position of the bases, and the y axis represents the frequency of base occurrence."

Table 1

Description of gene function for 16 possible target genes"

基因ID
Gene ID
离近端启动子区物理位置
Physical location from proximal promoter region (bp)
描述
Description
结合位点数量
Number of binding sites
相关文献
Reference
Zm00001d029747 266 过氧化物酶64 Peroxidase 64 3 [31]
Zm00001d031717 111 转录因子bHLH28 Transcription factor bHLH28 2 [37]
Zm00001d034836 215 未知Unknown 1
Zm00001d048985 134 At5g01610蛋白Protein At5g01610 2 [39]
Zm00001d034977 292 突变体相关蛋白SEC22 VAMP protein SEC22 1 [40]
Zm00001d020401 284 肉桂醇脱氢酶 Cinnamyl alcohol dehydrogenase 1 [41]
Zm00001d021632 195 LOC103633229 1 [42]
Zm00001d008173 165 第3类分泌型植物过氧化物酶家族蛋白
Class III secretory plant peroxidase family protein
4 [32]
Zm00001d009404 275/229 天冬氨酸-谷氨酸消旋酶家族
Aspartate-glutamate racemase family
5 [43]
Zm00001d046281 286 LOC103638588 1 [44]
Zm00001d047504 151 花青素5,3-葡糖基转移酶
Anthocyanidin 5,3-O-glucosyltransferase
1 [38]
Zm00001d048437 278 钙调蛋白结合蛋白Calmodulin binding protein 1 [45]
Zm00001d023936 256 类CASP蛋白8 CASP-like protein 8 2
Zm00001d025567 212/243 阿拉伯半乳糖蛋白1 Arabinogalactan protein 1 2
Zm00001d026398 267 转录因子TGAL6 Transcription factor TGAL6 3 [33]
Zm00001d023673 278 SWEET13b 2 [34-36]

Fig. 7

qRT-PCR validation of differentially expressed genes WT: wild type material; OE: OE12 line material. RNA-seq: sequencing data; qRT-PCR: experimental data. Leaf: leaf was used as the material for data verification. Potoplast: data validation using protoplast as material. The data are presented as mean ± SD; t test was used to analyze the significance of differences (**: P < 0.01, ***: P < 0.001, ****: P < 0.0001)."

[1] Luo N, Meng Q F, Feng P Y, Qu Z R, Yu Y H, Liu D L, Müller C, Wang P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat Commun, 2023, 14: 2637.
[2] Liu W M, Hou P, Liu G Z, Yang Y S, Guo X X, Ming B, Xie R Z, Wang K R, Liu Y E, Li S K. Contribution of total dry matter and harvest index to maize grain yield: a multisource data analysis. Food Energy Secur, 2020, 9: e256.
[3] Li Y, Guan K Y, Schnitkey G D, DeLucia E, Peng B. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob Chang Biol, 2019, 25: 2325-2337.
[4] Blancon J, Buet C, Dubreuil P, Tixier M H, Baret F, Praud S. Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions. Theor Appl Genet, 2024, 137: 68.
doi: 10.1007/s00122-024-04572-6 pmid: 38441678
[5] Lu F Z, Li W C, Peng Y L, Cao Y, Qu J T, Sun F A, Yang Q Q, Lu Y L, Zhang X H, Zheng L J, et al. ZmPP2C26 alternative splicing variants negatively regulate drought tolerance in maize. Front Plant Sci, 2022, 13: 851531.
[6] Liu S X, Wang H W, Qin F. Genetic dissection of drought resistance for trait improvement in crops. Crop J, 2023, 11: 975-985.
doi: 10.1016/j.cj.2023.05.002
[7] He H H, Yang M F, Li S Y, Zhang G Y, Ding Z Y, Zhang L, Shi G Y, Li Y R. Mechanisms and biotechnological applications of transcription factors. Synth Syst Biotechnol, 2023, 8: 565-577.
doi: 10.1016/j.synbio.2023.08.006 pmid: 37691767
[8] Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant, 2021, 172: 847-868.
doi: 10.1111/ppl.13268 pmid: 33180329
[9] Weidemüller P, Kholmatov M, Petsalaki E, Zaugg J B. Transcription factors: Bridge between cell signaling and gene regulation. Proteomics, 2021, 21: e2000034.
[10] Gong S H, Ding Y F, Hu S S, Ding L H, Chen Z X, Zhu C. The role of HD-Zip class I transcription factors in plant response to abiotic stresses. Physiol Plant, 2019, 167: 516-525.
doi: 10.1111/ppl.12965 pmid: 30851063
[11] Valdés A E, Overnäs E, Johansson H, Rada-Iglesias A, Engström P. The homeodomain-leucine zipper (HD-Zip) class I transcription factors ATHB7 and ATHB12 modulate abscisic acid signalling by regulating protein phosphatase 2C and abscisic acid receptor gene activities. Plant Mol Biol, 2012, 80: 405-418.
doi: 10.1007/s11103-012-9956-4 pmid: 22968620
[12] Zhang S X, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer A H, Schluepmann H, Liu C M, Ouwerkerk P B F. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. Plant Mol Biol, 2012, 80: 571-585.
[13] Bang S W, Lee D K, Jung H, Chung P J, Kim Y S, Choi Y D, Suh J W, Kim J K. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnol J, 2019, 17: 118-131.
[14] Mao H D, Yu L J, Li Z J, Liu H, Han R. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L. Genetica, 2016, 144: 243-257.
[15] 郝陆洋, 张晓静, 高晨曦, 张登峰, 李永祥, 李春辉, 宋燕春, 石云素, 王天宇, 刘旭洋, 等. 玉米HD-Zip转录因子基因Zmhdz6的克隆与功能分析. 植物遗传资源学报, 2022, 23: 823-831.
doi: 10.13430/j.cnki.jpgr.20211124001
Hao L Y, Zhang X J, Gao C X, Zhang D F, Li Y X, Li C H, Song Y C, Shi Y S, Wang T Y, Liu X Y, et al. Cloning and functional analysis of HD-zip transcription factor gene Zmhdz6 in maize. J Plant Genet Resour, 2022, 23: 823-831 (in Chinese with English abstract).
[16] Jiao P, Jiang Z Z, Wei X T, Liu S Y, Qu J, Guan S Y, Ma Y Y. Overexpression of the homeobox-leucine zipper protein ATHB-6 improves the drought tolerance of maize (Zea mays L.). Plant Sci, 2022, 316: 111159.
[17] Jiang Y, Su S Z, Chen H, Li S P, Shan X H, Li H, Liu H K, Dong H X, Yuan Y P. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. Physiol Plant, 2023, 175: e13875.
[18] Zhang F, Wu J F, Sade N, Wu S, Egbaria A, Fernie A R, Yan J B, Qin F, Chen W, Brotman Y, et al. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol, 2021, 22: 260.
doi: 10.1186/s13059-021-02481-1 pmid: 34488839
[19] Zenda T, Liu S T, Wang X, Liu G, Jin H Y, Dong A Y, Yang Y T, Duan H J. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. Int J Mol Sci, 2019, 20: 1268.
[20] 袁钰涵. 玉米黄化突变体yl412的鉴定及YL412基因功能研究. 中国农业科学院硕士学位论文, 北京, 2021.
Yuan Y H. Identification of Maize Yellowing Mutant yl412 and Study on the Function of YL412 Gene. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[21] Luo Y, Zhang M L, Liu Y, Liu J, Li W Q, Chen G S, Peng Y, Jin M, Wei W J, Jian L M, et al. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol, 2022, 234: 513-526.
[22] Ma S, Yang W Z, Liu X Q, Li S Z, Li Y, Zhu J M, Zhang C Y, Lu X D, Zhou X J, Chen R M. Pentatricopeptide repeat protein CNS1 regulates maize mitochondrial complex III assembly and seed development. Plant Physiol, 2022, 189: 611-627.
[23] Armstrong C L, Petersen W L, Buchholz W G, Bowen B A, Sulc S L. Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep, 1990, 9: 335-339.
doi: 10.1007/BF00232864 pmid: 24226946
[24] Raborn R T, Spitze K, Brendel V P, Lynch M. Promoter architecture and sex-specific gene expression in Daphnia pulex. Genetics, 2016, 204: 593-612.
doi: 10.1534/genetics.116.193334
[25] Tang J, Chen S Y, Jia G F. Detection, regulation, and functions of RNA N6-methyladenosine modification in plants. Plant Commun, 2023, 4: 100546.
[26] Gharabli H, Della G V, Welner D H. The function of UDP-glycosyltransferases in plants and their possible use in crop protection. Biotechnol Adv, 2023, 67: 108182.
[27] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909-930.
[28] Sessa G, Carabelli M, Ruberti I, Lucchetti S, Baima S, Morelli G. Identification of distinct families of HD-ZIP proteins in Arabidopsis thaliana. In: Plant Molecular Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. pp 411-426.
[29] Brooks E G, Elorriaga E, Liu Y, Duduit J R, Yuan G L, Tsai C J, Tuskan G A, Ranney T G, Yang X H, Liu W S. Plant promoters and terminators for high-precision bioengineering. Biodes Res, 2023, 5: 0013.
[30] Yasmeen E, Wang J, Riaz M, Zhang L D, Zuo K J. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. Plant Commun, 2023, 4: 100558.
[31] 丁冬. 低磷胁迫下玉米幼苗根系生理及膜脂代谢分子调控研究. 黑龙江八一农垦大学硕士学位论文, 黑龙江大庆, 2020.
Ding D. Molecular Regulation of Physiology and Membrane Lipid Metabolism in Maize Roots under Low Phosphorus Stress. MS Thesis of Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China, 2020 (in Chinese with English abstract).
[32] 何秀静. 西南地区三种胁迫条件下玉米转录组分析及胁迫响应基因功能研究. 四川农业大学博士学位论文, 四川雅安, 2018.
He X J. Transcriptome Analyses of Maize (Zea mays L.) under Three Different Stresses in Southwest China and Functional Characterization of the Candidate Genes. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2018 (in Chinese with English abstract).
[33] He R Y, Zheng J J, Chen Y, Pan Z Y, Yang T, Zhou Y, Li X F, Nan X Y, Li Y Z, Cheng M J, et al. QTL-seq and transcriptomic integrative analyses reveal two positively regulated genes that control the low-temperature germination ability of MTP-maize introgression lines. Theor Appl Genet, 2023, 136: 116.
[34] Vinodh Kumar P N, Mallikarjuna M G, Jha S K, Mahato A, Lal S K, K R Y, Lohithaswa H C, Chinnusamy V. Unravelling structural, functional, evolutionary and genetic basis of SWEET transporters regulating abiotic stress tolerance in maize. Int J Biol Macromol, 2023, 229: 539-560.
doi: 10.1016/j.ijbiomac.2022.12.326 pmid: 36603713
[35] Amombo E, Ashilenje D S, Hirich A, Kouisni L, Oukarroum A, Ghoulam C, Meksem K, El Gharous M, Nilahyane A. Insights on the SWEET gene role in soluble sugar accumulation via the CO2 fixation pathway in forage maize under salt stress. J Plant Growth Regul, 2023.
[36] Pinto V B, Vidigal P M P, Dal-Bianco M, Almeida-Silva F, Venancio T M, Viana J M S. Transcriptome-based strategies for identifying aluminum tolerance genes in popcorn (Zea mays L. var.everta). Sci Rep, 2023, 13: 19400.
[37] 郑云霄. 玉米抗倒伏性状综合鉴评及茎秆维管束性状遗传分析. 河北农业大学硕士学位论文, 河北保定, 2021.
Zheng Y X. Comprehensive Identification and Evaluation of Lodging Resistance Traits and Genetic Analysis of Stem Vascular Bundle in Maize. MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2021 (in Chinese with English abstract).
[38] 赵欢. 基于Micro-CT的玉米穗位节间维管束表型精准鉴定及全基因组关联分析. 华中农业大学硕士学位论文, 湖北武汉, 2022.
Zhao H. Precise Phenotypic Identification and Genome-Wide Association Analysis of Maize Ear Internode Vascular Bundles Based on Micro-CT. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).
[39] 孟新超. 玉米染色质重塑蛋白ZmCHB101调控氮响应的分子机制. 东北师范大学博士学位论文, 吉林长春, 2019.
Meng X C. Molecular Mechanism of Chromatin Remodeling Protein Zmchb101 in Nitrate Response in Maize. PhD Dissertation of Northeast Normal University, Changchun, Jilin, China, 2019 (in Chinese with English abstract).
[40] Zhang Y P, Zhang X J, Zhu L J, Wang L X, Zhang H, Zhang X H, Xu S T, Xue J Q. Identification of the maize LEA gene family and its relationship with kernel dehydration. Plants (Basel), 2023, 12: 3674.
[41] Chu Y H, Lee Y S, Gomez-Cano F, Gomez-Cano L, Zhou P, Doseff A I, Springer N, Grotewold E. Molecular mechanisms underlying gene regulatory variation of maize metabolic traits. Plant Cell, 2024, 36: 3709-3728.
[42] 刘永明. Rf4介导的玉米CMS-C育性恢复机制探究及其恢复系鉴定. 四川农业大学博士学位论文, 四川温江, 2019.
Liu Y M. Characterization of the Maize CMS-C Fertility Restoration Mechanism and Its Restorer Lines. PhD Dissertation of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2019 (in Chinese with English abstract).
[43] 罗博文. 结合全基因组关联分析和代谢组学研究玉米苗期低磷响应机制. 四川农业大学博士学位论文, 四川雅安, 2019.
Luo B W. Genome-wide Association Studies and Metabolite Profiling Reveal Response Mechanisms of Phosphorus Deficiency in Maize Seedling. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019 (in Chinese with English abstract).
[44] 陈静. 两个玉米纹枯病病原诱导启动子中核心顺式作用元件的鉴定. 山东农业大学硕士学位论文, 山东泰安, 2016.
Chen J. Identification of Key Cis-Lements from Two Pathogen-Inducible Promoters for Rhizoctonia Solani Causing Maize Banded Leaf and Sheath Blight. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[45] 金思. 玉米全基因组IQD基因的分析及进化研究. 安徽农业大学硕士学位论文, 安徽合肥, 2012.
Jin S. Genome-wide Identification and Evolution Analysis of the IQD Gene Family in Zea mays L. MS Thesis of Anhui Agricultural University, Hefei, Anhui, China, 2012 (in Chinese with English abstract).
[46] Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet, 2019, 20: 631-656.
doi: 10.1038/s41576-019-0150-2 pmid: 31341269
[47] Liu S T, Zenda T, Li J, Wang Y F, Liu X Y, Duan H J. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. PLoS One, 2020, 15: e0240468.
[48] Li J, Zenda T, Liu S T, Dong A Y, Wang Y F, Liu X Y, Wang N, Duan H J. Integrated transcriptomic and proteomic analyses of low-nitrogen-stress tolerance and function analysis of ZmGST42 gene in maize. Antioxidants (Basel), 2023, 12: 1831.
[49] Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, Meunier J, Michallet M C, Laugraud A, Ah-Soon C, Wierinckx A, et al. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One, 2009, 4: e7035.
[50] Nosrati N, Kapoor N R, Kumar V. Combinatorial action of transcription factors orchestrates cell cycle‐dependent expression of the ribosomal protein genes and ribosome biogenesis. FEBS J, 2014, 281: 2339-2352.
doi: 10.1111/febs.12786 pmid: 24646001
[51] Domcke S, Bardet A F, Adrian Ginno P, Hartl D, Burger L, Schübeler D. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature, 2015, 528: 575-579.
[52] Guan X L, Song M, Lu J W, Yang H, Li X, Liu W B, Zhang Y, Miao W G, Li Z G, Lin C H. The transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in Colletotrichum siamense. J Fungi, 2022, 8: 1032.
[53] Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J, 2002, 21: 3029-3038.
pmid: 12065416
[54] Jiao P, Jiang Z Z, Miao M, Wei X T, Wang C L, Liu S Y, Guan S Y, Ma Y Y. Zmhdz9, an HD-Zip transcription factor, promotes drought stress resistance in maize by modulating ABA and lignin accumulation. Int J Biol Macromol, 2024, 258: 128849.
[1] PAN Ju-Zhong, WEI Ping, ZHU De-Ping, SHAO Sheng-Xue, CHEN Shan-Shan, WEI Ya-Qian, GAO Wei-Wei. Cloning and functional analysis of OsERF104 transcription factor in rice [J]. Acta Agronomica Sinica, 2025, 51(4): 900-913.
[2] WANG Lin, CHEN Xiao-Yu, ZHANG Wen-Meng-Long, WANG Si-Qi, CHENG Bing-Yun, CHENG Jing-Qiu, PAN Rui, ZHANG Wen-Ying. Molecular characteristics and functional analysis of HvMYB2 in response to drought stress in barley [J]. Acta Agronomica Sinica, 2025, 51(4): 873-887.
[3] SONG Qian-Na, SONG Hui-Yang, LI Jing-Hao, DUAN Yong-Hong, MEI Chao, FENG Rui-Yun. Response of transcription factor StFBH3 under abiotic stress in potato [J]. Acta Agronomica Sinica, 2025, 51(1): 247-259.
[4] LI Jia-Xin, HUANG Ying-Ying, WU Lu-Mei, ZHAO Lun, YI Bin, MA Chao-Zhi, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, WEN Jing. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. [J]. Acta Agronomica Sinica, 2025, 51(1): 44-57.
[5] GUO Fei-Xiang, LI Chun-Xia, ZHOU Shuang, GUO Bin-Bin, ZHANG Jun, MA Chao. Identification of the R2R3-MYB transcription factor family and screening of genes regulating flavonoid synthesis in mung bean [J]. Acta Agronomica Sinica, 2025, 51(1): 117-133.
[6] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[7] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
[8] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[9] YIN Xiang-Zhen, ZHAO Jian-Xin, HAO Cui-Cui, PAN Li-Juan, CHEN Na, XU Jing, JIANG Xiao, ZHAO Xu-Hong, WANG En-Qi, CAO Huan, YU Shan-Lin, CHI Xiao-Yuan. Cloning and expression analysis of transcription factor AhWRI1s in peanut [J]. Acta Agronomica Sinica, 2024, 50(12): 3155-3164.
[10] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[11] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[12] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[13] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[14] MO Guang-Ling, YU Chen-Jing, LIANG Yan-Lan, ZHOU Ding-Gang, LUO Jun, WANG Mo, QUE You-Xiong, HUANG Ning, LING Hui. RT-PCR cloning and functional analysis of ScbHLH13 in sugarcane [J]. Acta Agronomica Sinica, 2023, 49(9): 2485-2497.
[15] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!