Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 237-250.doi: 10.3724/SP.J.1006.2024.34076

• RESEARCH NOTES • Previous Articles     Next Articles

Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L.

YANG Chuang(), WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi*()   

  1. National Key Lab oratory of Crop Genetic Improvement, Huazhong Agricultural University / National Engineering Research Center of Rapeseed / Hongshan Laboratory, Wuhan 430070, Hubei, China
  • Received:2023-04-27 Accepted:2023-09-13 Online:2024-01-12 Published:2023-09-20
  • Contact: *E-mail: yuanbeauty@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD160014101-02);National Key Research and Development Program of Hubei Province(2020BBB061)

Abstract:

Brassica napus L. is an important oil crop. Salt stress is one of the major environmental conditions affecting the growth and development of B. napus, which may lead to yield reduction, quality deterioration, and even the death of B. napus. In this study, the B. napus semi-winter cultivar ZS11 was used as the experimental material to perform transcriptome sequencing on the leaf and root tissues with salt stress treatment (0, 0.25, 0.5, 1, 3, 6, 12, and 24 h). The measured 90 RNA-seq data provided the high-resolution time dynamic transcriptional expression spectrum of rapeseed tissues responding to salt stress was obtained. Correlation analysis showed that the samples exhibited significant clustering differences in early response and late response before and after 1 h salt stress treatment. Using DESeq2 for differential gene analysis, we identified 20,462 and 29,334 differential genes for the response of root and leaf tissues, respectively, indicating that the overall response of leaf tissue in rapeseed was more severe than the root. Furthermore, WGCNA was used to construct gene co-expression networks for the salt stress response in root and leaf tissues, respectively, and tan and yellow modules were significantly related to the early response to salt stress, and green and red modules were significantly related to the late response to salt stress. GO enrichment analysis was then performed, and 41 and 26 core transcription factors responding to salt stress at the early and late stages, respectively, were selected from these networks. Functional annotation showed that the known Arabidopsis homologous genes involved in salt stress responses at different stages existed in all four modules, and core genes, such as BnWRKY46 and BnWRKY57, had abundant SNPs variation and haplotypes in 505 salt stress-treated rape population variation data, suggesting that these core transcription factors might be key candidate genes for rape salt stress response. This study provides a reliable data reference and candidate gene resources for improving salt tolerance in B. napus.

Key words: Brassica napus L., RNA-seq, salt stress, WGCNA, gene co-expression networks

Fig. 1

Treatment conditions of salt stress samples"

Fig. 2

Relative expression pattern of marker genes under salt stress"

Fig. 3

Correlation analysis of salt stress A: principal coordinate analysis; B: hierarchical clustering analysis. The control group is used for principal coordinate analysis. In order to visually see the clustering situation, the control group is not added for hierarchical clustering."

Fig. 4

Number and trend of differential genes under salt stress treatment for 24 hours A: the change trend of the number of differential genes with the treatment time; B: the statistics on the number of up-regulated and down-regulated genes at each time point."

Fig. 5

Selection of optimal soft threshold (power) A, B: the network topology analysis with various soft thresholds. Fig. A represents leaf tissue and Fig. B represents root tissue. The left panel shows the scale-free fit index (Y-axis) as a function of the soft threshold (X-axis) and the right panel shows the average connectivity (Y-axis) as a function of the soft threshold (X-axis)."

Table S1

Information of gene co-expression network modules in leaf tissue in response to salt stress"

模块
Module
基因数目(转录因子数目)
Gene_number (TF_number)
模块
Module
基因数目(转录因子数目)
Gene_number (TF_number)
cyan 198 (18) blue 4945 (209)
salmon 242 (36) pink 775 (22)
green 1654 (138) purple 466 (59)
red 1148 (73) tan 260 (75)
turquoise 8651 (559) black 801 (27)
greenyellow 405 (33) magenta 556 (45)
brown 3510 (291) yellow 3101 (184)

Table S2

Information of gene co-expression network modules in root tissue in response to salt stress"

模块
Module
基因数目(转录因子数目)
Gene_number (TF_number)
模块
Module
基因数目(转录因子数目)
Gene_numbe (TF_number)
greenyellow 234 (27) yellow 2322 (276)
pink 824 (85) purple 365 (12)
brown 2515 (134) red 1238 (99)
green 2077 (195) black 1066 (89)
magenta 651 (41) turquoise 4058 (393)
blue 3590 (426)

Fig. 6

Correlation heat map between gene modules and sample time point A: the correlation heat map of leaf tissue; B: the correlation heat map of root tissue. The darker the color, the greater the correlation."

Fig. 7

Gene expression profiles of early and late response modules A: the tan module at early response stage of leaf tissue; B: the yellow module at early response stage of root tissue; C: the green module at late response stage of leaf tissue; D: the red module at late response stage of root tissue. Heatmaps show the relative expression profiles of all the co-expressed genes in each module. Bar graphs show the relative expression pattern of module eigengenes in each module."

Fig. 8

GO enrichment of early and late response modules A: the tan module in early response stage of leaf tissue; B: the yellow module in early response stage of root tissue; C: the green module in late response stage of leaf tissue; D: the red module in late response stage of root tissue."

Fig. 9

Co-expression network visualization of early and late response modules A: the tan module in early response stage of leaf tissue; B: the yellow module in early response stage of root tissue; C: the green module in late response stage of leaf tissue; D: the red module in late response stage of root tissue. Transcription factors are represented by red triangles, while non-transcription factors are represented by blue-green circles. The larger the graph, the higher the connectivity of genes."

Table S3

Functional annotation of core transcription factors in hub modules"

关键模块
Hub modules
核心转录因子
Core transcription factors
基因别名
Gene aliases
基因名字
Gene names
基因注释
Gene annotation
tan BnaA03G0475900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
tan BnaC07G0058300ZS NAC036 AT2G17040 NAC转录因子家族成员,参与叶和花序茎的形态建成。
A member of the NAC transcription factor family involved in leaf and inflorescence stem morphogenesis.
tan BnaC03G0795800ZS ERF4 AT3G15210 作为JA应答防御基因和对坏死性真菌病原体尖孢镰刀菌抗性的负调节因子,可拮抗JA对根伸长的抑制作用。
Acts as a negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation.
tan BnaA01G0133900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
tan BnaC01G0172400ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
tan BnaC07G0454200ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family。
tan BnaA09G0423300ZS ERF11 AT1G28370 ERF/AP2转录因子家族中ERF亚家族B-1的一员,该蛋白含有一个AP2结构域。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family which contains one AP2 domain.
tan BnaC03G0651000ZS ERF11 AT1G28370 ERF/AP2转录因子家族中ERF亚家族B-1的一员,该蛋白含有一个AP2结构域。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family which contains one AP2 domain.
tan BnaC03G0042100ZS NAC081 AT5G08790 具有NAC结构域的假定转录激活因子的大家族成员,可由创伤诱导表达。
A large family member of putative transcriptional activators with NAC domain, which can be Induced by wounding.
tan BnaA04G0247200ZS WRKY33 AT2G38470 WRKY转录因子家族成员,参与对各种非生物胁迫尤其是盐胁迫的反应。能控制根中凋亡屏障的形成,从而赋予耐盐性。
A member of WRKY transcription factor family. Involved in response to various abiotic stresses especially salt stress.Control apoplastic barrier formation in roots to confer salt tolerance.
tan BnaC03G0217300ZS WRKY33 AT2G38470 参与对各种非生物胁迫尤其是盐胁迫的反应。
Involved in response to various abiotic stresses especially salt stress.
tan BnaA06G0417500ZS ERF5 AT5G47230 ERF/AP2转录因子家族(ATERF-5)的ERF亚家族B-3的成员。
A member of the ERF subfamily B-3 of ERF/AP2 transcription factor family (ATERF-5).
tan BnaA03G0185200ZS WRKY33 AT2G38470 WRKY转录因子家族成员,参与对各种非生物胁迫尤其是盐胁迫的反应。
A member of the plant WRKY transcription factor family. Involved in response to various abiotic stresses - especially salt stress.
tan BnaA08G0213700ZS ERF11 AT1G28370 ERF/AP2转录因子家族中ERF亚家族B-1的一员。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family.
tan BnaC04G0562300ZS WRKY33 AT2G38470 参与对各种非生物胁迫尤其是盐胁迫的反应。
Involved in response to various abiotic stresses especially salt stress.
yellow BnaC09G0432800ZS ZAT12 AT5G59820 锌指蛋白,参与高光和冷适应。
A zinc finger protein involved in high light and cold acclimation.
yellow BnaC08G0297500ZS NAC062 AT3G49530 作为冷信号和病原体抗性反应之间分子链接的转录因子。
Transcription factor that serves as a molecular link between cold signals and pathogen resistance responses.
yellow BnaC02G0323100ZS WRKY40 AT1G80840 病原体诱导转录因子,与WRKY18或WRKY60共表达会使植物对丁香假单胞菌和灰霉病菌更敏感。
Pathogen-induced transcription factor. Coexpression with WRKY18 or WRKY60 made plants more susceptible to both P. syringae and B. cinerea.
yellow BnaA03G0475900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子。
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
yellow BnaA08G0015900ZS ERF8 AT1G53170 ERF/AP2转录因子家族(ATERF-8)ERF亚家族B-1的一个成员,这种蛋白质含有一个AP2结构域。
A member of the ERF subfamily B-1 of ERF/AP2 transcription factor family (ATERF-8). The protein contains one AP2 domain.
yellow BnaC05G0100700ZS DDF1 AT1G12610 ERF/AP2转录因子家族(DD f1)DREB亚家族A-1的一个成员。这种蛋白质含有一个AP2结构域。该亚家族有6个成员,包括CBF1、CBF2和CBF3。该基因的过表达导致延迟开花和矮化,赤霉酸生物合成减少,以及对高水平盐的耐受性增加。
A member of the DREB subfamily A-1 of ERF/AP2 transcription factor family (DDF1). The protein contains one AP2 domain. There are six members in this subfamily, including CBF1, CBF2, and CBF3. Overexpression of this gene results in delayed flowering and dwarfism, reduction of gibberellic acid biosynthesis, and increased tolerance to high levels of salt.
yellow BnaC07G0454200ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
yellow BnaA01G0133900ZS WRKY53 AT4G23810 WRKY转录因子家族成员,是叶绿素合成/降解、衰老和气孔导度的拮抗调节因子
A member of WRKY transcription factor family which is antagonistic regulators of chlorophyll synthesis/degradation, senescence, and stomatal conductance.
yellow BnaC03G0795800ZS ERF4 AT3G15210 作为JA反应性防御应答基因和对坏死性真菌病原体尖孢镰刀菌抗性的负调节因子,能拮抗JA对根伸长的抑制作用。
Acts as a negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation.
yellow BnaA06G0329700ZS NAC091 AT5G24590 NAC转录因子家族成员,参与调节拟南芥对TCV病毒的防御反应。
A member of NAC transcription factor family involved in regulating the defense response of Arabidopsis to turnip crinkle virus (TCV).
yellow BnaC04G0080600ZS WRKY33 AT2G38470 参与应对各种非生物胁迫,尤其是盐胁迫。
Involved in response to various abiotic stresses especially salt stress.
yellow BnaA06G0356400ZS WRKY48 AT5G49520 一种胁迫和病原体诱导的转录激活因子,会抑制植物的基础防御。
A stress- and pathogen-induced transcriptional activator that represses plant basal defense.
yellow BnaC05G0398500ZS AZF2 AT3G19580 锌指蛋白家族成员,其mRNA水平在响应ABA、高盐和轻度脱水时会上调表达。
A member of zinc finger protein family whose mRNA levels are upregulated in response to ABA, high salt, and mild desiccation.
yellow BnaA09G0110600ZS NAC036 AT2G17040 NAC转录因子家族成员,参与叶和花序茎的形态发生。
A member of the NAC transcription factor family that involved in leaf and inflorescence stem morphogenesis.
yellow BnaC09G0112900ZS NAC036 AT2G17040 NAC转录因子家族成员,参与叶和花序茎的形态发生。
A member of the NAC transcription factor family involved in leaf and inflorescence stem morphogenesis.
yellow BnaC07G0433500ZS LSD1 AT4G20380 锌指蛋白家族成员,负调节基础防御途径,监控超氧化物依赖性信号并负调节植物细胞死亡途径。
A member of zinc finger family protein that negatively regulates a basal defense pathway, monitors a superoxide-dependent signal and negatively regulates a plant cell death pathway.
yellow BnaC03G0563400ZS NAC062 AT3G49530 NAC转录因子家族成员,作为冷信号和病原体抗性反应之间分子链接。
A member of the NAC transcription factor family that serves as a molecular link between cold signals and pathogen resistance responses.
yellow BnaC05G0161100ZS ERF017 AT1G19210 ERF/AP2转录因子家族的DREB亚家族A-5的一个成员,这种蛋白质含有一个AP2结构域。
A member of the DREB subfamily A-5 of ERF/AP2 transcription factor family. The protein contains one AP2 domain.
yellow BnaC04G0512500ZS POSF21 AT2G31370 碱性亮氨酸拉链(bZIP)转录因子家族蛋白。
Basic-leucine zipper (bZIP) transcription factor family protein.
yellow BnaA07G0269000ZS MYBD AT1G70000 MYB样结构域转录因子,在响应光和细胞分裂素的花青素积累中发挥正调控作用。
A MYB-like Domain transcription factor that plays a positive role in anthocyanin accumulation in response to light and cytokinin.
yellow BnaA03G0321600ZS DREB2B AT3G11020 ERF/AP2转录因子家族(DREB2B)的DREB亚家族A-2的成员。这种蛋白质含有一个AP2结构域。
A member of the DREB subfamily A-2 of ERF/AP2 transcription factor family (DREB2B). The protein contains one AP2 domain.
yellow BnaC03G0264000ZS WRKY46 AT2G46400 WRKY转录因子,通过调节ABA信号和生长素体内平衡对渗透/盐胁迫依赖性LR抑制进行前馈抑制。
A WRKY transcription factor that contributes to the feedforward inhibition of osmotic/salt stress-dependent LR inhibition via regulation of ABA signaling and auxin homeostasis.
yellow BnaA02G0116700ZS MYB36 AT5G57620 MYB转录因子家族成员,在根发育过程中促进内皮层的分化。
A member of MYB transcriptional factor family that acts to promote differentiation of the endodermis during root development.
yellow BnaA04G0034100ZS BHLH107 AT3G56770 碱性螺旋-环-螺旋(bHLH) DNA结合超家族蛋白质。
basic helix-loop-helix (bHLH) DNA-binding superfamily protein.
yellow BnaA06G0158600ZS NAC062 AT3G49530 NAC转录因子家族成员,作为冷信号和病原体抗性反应之间分子链接。
A member of the NAC transcription factor family that serves as a molecular link between cold signals and pathogen resistance responses.
yellow BnaA06G0081500ZS DDF1 AT1G12610 ERF/AP2转录因子家族(DD f1)DREB亚家族A-1的一个成员,该基因的过表达导致延迟开花和矮化,对高水平盐的耐受性增加。
A member of the DREB subfamily A-1 of ERF/AP2 transcription factor family (DDF1). Overexpression of this gene results in delayed flowering and dwarfism, and increased tolerance to high levels of salt.
green BnaA05G0016800ZS GBF3 AT2G46270 一种bZIP G盒结合蛋白,其表达受ABA、寒冷和缺水诱导。
A bZIP G-box binding protein, induced by ABA, cold and water deprivation.
green BnaC03G0260300ZS SOC1 AT2G45660 控制开花,是一氧化碳促进开花所必需的。
Controls flowering and is required for CO to promote flowering.
green BnaC05G0560000ZS ATHB-1 AT3G01470 一个参与叶和下胚轴发育的同源结构域亮氨酸拉链I类(HD-Zip I)转录激活因子。
A homeodomain leucine zipper class I (HD-Zip I) transcriptional activator involved in leaf and hypocotyl development.
green BnaA07G0347200ZS ATY13 AT1G74650 R2R3因子基因家族成员;与生殖发育有关的蜡调节因子。
A member of the R2R3 factor gene family; wax regulator associated with reproductive development.
green BnaC01G0510700ZS NAC047 AT3G04070 含NAC结构域的蛋白47。
NAC domain containing protein 47.
green BnaA09G0409000ZS NFYA7 AT1G30500 核因子Y,亚单位A7。
nuclear factor Y, subunit A7.
green BnaA01G0191600ZS ARR1 AT3G16857 一种拟南芥反应调节蛋白(ARR ),在细胞分裂素信号途径中与其他B型ARR协同作用。还参与细胞分裂素依赖的下胚轴伸长抑制和细胞分裂素依赖的组织培养中的绿化和抽芽。ARR1、ARR10和ARR12是干旱反应的冗余调节因子,其中ARR1最为关键。
An Arabidopsis response regulator (ARR) protein that acts in concert with other type-B ARRs in the cytokinin signaling pathway. Also involved in cytokinin-dependent inhibition of hypocotyl elongation and cytokinin-dependent greening and shooting in tissue culture. ARR1, ARR10, and ARR12 are redundant regulators of drought response, with ARR1 being the most critical.
green BnaC04G0017100ZS GBF3 AT2G46270 一种bZIP G盒结合蛋白,受ABA、寒冷和缺水诱导。
A bZIP G-box binding protein induced by ABA, cold and water deprivation.
green BnaC06G0084400ZS NFYA5 AT1G54160 CBF-B/NF-YA转录因子家族的成员。响应ABA和干旱,功能丧失突变对干旱高度敏感。
A member of the CBF-B/NF-YA transcription factor family. Expression is upregulated in response to ABA and drought. Loss of function mutations are hypersensitive to drought.
green BnaA01G0036700ZS ATB2 AT4G34590 碱性结构域亮氨酸拉链(bZIP)转录因子bZIP11。蔗糖抑制翻译,导致uORF2中的核糖体停滞。直接调节参与氨基酸代谢的酶编码基因ASN1和ProDH2的基因表达。
A basic domain leucine zipper (bZIP) transcription factor bZIP11. Translation is repressed by sucrose that results in ribosome stalling in the uORF2. Directly regulates gene expression of ASN1 and ProDH2, which are enzyme-coding genes involved in amino acid metabolism.
green BnaC05G0008500ZS —— AT1G01250 ERF/AP2转录因子家族的DREB亚家族A-4的成员。这种蛋白质含有一个AP2结构域。
A member of the DREB subfamily A-4 of ERF/AP2 transcription factor family. The protein contains one AP2 domain.
green BnaA09G0663800ZS NFYC9 AT1G08970 核因子Y C (NF-YC)同系物NF-YC9,调节GA和ABA介导的种子萌发。
A NUCLEAR FACTOR-Y C (NF-YC) homologue NF-YC9 that modulate GA- and ABA-mediated seed germination.
green BnaC09G0556700ZS FLC AT5G10140 由开花基因座C转录因子编码的MADS-box蛋白,作为花转变的阻遏物并有助于昼夜节律钟的温度补偿。冷处理过程中表达下调。春化、FRI和自主途径都会影响FLC染色质的状态。在体内与SOC1和FT染色质相互作用。
MADS-box protein encoded by FLOWERING LOCUS C - transcription factor that functions as a repressor of floral transition and contributes to temperature compensation of the circadian clock. Expression is downregulated during cold treatment. The small RNAs are most likely derived from an antisense transcript of FLC. Interacts with SOC1 in vivo.
green BnaC07G0522500ZS GATA3 AT4G34680 锌指转录因子GATA因子家族成员。
A member of the GATA factor family of zinc finger transcription factors.
red BnaA02G0180600ZS WRKY57 AT1G69310 WRKY转录因子成员。WRKY57的激活赋予了耐旱性。
A member of the WRKY Transcription Factor. Activation of WRKY57 confers drought tolerance.
red BnaC02G0139100ZS LRL3 AT5G58010 调节根毛发育的碱性螺旋-环-螺旋(bHLH)蛋白。
A basic helix-loop-helix (bHLH) protein that regulates root hair development.
red BnaA03G0557900ZS ATHB40 AT4G36740 同源结构域亮氨酸拉链I类(HD-Zip I)蛋白。
A homeodomain leucine zipper class I (HD-Zip I) protein.
red BnaA09G0422600ZS NAC010 AT1G28470 含NAC结构域的蛋白10。
NAC domain containing protein 10.
red BnaC07G0322500ZS MYB121 AT3G30210 R2R3因子基因家族成员。
A member of the R2R3 factor gene family.
red BnaA05G0156300ZS NFYA5 AT1G54160 CCAAT结合转录因子(CBF-B/NF-YA)家族的成员。响应ABA和干旱。
A member of the CCAAT-binding transcription factor (CBF-B/NF-YA) family. Expression is upregulated in response to ABA and drought.
red BnaA07G0311300ZS ZFHD1 AT1G69600 锌指同源结构域转录因子家族成员ZFHD1。干旱、高盐和脱落酸诱导ZFHD1的表达。
A member of the zinc finger homeodomain transcriptional factor family. Expression of ZFHD1 is induced by drought, high salinity and abscisic acid.
red BnaA08G0184300ZS ATHB40 AT4G36740 同源结构域亮氨酸拉链I类(HD-Zip I)蛋白。
A homeodomain leucine zipper class I (HD-Zip I) protein.
red BnaC06G0308100ZS WRKY57 AT1G69310 WRKY转录因子成员。WRKY57的激活赋予了耐旱性。
A member of the WRKY Transcription Factor. Activation of WRKY57 confers drought tolerance.
red BnaC08G0452900ZS SRS3 AT2G21400 SHI基因家族成员,能促进拟南芥中雌蕊、雄蕊和叶的发育。
A member of SHI gene family that promote gynoecium, stamen and leaf development in Arabidopsis.
red BnaA07G0271900ZS WRKY57 AT1G69310 WRKY转录因子成员。WRKY57的激活赋予了耐旱性。
A member of the WRKY Transcription Factor. Activation of WRKY57 confers drought tolerance.
red BnaC09G0556700ZS FLC AT5G10140 冷处理过程中表达下调。
Expression is downregulated during cold treatment.

Fig. 10

SNPs and haplotype analysis of hub genes BnWRKY46 and BnWRKY57 in 505 population data A: the linkage disequilibrium plot of BnWRKY46. B: the haplotype boxplot of BnWRKY46 in 505 population data showed that the ordinate was the root length ratio of the salt stress treatment group and the control group in the seedling stage. Different letters indicate differences at P ≤ 0.05 using two-way ANOVA. C: the linkage disequilibrium diagram of BnWRKK46. D: BnWRKY57 haplotype boxplot in 505 population data showed that the ordinate was the root length ratio of the salt stress treatment group and the control group in the seedling stage. Different letters indicate significant differences at P ≤ 0.05 using two-way ANOVA."

[1] Hazell P, Wood S. Drivers of change in global agriculture. Philosoph Trans Royal Soc B Biol Sci, 2008, 363: 495-515.
[2] Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas R J, Drechsel P, Noble A D. Economics of salt-induced land degradation and restoration. Nat Resour Forum, 2014, 38: 282-295.
doi: 10.1111/narf.2014.38.issue-4
[3] Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant. Mol Cells, 2016, 39: 447-459.
doi: 10.14348/molcells.2016.0083 pmid: 27239814
[4] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
[5] Tyerman S D, Munns R, Fricke W, Arsova B, Barkla B J, Bose J, Bramley H, Byrt C, Chen Z, Colmer T D, Cuin T, Day D A, Foster K J, Gilliham M, Henderson S W, Horie T, Jenkins C L D, Kaiser B N, Katsuhara M, Plett D, Miklavcic S J, Roy S J, Rubio F, Shabala S, Shelden M, Soole K, Taylor N L, Tester M, Watt M, Wege S, Wegner L H, Wen Z. Energy costs of salinity tolerance in crop plants. New Phytol, 2019, 221: 25-29.
doi: 10.1111/nph.15555 pmid: 30488600
[6] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27.
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedol Sin, 2022, 59: 10-27. (in Chinese with English abstract)
[7] 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2019.04.001
[8] 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7.
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. Chin Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract)
[9] Kumar K, Kumar M, Kim S R, Ryu H, Cho Y G. Insights into genomics of salt stress response in rice. Rice, 2013, 6: 27-39.
doi: 10.1186/1939-8433-6-27 pmid: 24280112
[10] Zhang H, Jiang C, Lei J, Dong J, Ren J, Shi X, Zhong C, Wang X, Zhao X, Yu H. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics, 2022, 114: 110285.
doi: 10.1016/j.ygeno.2022.110285
[11] Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson D M, Swift G B, He Y, Siedow J N, Pei Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514: 367-371.
[12] Hamilton E S, Jensen G S, Maksaev G, Katims A, Sherp A M, Haswell E S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350: 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758
[13] Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F, Li C, Ye R, Byeon B, Xue Y, Zhao H, Wang H N, Crawford B M, Johnson D M, Hu C, Pei C, Zhou W, Swift G B, Zhang H, Vo-Dinh T, Hu Z, Siedow J N, Pei Z M. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572: 341-346.
doi: 10.1038/s41586-019-1449-z
[14] Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1
[15] Barragán V, Leidi E O, Andrés Z, Rubio L, De Luca A, Fernández J A, Cubero B, Pardo J M.Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 2012, 24: 1127-1142.
[16] Kim J, Kim H Y. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett, 2006, 580: 5251-5256.
pmid: 16962584
[17] Bo C, Chen H, Luo G, Li W, Zhang X, Ma Q, Cheng B, Cai R. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135-148.
doi: 10.1007/s00299-019-02481-3 pmid: 31659429
[18] Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y, Miao Y, Zhang Y, Gao Y, Qi Y, Zhou J, Huang R. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol, 2019, 223: 798-813.
doi: 10.1111/nph.15824 pmid: 30924949
[19] Zhang H, Mao L, Xin M, Xing H, Zhang Y, Wu J, Xu D, Wang Y, Shang Y, Wei L, Cui M, Zhuang T, Sun X, Song X. Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biol, 2022, 22: 313.
doi: 10.1186/s12870-022-03705-7
[20] Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333-345.
doi: 10.1007/s11103-020-01091-y pmid: 33155154
[21] Chowdhury H A, Bhattacharyya D K, Kalita J K. (Differential) co-expression analysis of gene expression: a survey of best practices. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17: 1154-1173.
doi: 10.1109/TCBB.2019.2893170 pmid: 30668502
[22] Zheng J, He C, Qin Y, Lin G, Park W D, Sun M, Li J, Lu X, Zhang C, Yeh C T, Gunasekara C J, Zeng E, Wei H, Schnable P S, Wang G, Liu S. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J, 2019, 97: 530-543.
doi: 10.1111/tpj.14140
[23] 李旭凯, 李任建, 张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络. 作物学报, 2019, 45: 1349-1364.
doi: 10.3724/SP.J.1006.2019.82061
Li X K, Li R J, Zhang B J. Identification of rice stress-related gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45: 1349-1364. (in Chinese with English abstract)
[24] Ye W, Wang T, Wei W, Lou S, Lan F, Zhu S, Li Q, Ji G, Lin C, Wu X, Ma L. The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte. Plant Cell Physiol, 2020, 61: 882-896.
doi: 10.1093/pcp/pcaa013
[25] Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and co-expression network analyses reveal differential gene expression and pathways in response to severe drought stress in peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 672884.
doi: 10.3389/fgene.2021.672884
[26] Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. Front Plant Sci, 2022, 13: 1009998.
doi: 10.3389/fpls.2022.1009998
[27] Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang Q Y. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol Plant, 2023, 16: 775-789.
[28] Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016, 32: 3047-3048.
[29] Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807
[30] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943
[31] Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677
[32] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[33] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8
[34] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559
[35] Yu G, Wang L G, Han Y, He Q Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287.
doi: 10.1089/omi.2011.0118 pmid: 22455463
[36] Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658
[37] Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91-105.
doi: 10.1007/s11103-008-9408-3
[38] Ji H, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant, 2013, 6: 275-286.
doi: 10.1093/mp/sst017 pmid: 23355543
[39] Ali A, Maggio A, Bressan R A, Yun D J. Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci, 2019, 20: 1059.
doi: 10.3390/ijms20051059
[40] Luo X, Li C, He X, Zhang X, Zhu L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep, 2020, 39: 181-194.
doi: 10.1007/s00299-019-02480-4 pmid: 31713664
[41] Wolny E, Skalska A, Braszewska A, Mur L A J, Hasterok R. Defining the cell wall, cell cycle and chromatin landmarks in the responses of brachypodium distachyon to salinity. Int J Mol Sci, 2021, 22: 949.
doi: 10.3390/ijms22020949
[42] Cai C, Wang W, Ye S, Zhang Z, Ding W, Xiang M, Wu C, Zhu Q. Overexpression of a novel Arabidopsis gene SUPA leads to various morphological and abiotic stress tolerance alternations in Arabidopsis and Poplar. Front Plant Sci, 2020, 11: 560985.
[43] Oh G G K, O'Leary B M, Signorelli S, Millar A H.Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521-1536.
[44] Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, Scheller H V, Knox J P, Fleming A J, Gray J E. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr Biol, 2016, 26: 2899-2906.
doi: S0960-9822(16)30933-2 pmid: 27720618
[45] Kang H G, Kim J, Kim B, Jeong H, Choi S H, Kim E K, Lee H Y, Lim P O. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci, 2011, 180: 634-641.
doi: 10.1016/j.plantsci.2011.01.002
[46] Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2- type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746.
doi: 10.1104/pp.104.046599 pmid: 15333755
[47] Yan Z, Wang J, Wang F, Xie C, Lyu B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z.MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep, 2021, 22: e52457.
[48] Tran L S, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K.Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J, 2007, 49: 46-63.
[49] 张国方.甘蓝型油菜耐盐性遗传解析及候选基因功能验证. 华中农业大学博士学位论文, 湖北武汉, 2021.
Zhang G F. Genetic Analysis of Salt Tolerance andFunctional Verification of Candidate Genes in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021. (in Chinese with English abstract)
[50] Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg B E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J, 2007, 50: 347-363.
doi: 10.1111/j.1365-313X.2007.03052.x pmid: 17376166
[51] Zhang H, Zhu J, Gong Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0
[52] Luo L, Zhang P, Zhu R, Fu J, Su J, Zheng J, Wang Z, Wang D, Gong Q. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front Plant Sci, 2017, 8: 1459.
[53] Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014
[54] Glawischnig E. Camalexin. Phytochemistry, 2007, 68: 401-406.
doi: 10.1016/j.phytochem.2006.12.005 pmid: 17217970
[55] Mukherjee R, Mukherjee A, Bandyopadhyay S, Mukherjee S, Sengupta S, Ray S, Majumder A L. Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci Rep, 2019, 9: 5358.
doi: 10.1038/s41598-019-41809-7 pmid: 30926863
[56] Le Gall H, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel), 2015, 4: 112-166.
doi: 10.3390/plants4010112
[57] Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24: 2452.
doi: 10.3390/molecules24132452
[58] Krishnamurthy P, Vishal B, Ho W J, Lok F C J, Lee F S M, Kumar P P. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 Transcription Factor controls apo plastic barrier formation in roots to confer salt tolerance. Plant Physiol, 2020, 184: 2199-2215.
doi: 10.1104/pp.20.01054 pmid: 32928900
[59] Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol, 2014, 15: 677-689.
doi: 10.1111/mpp.12123 pmid: 24521393
[60] Cao F Y, DeFalco T A, Moeder W, Li B, Gong Y, Liu X M, Taniguchi M, Lumba S, Toh S, Shan L, Ellis B, Desveaux D, Yoshioka K. Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biol, 2018, 18: 211.
doi: 10.1186/s12870-018-1402-6
[1] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[2] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[3] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[4] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[5] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[6] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[7] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[8] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[9] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[10] DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686.
[11] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[12] LI Ji-Jun, CHEN Ya-Hui, WANG Yi-Jin, ZHOU Zhi-Hua, GUO Zi-Yue, ZHANG Jian, TU Jin-Xing, YAO Xuan, GUO Liang. Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(12): 3162-3175.
[13] ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249.
[14] QIAN Fu, ZHANG Zhan-Qin, CHEN Shu-Bin, DING Yong-Fu, SANG Zhi-Qin, LI Wei-Hua. Mining maize flowering traits related candidate genes based on GWAS and WGCNA data [J]. Acta Agronomica Sinica, 2023, 49(12): 3261-3276.
[15] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .