Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3162-3175.doi: 10.3724/SP.J.1006.2023.34034

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L.

LI Ji-Jun1(), CHEN Ya-Hui1,2, WANG Yi-Jin1, ZHOU Zhi-Hua1, GUO Zi-Yue3, ZHANG Jian3, TU Jin-Xing1, YAO Xuan1,*(), GUO Liang1,*()   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, Hubei, China
    2Chengde Academy of Agricultural and Forestry Sciences, Chengde 067000, Hebei, China
    3College of Resources and Environmental Sciences, Huazhong Agricultural University / Macro Agriculture Research Institute, Wuhan 430070, Hubei, China
  • Received:2023-02-22 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-13
  • Contact: * E-mail: guoliang@mail.hzau.edu.cn; E-mail: xuanyao@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200400);Key Research and Development Plan of Hubei Province(2021ABA011)

Abstract:

Brassica napus L. (B. napus) is one of the most important oil crops in China, and has high risk of waterlogging stress during its production. The objective of this study is to evaluate the field waterlogging tolerance and screen stable waterlogging-resistant germplasm resources. The appropriate waterlogging duration for waterlogging tolerance identification was determined under pot conditions first, and then the comprehensive evaluation and comparison of the waterlogging tolerance of 505 germplasm resources of B. napus were carried out. The stable extreme materials were screened in field experiments. The results showed that the growth of B. napus plants began to be affected after four-day-waterlogging, and severely inhibited after about 10-day-waterlogging under pot conditions. In the two-year field experiment, 27 indexes extracted using the UAV phenotype acquisition platform were converted into two common factors by factor analysis. The common factor 1 represented the growth state of B. napus under waterlogging, and the common factor 2 represented the physiological state. The comprehensive evaluation value of waterlogging resistance (D-value), which was calculated according to the load and variance contribution rate of the two common factors, divided the waterlogging resistance of B. napus germplasm resources into four types, including extremely waterlogging resistant type (Cluster I, 99 materials), waterlogging resistant type (Cluster II, 200 materials), sensitive type (Cluster III, 187 materials), and extremely sensitive type (Cluster IV, 19 materials). In the two-year field experiment, nine stable waterlogging sensitive materials and nine resistant materials were identified, and the results were confirmed by the field experiments in 2022. Moreover, in the two-year experiment, the vegetation indexes, MTVI2D, and MCARI2D had high correlations with the D-value, and the correlation coefficients were greater than 0.76, which can be used for rapid and efficient comprehensive evaluation of B. napus waterlogging resistance. In conclusion, the evaluation system and rapid and comprehensive evaluation methods for waterlogging tolerance of B. napus in the field were established, which were applied to analyze the types of waterlogging tolerance of B. napus germplasm resources and identify the stable waterlogging resistant and sensitive materials in this study, providing reliable evaluation methods and important germplasm resources for the research and genetic improvement of waterlogging resistance of B. napus.

Key words: Brassica napus L., germplasm resources, seedling stage, waterlogging tolerance, the comprehensive evaluation

Table 1

List of 10 Brassica napus L. inbred lines in pot experiment"

材料名称Material name 来源Origin 亚群Group
Santana 德国 Germany 半冬性 Semi-winter
中双9号 Zhongshuang 9 中国湖北 Hubei, China 半冬性 Semi-winter
中双11号 Zhongshuang 11 中国湖北 Hubei, China 半冬性 Semi-winter
中油821Q Zhongyou 821Q 中国湖北 Hubei, China 半冬性 Semi-winter
华双2号 Huashuang 2 中国湖北 Hubei, China 半冬性 Semi-winter
浙油18 Zheyou 18 中国浙江 Zhejiang, China 半冬性 Semi-winter
沪油19 Huyou 19 中国上海 Shanghai, China 半冬性 Semi-winter
皖油20号 Wanyou 20 中国安徽 Anhui, China 半冬性 Semi-winter
四达 Star 加拿大 Canada 春性 Spring
陇油4号 Longyou 4 中国甘肃 Gansu, China 春性 Spring

Fig. 1

Changes of growth indexes and physiological indexes under different waterlogging durations in Brassica napus L. A: the number of green leaves; B: plant height; C: shoot fresh weight; D: soluble sugar; E: proline; F: the relative electric conductivity; G: chlorophyll a; H: chlorophyll b; I: carotenoids. The value in the figure is mean ± SE (n = 10), and different letters in the same figure indicate significant differences between different time at P < 0.05."

Fig. 2

Performance of Brassica napus L. after waterlogging in the field A: the overall growth changes of Brassica napus L. before and after waterlogging. After waterlogging, Brassica napus L. plants showed typical phenotypes such as leaf senescence (B), yellowing functional leaf scorching (C), leaf anthocyanin accumulation (D), root rot (E), plant lodging (F), and death (G)."

Table 2

Descriptive statistics of each trait in 505 Brassica napus L. germplasm resources under waterlogging stress"

性状
Trait
2017 2018
极小值
Min.
极大值
Max.
平均值
Mean
标准差
SD
极小值
Min.
极大值
Max.
平均值
Mean
标准差
SD
CVM (m3) 0 0.039 0.006 0.006 0.001 0.272 0.099 0.060
GCC 0.003 0.232 0.050 0.032 0.072 0.632 0.443 0.127
PCC 0.002 0.122 0.039 0.021 0 0.237 0.026 0.033
PH (m) 0.006 0.236 0.069 0.041 0.007 0.435 0.192 0.090
RGB-CIVE 0.022 0.126 0.078 0.016 18.689 18.812 18.751 0.028
RGB-ExG 0.003 0.248 0.101 0.042 -0.041 0.257 0.106 0.069
RGB-ExG-ExR -0.020 0.213 0.059 0.045 -0.255 0.230 -0.024 0.114
RGB-ExR 0.095 0.230 0.182 0.023 0.021 0.224 0.130 0.046
RGB-NDI -0.094 0.060 -0.035 0.025 -0.092 0.144 0.019 0.054
CIVE 18.756 18.796 18.777 0.006 18.732 18.778 18.755 0.008
DVI 0.195 0.558 0.334 0.059 0.093 0.442 0.277 0.067
ExG -0.068 0.439 0.161 0.082 0.214 0.914 0.595 0.150
ExG-ExR -0.350 0.511 0.030 0.143 0.118 1.314 0.770 0.261
ExR -0.072 0.283 0.131 0.064 -0.400 0.096 -0.175 0.111
GNDVI 0.498 0.834 0.671 0.056 0.324 0.742 0.607 0.072
MCARI2D 0.232 0.747 0.455 0.089 0.158 0.829 0.516 0.138
MSARI2D 0.290 0.749 0.494 0.079 0.162 0.729 0.474 0.113
MTVI2D 0.232 0.747 0.455 0.089 0.158 0.829 0.516 0.138
NDI -0.152 0.254 0.024 0.070 0.064 0.579 0.352 0.117
NDVI 0.471 0.862 0.672 0.068 0.415 0.907 0.770 0.094
NDVI705 0.350 0.721 0.540 0.068 0.397 0.837 0.698 0.087
R31 2.063 6.000 3.597 0.612 1.896 4.125 2.914 0.347
RDVI 0.297 0.680 0.468 0.064 0.198 0.629 0.455 0.083
RVI 3.221 15.680 6.621 1.981 2.575 23.930 10.989 4.539
SAVI 0.309 0.708 0.490 0.067 0.193 0.664 0.470 0.092
SQIRDR 1.750 3.813 2.473 0.349 1.595 4.779 3.167 0.688
TNDVI 0.983 1.167 1.080 0.032 0.952 1.186 1.125 0.043

Fig. 3

Correlation analysis of membership function values of various traits in Brassica napus L. Abbreviations are the same as those given in Table 2."

Table 3

Common factor variance contribution rate of indexes of Brassica napus L."

年份
Year
公因子
Common factor
初始特征值
Initial eigenvalue
方差贡献率
Explained variance (%)
累计方差贡献率
Accumulative explained variance (%)
2017 1 18.5 68.4 68.4
2 5.5 20.3 88.7
3 1.1 3.9 92.6
2018 1 23.0 85.3 85.3
2 2.1 7.7 93.1

Table 4

Common factor load matrix"

性状
Trait
2017 2018
公因子1 Factor 1 公因子2 Factor 2 公因子3 Factor 3 公因子1 Factor 1 公因子2 Factor 2
CVM (m3) 0.821 0.001 0.476 0.919 -0.050
GCC 0.848 -0.034 0.377 0.975 -0.032
PCC -0.283 0.822 0.081 -0.590 0.573
PH (m) 0.835 0.192 0.308 0.878 -0.005
RGB-CIVE -0.538 0.770 0.109 -0.955 0.185
RGB-ExG 0.834 -0.478 0.078 0.951 -0.195
RGB-ExG-ExR 0.725 -0.338 0.273 0.965 -0.137
RGB-ExR -0.905 0.035 -0.339 -0.964 0.049
RGB-NDI 0.920 -0.149 0.293 0.968 -0.070
CIVE -0.629 0.713 0.215 -0.765 0.505
DVI 0.903 0.313 -0.115 0.954 0.129
ExG 0.762 -0.589 -0.162 0.950 -0.249
ExG-ExR 0.790 -0.579 -0.135 0.961 -0.224
ExR -0.786 0.539 0.094 -0.970 0.189
GNDVI 0.678 0.710 -0.051 0.830 0.526
MCARI2D 0.971 0.172 -0.121 0.985 0.058
MSARI2D 0.932 0.306 -0.126 0.971 0.136
MTVI2D 0.971 0.172 -0.121 0.985 0.058
NDI 0.791 -0.549 -0.103 0.972 -0.181
NDVI 0.937 0.289 -0.134 0.965 0.192
NDVI705 0.919 0.297 -0.182 0.971 0.173
R31 0.415 0.854 -0.088 0.424 0.851
RDVI 0.929 0.310 -0.132 0.972 0.153
RVI 0.923 0.203 0.019 0.958 0.104
SAVI 0.927 0.310 -0.139 0.969 0.150
SQIRDR 0.949 0.237 -0.016 0.976 0.126
TNDVI 0.933 0.292 -0.146 0.960 0.198

Fig. 4

Waterlogging tolerance of 505 germplasm resources of Brassica napus L. A: frequency distribution diagram of D-value of Brassica napus L. natural population under waterlogging stress. B: the comprehensive waterlogging tolerance of different subgroups of germplasm resources. C: the comprehensive waterlogging tolerance of different clusters of germplasm resources. D: the cluster analysis of waterlogging tolerance of Brassica napus L. natural population. I: extremely waterlogging resistant cluster; II: waterlogging resistant cluster; III: waterlogging sensitive cluster; IV: the extremely waterlogging sensitive cluster. E: phenotypic verification of germplasm resources with extreme tolerance to waterlogging co-identified by two-year field experiments in 2022. F: phenotypic verification of germplasm resources with extreme sensitivty to waterlogging co-identified by two-year field experiments in 2022. Different letters in the same figure indicate significant differences among the data sets at P < 0.05."

Table 5

Clustering and comprehensive performance of extremely resistant and sensitive materials"

材料类型 Material type 材料名称
Material name
来源
Origin
亚群
Group
类群 Cluster DD-value
2017 2018
耐渍
Resistant
1281 中国湖南 Hunan, China 半冬性 Semi-winter I 1.17 1.11
2012-3546 中国湖北 Hubei, China 半冬性 Semi-winter I 0.90 1.03
华双2号 Huashuang 2 中国湖北 Hubei, China 半冬性 Semi-winter I 0.82 1.15
崇23 Chong 23 中国湖北 Hubei, China 半冬性 Semi-winter I 0.87 1.09
Swu64 中国重庆 Chongqing, China 半冬性 Semi-winter I 0.77 1.15
Swu89 中国重庆 Chongqing, China 半冬性 Semi-winter I 1.03 1.13
Swu104 中国重庆 Chongqing, China 半冬性 Semi-winter I 1.23 1.09
Swu110 中国重庆 Chongqing, China 半冬性 Semi-winter I 0.89 1.32
Swu113 中国重庆 Chongqing, China 半冬性 Semi-winter I 0.91 1.08
敏感
Sensitive
Nca 中国湖北 Hubei, China 半冬性 Semi-winter III -0.80 -1.20
11-育7-125 11-yu 7-125 中国湖北 Hubei, China 半冬性 Semi-winter III -0.90 -0.95
华双128 Huashuang 128 中国湖北 Hubei, China 半冬性 Semi-winter III -0.79 -0.95
甲922 Jia 922 中国湖北 Hubei, China 半冬性 Semi-winter III -0.91 -1.03
Swu100 中国重庆 Chongqing, China 半冬性 Semi-winter III -1.03 -1.12
B431 丹麦 Denmark 春性 Spring IV -1.40 -1.64
964 中国甘肃 Gansu, China 冬性 Winter IV -1.12 -1.48
Swu95 中国重庆 Chongqing, China 半冬性 Semi-winter IV -1.33 -1.15
Swu96 中国重庆 Chongqing, China 半冬性 Semi-winter IV -1.05 -1.31

Fig. 5

Methods and key indexes of Brassica napus L. germplasm resources waterlogging tolerance evaluation A: the correlation between comprehensive evaluation value (D) and predicted value (D') in Brassica napus L. germplasm resources in 2017. B: the correlation between comprehensive evaluation value (D) and predicted value (D') in Brassica napus L. germplasm resources in 2018. C: the correlations between 27 indexes and D-values."

[1] 王瑞元. 2021年我国粮油产销和进出口情况. 中国油脂, 2022, 47(6): 1-7.
Wang R Y. Introduction of grain and oil production, marketing, import and export in 2021 in China. China Oils Fats, 2022, 47(6): 1-7. (in Chinese)
[2] 李真, 蒲圆圆, 高长斌, 周广生, 涂金星, 傅廷栋. 甘蓝型油菜DH群体苗期耐湿性的评价. 中国农业科学, 2010, 43: 286-292.
Li Z, Pu Y Y, Gao C B, Zhou G S, Tu J X, Fu T D. Evaluation of waterlogging tolerance in rapeseed (Brassica napus L.) DH lines at seedling stage. Sci Agric Sin, 2010, 43: 286-292. (in Chinese with English abstract)
[3] 丛日环, 张智, 鲁剑巍. 长江流域不同种植区气候因子对冬油菜产量的影响. 中国油料作物学报, 2019, 41: 894-903.
doi: 10.19802/j.issn.1007-9084.2019046
Cong R H, Zhang Z, Lu J W. Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin. Chin J Oil Crop Sci, 2019, 41: 894-903. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019046
[4] 吴丽丽, 李谷成, 尹朝静. 生长期气候变化对我国油菜单产的影响研究. 干旱区资源与环境, 2015, 29(12): 198-203.
Wu L L, Li G C, Yin C J. Impact of climate change in rapeseed’s growing seasons on rapeseed production in China. J Arid Land Resour Environ, 2015, 29(12): 198-203. (in Chinese with English abstract)
[5] Sasidharan R, Bailey-Serres J, Ashikari M, Atwell B J, Colmer T D, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup K H, Hill R D, Holdsworth M J, Ismail A M, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih M C, Sorrell B K, Striker G G, van Dongen J T, Whelan J, Xiao S, Visser E J W, Voesenek L. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytol, 2017, 214: 1403-1407.
doi: 10.1111/nph.14519 pmid: 28277605
[6] Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 2003, 253: 1-34.
doi: 10.1023/A:1024573305997
[7] Blom C W P M, Voesenek L A C J. Flooding: the survival strategies of plants. Trends Ecol Evol, 1996, 11: 290-295.
pmid: 21237846
[8] Panozzo A, Dal Cortivo C, Ferrari M, Vicelli B, Varotto S, Vamerali T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front Plant Sci, 2019, 10: 62.
doi: 10.3389/fpls.2019.00062 pmid: 30778365
[9] Marschner H. Mechanisms of adaptation of plants to acid soils. Plant Soil, 1991, 134: 683-702.
[10] Sasidharan R, Voesenek L A. Ethylene-mediated acclimations to flooding stress. Plant Physiol, 2015, 169: 3-12.
doi: 10.1104/pp.15.00387 pmid: 25897003
[11] Shabala S. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol, 2011, 190: 289-298.
doi: 10.1111/j.1469-8137.2010.03575.x pmid: 21563365
[12] Colmer T D, Greenway H. Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot, 2010, 62: 39-57.
doi: 10.1093/jxb/erq271
[13] Mommer L, Visser E J W. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Ann Bot (London), 2005, 96: 581-589.
doi: 10.1093/aob/mci212
[14] Mommer L, Pons T L, Wolters-Arts M, Venema J H, Visser E J W. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial speciesaffect gas diffusion resistance and photosynthetic performance. Plant Physiol, 2005, 139: 497-508.
doi: 10.1104/pp.105.064725
[15] Ren B Z, Zhang J W, Dong S T, Liu P, Zhao B. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS One, 2016, 11: e0161424.
doi: 10.1371/journal.pone.0161424
[16] Zhou W J, Lin X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res, 1995, 44: 103-110.
doi: 10.1016/0378-4290(95)00075-5
[17] 陈雅慧. 油菜萌发期耐淹性种质资源筛选与遗传机制解析. 华中农业大学硕士学位论文, 湖北武汉, 2019.
Chen Y H. Germplasm Screening and Genetic Mechanism Analysis of Submergence Tolerance during Rapeseed Germination. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[18] 荆蓉蓉. 甘蓝型油菜苗期耐湿相关性状的全基因组关联分析. 西南大学硕士学位论文, 重庆, 2017.
Jing R R. Genome-wide Association Mapping of Water Logging Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2017. (in Chinese with English abstract)
[19] Jimenez J C, Cardoso J A, Leiva L F, Gil J, Forero M G, Worthington M L, Miles J W, Rao I M. Non-destructive phenotyping to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Front Plant Sci, 2017, 8: 167.
[20] 韩佳慧. 地块尺度冬油菜湿渍害遥感监测方法研究. 浙江大学硕士学位论文, 浙江杭州, 2017.
Han J H. Study on Parcel Scale Winter Oilseed Rape Waterlogging Monitoring Method by Remote Sensing. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2017. (in Chinese with English abstract)
[21] 胡文河, 朱容佳, 王婧瑜, 郭巍, 何文安, 谷岩. 高粱种质资源芽期耐涝性综合评价及筛选. 吉林农业大学学报, 2022, https://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html.
Hu W H, Zhu R J, Wang J Y, Guo W, He W A, Gu Y. Comprehensive evaluation and screening of waterlogging tolerance of sorghum germplasm resources at bud stage. J Jilin Agric Univ, 2022, https://kns.cnki.net/kcms/detail/22.1100.s.20220926.1845.005.html. (in Chinese with English abstract)
[22] 唐章林, 王霖, 张娅茹, 朱丽, 唐钟林, 荆蓉蓉, 李阳阳. 甘蓝型油菜种质资源苗期耐湿性综合评价与筛选. 西南大学学报(自然科学版), 2022, 44(12): 20-28.
Tang Z L, Wang L, Zhang Y R, Zhu L, Tang Z L, Jing R R, Li Y Y. Comprehensive evaluation and screening of waterlogging resistance at seedling stage of Brassica napus. J Southwest Univ (Nat Sci Edn), 2022, 44(12): 20-28. (in Chinese with English abstract)
[23] 佟汉文, 高春保, 邹娟, 刘易科, 朱展望, 陈泠, 张宇庆, 吴波. 湖北稻茬小麦新品种(系)孕穗期耐渍性的鉴定与评价. 麦类作物学报, 2016, 36: 1635-1642.
Tong H W, Gao C B, Zou J, Liu Y K, Zhu Z W, Chen L, Zhang Y Q, Wu B. Evaluation of waterlogging tolerance of wheat varieties at booting stage in Hubei rice-wheat rotation system. J Triticeae Crops, 2016, 36: 1635-1642. (in Chinese with English abstract)
[24] Tang S, Zhao H, Lu S P, Yu L Q, Zhang G F, Zhang Y T, Yang Q Y, Zhou Y M, Wang X M, Ma W, Xie W B, Guo L. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Mol Plant, 2021, 14: 470-487.
doi: 10.1016/j.molp.2020.12.003
[25] 王学奎. 植物生理生化实验原理和技术(第2版). 北京: 高等教育出版社, 2006. pp 202-283.
Wang X K. Experimental Principles and Techniques of Plant Physiology and Biochemistry, 2nd edn. Beijing: Higher Education Press, 2006. pp 202-283. (in Chinese)
[26] Li J J, Xie T J, Chen Y H, Zhang Y T, Wang C F, Jiang Z, Yang W N, Zhou G S, Guo L, Zhang J. High-throughput UAV-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. J Exp Bot, 2022, 73: 5264-5278.
doi: 10.1093/jxb/erac242
[27] Hinton P R, McMurray I, Brownlow C. SPSS Explained, 2nd edn.London: Routledge, 2014. pp 338-350.
[28] Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat, 1996, 5: 299-314.
[29] Moberly J G, Bernards M T, Waynant K V. Key features and updates for Origin 2018. J Cheminformatics, 2018, 10: 5.
doi: 10.1186/s13321-018-0259-x pmid: 29427195
[30] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[31] 张静, 高文博, 晏林, 张宗文, 周海涛, 吴斌. 燕麦种质资源耐盐碱性鉴定评价及耐盐碱种质筛选. 作物学报, 2023, 49: 1551-1561.
doi: 10.3724/SP.J.1006.2023.21032
Zhang J, Gao W B, Yan L, Zhang Z W, Zhou H T, Wu B. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.). Acta Agron Sin, 2023, 49: 1551-1561. (in Chinese with English abstract)
[32] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by uniconazole application: effects on enzyme activity, lipid peroxidation, and membrane integrity. J Plant Growth Regul, 1999, 18: 9-14.
pmid: 10467014
[33] 张学昆, 陈洁, 王汉中, 李加纳, 邹崇顺. 甘蓝型油菜耐湿性的遗传差异鉴定. 中国油料作物学报, 2007, 29: 204-208.
Zhang X K, Chen J, Wang H Z, Li J N, Zou C S. Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.) Chin J Oil Crop Sci, 2007, 29: 204-208. (in Chinese with English abstract)
[34] Zou X L, Hu C W, Zeng L, Cheng Y, Xu M Y, Zhang X K. A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during plant ontogeny. PLoS One, 2014, 9: e89731.
doi: 10.1371/journal.pone.0089731
[35] 李阳阳, 荆蓉蓉, 吕蓉蓉, 石鹏程, 李欣, 王芹, 吴丹, 周清元, 李加纳, 唐章林. 甘蓝型油菜湿害胁迫响应性状的全基因组关联分析及候选基因. 作物学报, 2019, 45: 1806-1821.
doi: 10.3724/SP.J.1006.2019.94027
Li Y Y, Jing R R, Lyu R R, Shi P C, Li X, Wang Q, Wu D, Zhou Q Y, Li J N, Tang Z L. Genome-wide association analysis and candidate genes prediction of waterlogging-responding traits in Brassica napus L. Acta Agron Sin, 2019, 45: 1806-1821. (in Chinese with English abstract)
[36] Li Z, Mei S F, Mei Z, Liu X L, Fu T D, Zhou G S, Tu J X. Mapping of QTL associated with waterlogging tolerance and drought resistance during the seedling stage in oilseed rape (Brassica napus). Euphytica, 2014, 197: 341-353.
doi: 10.1007/s10681-014-1070-z
[37] Boem F H G, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res, 1996, 47: 175-179.
doi: 10.1016/0378-4290(96)00025-1
[38] 王燕茹, 袁秉琛, 孙郁婷, 王志勇, 虞道耿. 蝴蝶豆种质资源芽期耐盐性筛选及评价. 热带作物学报, 2022, 44: 955-967.
Wang Y R, Yuan B C, Sun Y T, Wang Z Y, Yu D G. Screening and evaluation of salt tolerance in the bud stage of Centrosema pubescens Resources. Chin J Trop Crops, 2022, 44: 955-967. (in Chinese with English abstract)
[39] Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho Y S, Schmockel S M, Tester M, Negrao S. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun, 2016, 7: 13342.
doi: 10.1038/ncomms13342 pmid: 27853175
[40] Duan L F, Han J W, Guo Z L, Tu H F, Yang P, Zhang D, Fan Y, Chen G X, Xiong L Z, Dai M Q, Williams K, Corke F, Doonan J H, Yang W N. Novel digital features discriminate between drought resistant and drought sensitive rice under controlled and field conditions. Front Plant Sci, 2018, 9: 492.
doi: 10.3389/fpls.2018.00492 pmid: 29719548
[41] Fisher L H, Han J, Corke F M, Akinyemi A, Didion T, Nielsen K K, Doonan J H, Mur L A, Bosch M. Linking dynamic phenotyping with metabolite analysis to study natural variation in drought responses of brachypodium distachyon. Front Plant Sci, 2016, 7: 1751.
pmid: 27965679
[42] Guo Z L, Yang W N, Chang Y, Ma X S, Tu H F, Xiong F, Jiang N, Feng H, Huang C L, Yang P, Zhao H, Chen G X, Liu H Y, Luo L J, Hu H H, Liu Q, Xiong L Z. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Mol Plant, 2018, 11: 789-805.
doi: S1674-2052(18)30126-6 pmid: 29614319
[43] Wu D, Guo Z L, Ye J L, Feng H, Liu J X, Chen G X, Zheng J, Yan D M, Yang X Q, Xiong X, Liu Q, Niu Z Y, Gay A P, Doonan J H, Xiong L Z, Yang W N. Combining high-throughput micro- CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice. J Exp Bot, 2019, 70: 545-561.
doi: 10.1093/jxb/ery373
[44] Zhang X H, Huang C L, Wu D, Qiao F, Li W Q, Duan L F, Wang K, Xiao Y J, Chen G X, Liu Q, Xiong L Z, Yang W N, Yan J B. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol, 2017, 173: 1554-1564.
doi: 10.1104/pp.16.01516 pmid: 28153923
[1] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
[2] ZHANG Jing, GAO Wen-Bo, YAN Lin, ZHANG Zong-Wen, ZHOU Hai-Tao, WU Bin. Identification and evaluation of salt-alkali tolerance and screening of salt-alkali tolerant germplasm of oat (Avena sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1551-1561.
[3] ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221.
[4] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[5] ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331.
[6] ZHAO Peng, CHEN Guang-Xia, ZHANG Yan-Ping, YANG Xiao-Hui, LIU Fang, DONG Dao-Feng. Alkaline tolerance identification method of potato seedlings and comprehensive assessment of alkaline tolerance of 86 kinds of potato germplasms [J]. Acta Agronomica Sinica, 2023, 49(11): 2923-2934.
[7] CAO Hui-Min, YANG Xian-Li, WANG Li-Zhi, LI Ping-Ping, ZHAI Lai-Yuan, JIANG Shu-Kun, ZHENG Tian-Qing, QIU Xian-Jin, XU Jian-Long. QTL identification and favorable allele mining of cold tolerance at seedling stage by reciprocal introgression and recombinant inbred line populations in rice [J]. Acta Agronomica Sinica, 2023, 49(10): 2633-2642.
[8] MA Li, BAI Jing, ZHAO Yu-Hong, SUN Bo-Lin, HOU Xian-Fei, FANG Yan, WANG Wang-Tian, PU Yuan-Yuan, LIU Li-Jun, XU Jia, TAO Xiao-Lei, SUN Wan-Cang, WU Jun-Yan. Protein and physiological differences under cold stress, and identification and analysis of BnGSTs in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(1): 153-166.
[9] CHEN Xiao-Hong, LIN Yuan-Xiang, WANG Qian, DING Min, WANG Hai-Gang, CHEN Ling, GAO Zhi-Jun, WANG Rui-Yun, QIAO Zhi-Jun. Development of DNA molecular ID card in hog millet germplasm based on high motif SSR [J]. Acta Agronomica Sinica, 2022, 48(4): 908-919.
[10] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[11] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[12] WU Jia-Yi, YUAN Fang, MENG Li-Jiao, LI Chen-Yang, SHI Hong-Song, BAI Yan-Song, WU Xiao-Ru, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. QTL mapping and candidate genes screening of photosynthesis-related traits in Brassica napus L. during seedling stage under aluminum stress [J]. Acta Agronomica Sinica, 2022, 48(11): 2749-2764.
[13] YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702.
[14] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[15] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .