Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (12): 3154-3161.doi: 10.3724/SP.J.1006.2023.31009

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Creation of doubled haploid in wheat using distant hybridization and unreduced gamete genes

LIU Xiao-Juan1,2(), LIU Xin2, ZHANG Ming-Hu2, HAO Ming2, NING Shun-Zong2, YUAN Zhong-Wei2, HUANG Lin2, LIU Deng-Cai1,2, ZHANG Lian-Quan1,2,*()   

  1. 1State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China / Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2023-02-08 Accepted:2023-05-24 Online:2023-12-12 Published:2023-06-02
  • Contact: * E-mail: zhanglianquan1977@126.com
  • Supported by:
    National Natural Science Foundation of China(31671682);Key Research and Development Program of Sichuan Province, China(2021YFYZ0002)

Abstract:

The union of unreduced female and male gametes leads to spontaneous chromosome doubling, which is not only an important way of the origin of polyploid species but also an essential tool for enhancing crop doubled haploid breeding efficiency. A major quantitative trait locus QTug.sau-3B responsible for unreduced gametes formation was discovered in tetraploid Triticum turgidum wheat and was further transferred to elite common wheat lines using synthetic hexaploid wheat as a bridge. This objective of this study is to make wheat/wheat F1 hybrids between the elite lines with this gene region and commercial cultivars and to evaluate the efficiency of QTug.sau-3B gene leading to spontaneous chromosome doubling. Wheat/wheat F1 hybrids and their parents were pollinated with the fresh pollen of Imperata cylindrica to produce wheat haploid through chromosome elimination of I. cylindrica. Doubled haploid (DH) were then developed by spontaneous chromosome doubling in haploids because of the union of unreduced female and male gametes. In this experiment, 5 F1 hybrid materials and 3 I. cylindrica materials were used for distant hybridization. 4610 florets were pollinated, 1965 seeds were produced, 244 embryos were obtained, and 50 wheat haploid plants were obtained. In different temperature treatments, the haploid plant numbered H31 set seeds at 25℃/18℃ (18 h/6 h) and 25℃/10℃ (18 h/6 h), and the self-fertilization rate was 4.35% and 2.41%, respectively. The results of this study provide a reference for the establishment of wheat haploid breeding technology of chromosome elimination based on wheat-I. cylindrica hybridization and automatic chromosome doubling based on unreduced gamete genes.

Key words: haploid breeding, Imperata cylindrica, unreduced gametes, embryo rescue

Table 1

Location of I. cylindrica and its heading time and flowering time in 2018"

编号
Code
来源地
Location
抽穗时间
Heading time (month/day)
开花时间
Flowering time (month/day)
BMZ1616 四川宜宾翠屏 Cuiping, Yibin, Sichuan 4/23 4/28
BMZ1617 四川资阳乐至 Lezhi, Ziyang, Sichuan 4/26 4/29
BMZ1801 四川成都崇州 Chongzhou, Chengdu, Sichuan 4/26 4/29
BMZ1605 江苏宿迁沭阳 Shuyang, Suqian, Jiangsu 4/27 4/29
BMZ1602 福建宁德屏南 Pingnan, Ningde, Fujian 4/28 4/30
BMZ1612 山东临沂费县 Feixian, Linyi, Shandong 4/28 4/30
BMZ1604 广东揭阳东山 Dongshan, Jieyang, Guangdong 4/28 5/1
BMZ1610 湖北十堰丹江口 Danjiangkou, Shiyan, Hubei 4/29 5/1
BMZ1621 江苏徐州沛县Peixian, Xuzhou, Jiangsu 4/29 5/1
BMZ1606 贵州遵义习水 Xishui, Zunyi, Guizhou 5/6 5/8
BMZ1618 四川自贡富顺 Fushun, Zigong, Sichuan 5/6 5/8
BMZ1619 浙江温州永嘉 Yongjia, Wenzhou, Zhejiang 5/9 5/11

Table 2

Pseudo seed and haploid embryo formation frequency obtained from different hybrids F1 between wheat/wheat F1 and I. cylindrica in 2019"

小麦材料
Wheat material
授粉小花数
Pollinated florets
结实数
Pseudo seeds (%)
得胚数
Embryo formation (%)
获得植株
Plantlet rate (%)
L14-6/CM602 F1 1588 701 (44.14)c 169 (24.11)a 26 (15.38)b
L14-6/SM114 F1 868 439 (50.58)b 61 (13.9)b 21 (34.43)a
L13-81/SM114 F1 963 395 (41.02)c 9 (2.28)c 0 (0)
L13-471/CM96 F1 973 299 (30.73)d 5 (1.67)c 3 (60)a
L13-316/SM830 F1 218 131 (60.09)a 0 (0) 0 (0)
总计Total 4610 1965 (42.62) 244 (12.42) 50 (20.49)

Table 3

Frequencies of seed formation obtained from crosses of wheat with different I. cylindrica in 2019"

白茅编号
I. cylindrica
授粉小花数
Pollinated florets
结实数
Pseudo seeds (%)
得胚数
Embryo formation (%)
获得植株
Plantlet rate (%)
BMZ1801 430 146 (33.95)b 30 (20.55)a 8 (26.67)a
BMZ1617 1418 514 (36.25)b 28 (5.45)c 5 (17.86)a
BMZ1616 2762 1305 (47.25)a 186 (14.25)b 37 (19.89)a

Fig. 1

Chromosome observation of root tip number of haploid plant H31 obtained from L14-6/CM602//I. cylindrica F1 (a, 2n = 21), chromosome observation of pollen mother cells in metaphase I (b, 2n = 21), and the detection on flow cytometry (c) Bar: 10 μm."

Fig. 2

Chromosome observation of pollen mother cells of haploid plant H31 obtained from L14-6/CM602//I. cylindrica F1 at meiosis stage a: late prophase I; b: restitutive nucle; c: anaphase II; d: dyad. Bar: 10 μm."

Fig. 3

PCR amplification of Xgpw1146 in 50 haploid plants and their parent lines M: marker; L: Langdon; A: AS2255; 1: L13-471; 2: CM96; 3-5: haploid plants H1-H3; 6: L14-6; 7: SM114; 8-28: haploid plants H4-H24; 29: L14-6; 30: CM602; 31-56: haploid plants H25-H50; 57: L14-6; 58: CM602. Red words mark the same amplification products of Xgpw1146, the red arrow shows the haploid plant H31."

Table 4

Detection of QTug.sau-3B using Xgpw1146 in different haploid plants"

QTug.sau-3B单株编号
Code of haploid plants with QTug.sau-3B
单倍体株数(编号)
Number of haploid plants
(Plant ID)
系谱
Pedigree
QTug.sau-3B来源
Origin of QTug.sau-3B
H1 3 (H1-H3) L13-471/CM96//I. cylindrica F1 AS2255
H7, H8, H10, H11, H12, H13, H14, H16, H19, H20, H23, H24 21 (H4-H24) L14-6/SM114//I. cylindrica F1 Langdon
H25, H26, H27, H28, H31, H33, H35, H36, H38, H39, H41, H45, H47, H48, H49, H50 26 (H25-H50) L14-6/CM602//I. cylindrica F1 Langdon

Table 5

Selfed seedset rate of haploid plants H31 (pedigree: L14-6/CM602//I. cylindrica F1) in different temperatures and light treatments"

单倍体编号
Haploid number
处理时期
Treatment stage
处理温度和光照时间
Temperature (℃)/time (h)
自交小花数
Selfed florets
自交结实数
Selfed seeds
自交结实率
Selfed seed set rate (%)
H31-1 孕穗期Booting stage 25/18, 18/6 92 4 4.35
H31-2 孕穗期Booting stage 25/15, 18/6 89 0 0
H31-3 孕穗期Booting stage 25/10, 18/6 83 2 2.41

Fig. 4

Chromosomes in root tip cells of four doubled haploid plants derived from H31 (2n = 42) a: DH-H31-1; b: DH-H31-2; c: DH-H31-3; d: DH-H31-4; e: the plant morphology in the field. Bar: 10 μm."

Table 6

Agronomic characters of four double haploid plants H31"

材料
Material
株高
Plant height (cm)
分蘖数
No. of tillers
穗长
Spike length (cm)
小穗数
Spikelets
小花数
Florets
穗粒数
Seeds
自交结实率
Self-fertilization rate (%)
DH-H31-1 114.0 4 12.0 15 30 27 90.00
DH-H31-2 118.5 4 12.5 14 28 26 86.67
DH-H31-3 132.5 5 13.5 17 34 29 96.67
DH-H31-4 115.0 3 13.0 15 30 24 80.00
[1] Raina S K. Doubled haploid breeding in cereals. Plant Breed Rev, 1997, 15: 141-186.
[2] Machii H, Mizuno H, Hirabayashi T, Li H, Hagio T. Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant Cell Tissue Organ Cult, 1998, 53: 67-74.
doi: 10.1023/A:1006023725640
[3] Cistué L, Soriano M, Castillo A M, Vallés M P, Sanz J M, Echávarri B. Production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep, 2006, 25: 257-264.
pmid: 16220343
[4] Touraev A, Pfosser M, Heberle-Bors E. The microspore: a haploid multipurpose cell. Adv Bot Res, 2001, 35: 53-109.
[5] Zhu H, Li C, Gao C. Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rew Mol Cell Biol, 2020, 21: 661-677.
[6] Liu H Y, Wang K, Jia Z M, Gong Q, Lin Z S, Du L P, Pei X W, Ye X G. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot, 2020, 71: 1337-1349.
doi: 10.1093/jxb/erz529
[7] Liu C X, Zhong Y, Qi X L, Chen M, Liu Z K, Chen C, Tian X L, Li J L, Jiao Y Y, Wang D, Wang Y W, Li M R, Xin M M, Liu W X, Jin W W, Chen S J. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J, 2020, 18: 316-318.
doi: 10.1111/pbi.v18.2
[8] Barclay I R. High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature, 1975, 256: 410-411.
doi: 10.1038/256410a0
[9] Zenkteler M, Nitzsche W. Wide hybridization experiments in cereals. Theor Appl Genet, 1984, 68: 311-315.
doi: 10.1007/BF00267883 pmid: 24257639
[10] Inagaki M, Mujeeb-Kazi A. Comparison of polyhaploid production prequencies in crosses of hexaploid wheat with maize, pearl millet and sorghum. Jpn J Breed, 1995, 45: 157-161.
doi: 10.1270/jsbbs1951.45.157
[11] Riera-Lizarazu O, Mujeeb-Kazi A. Polyhaploid production in the Triticeae: wheat × Tripsacum crosses. Crop Sci, 1993, 33: 973-976.
doi: 10.2135/cropsci1993.0011183X003300050020x
[12] Mochida K. Production of wheat doubled haploids by pollination with Job’s Tears (Coix lachryma-jobi L.). J Hered, 2001, 92: 81-83.
doi: 10.1093/jhered/92.1.81 pmid: 11336235
[13] Chaudhary H K, Sethi G S, Singh S, Pratap A, Sharma S. Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed, 2005, 124: 96-98.
doi: 10.1111/pbr.2005.124.issue-1
[14] Liu D C, Zhang H G, Zhang L Q, Yuan Z W, Hao M, Zheng Y L. Distant hybridization: a tool for interspecific manipulation of chromosomes. In: Pratap A, Kumar J, eds. Alien Gene Transfer in Crop Plants, Volume 1: Innovations, Methods and Risk Assessment. New York: Springer, 2014. pp 25-42.
[15] Chaudhary H K, Kaila V, Rather S A, Tayeng T. Distant hybridization and doubled-haploidy breeding. In: Pratap A, Kumar J, eds. Alien Gene Transfer in Crop Plants, Volume 1: Innovations, Methods and Risk Assessment. New York: Springer, 2014. pp 143-164.
[16] Chan S W L. Chromosome engineering: power tools for plant genetics. Trends Biotech, 2010, 28: 605-610.
doi: 10.1016/j.tibtech.2010.09.002
[17] Cheng K T, Chou C H. Ecotypic variation of Imperata cylindrica populations in Taiwan: I. Morphological and molecular evidences. Bot Stud, 1997, 38: 215-223.
[18] Chaudhary H K. Dynamics of wheat × Imperata cylindrica: a new chromosome elimination mediated system for efficient haploid induction in wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, Mcintyre L, Sharp P, eds. Proceedings of the 11th International Wheat Genetics Symposium. Sydney, Australia: Sydney University Press, 2008.
[19] Komeda N, Chaudhary H K, Suzuki G, Mukai Y. Cytological evidence for chromosome elimination in wheat × Imperata cylindrica hybrids. Genes Genet Syst, 2007, 82: 241-248.
doi: 10.1266/ggs.82.241 pmid: 17660694
[20] Tayeng T, Chaudhary H K, Kishore N. Enhancing doubled haploid production efficiency in wheat (Triticum aestivum L. em. Thell) by in vivo colchicine manipulations in Imperata cylindrica-mediated chromosome elimination approach. Plant Breed, 2012, 131: 574-578.
doi: 10.1111/pbr.2012.131.issue-5
[21] Kaila V, Chaudhary H K, Tayeng T, Rather S A. Resolution of genetic mechanism of chromosome elimination in wheat × Imperata cylindrica system of doubled haploidy breeding: the genome responsible. In: Proceedings of National Seminar on Plant Cytogenetics: New Approaches. Patiala, Punjab, India: Department of Botany, Punjabi University, 2012. p 82.
[22] Chaudhary H K. New frontiers in chromosome engineering for enhanced and high precision crop improvement. In: Proceedings of National Seminar on Plant Cytogenetics: New Approaches. Patiala, Punjab, India: Department of Botany, Punjabi University. 2012. pp 35-36.
[23] Chaudhary H K, Tayeng T, Kaila V, Rather S A. Use of asynchrony in flowering for easy and economical polyhaploid induction in wheat following Imperata cylindrica-mediated chromosome elimination approach. Plant Breed, 2013, 132: 155-158.
doi: 10.1111/pbr.2013.132.issue-2
[24] Chaudhary H K, Tayeng T, Kaila V, Rather S A. Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. Nucleus, 2013, 56: 7-14.
[25] Rather S A, Chaudhary H K, Kaila V. Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat × Imperata cylindrica chromosome elimination approach. Cereal Res Commun, 2014, 42: 19-26.
doi: 10.1556/CRC.2013.0038
[26] Mahato A, Chaudhary H K. Relative efficiency of maize and Imperata cylindrica for haploid induction in Triticum durum following chromosome elimination-mediated approach of doubled haploid breeding. Plant Breed, 2015, 134: 379-383.
doi: 10.1111/pbr.2015.134.issue-4
[27] Niemirowicz-Szczytt K. Excessive homozygosity in doubled haploids: advantages and disadvantages for plant breeding and fundamental research. Acta Physiol Plant, 1997, 19: 155-167.
doi: 10.1007/s11738-997-0032-7
[28] Forster B P, Heberle-Bors E, Kasha K J, Touraev A. The resurgence of haploids in higher plants. Trends Plant Sci, 2007, 12: 368-375.
doi: 10.1016/j.tplants.2007.06.007 pmid: 17629539
[29] Don Palmer C E, Keller W A. Challenges and Limitations to the Use of Haploidy in crop improvement. In: Don Palmer C E, Keller W A, Kasha K J. Haploids in Crop Improvement II. Berlin, Heidelberg: Springer, 2005. pp 295-303.
[30] Brownfield L, Kohler C. Unreduced gamete formation in plants: mechanisms and prospects. J Exp Bot, 2011, 62: 1659-1668.
doi: 10.1093/jxb/erq371 pmid: 21109579
[31] Xu S J, Dong Y S. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome, 1992, 35: 379-384.
doi: 10.1139/g92-057
[32] Xu S J, Joppa L R. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome, 1995, 38: 607-615.
pmid: 18470193
[33] Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet, 2004, 109: 1710-1717.
doi: 10.1007/s00122-004-1806-6
[34] Zhang L Q, Chen Q J, Yuan Z W, Xiang Z G, Zheng Y L, Liu D C. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J Genet Genom, 2008, 35: 617-623.
doi: 10.1016/S1673-8527(08)60082-X
[35] Zhang L Q, Liu D C, Zheng Y L, Yan Z H, Dai S F, Li Y F, Jiang Q, Ye Y Q, Yen Y. Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica, 2010, 172: 285-294.
doi: 10.1007/s10681-009-0081-7
[36] Zhang L Q, Yen Y, Zheng Y L, Liu D C. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod, 2007, 20: 159-166.
doi: 10.1007/s00497-007-0052-x
[37] De Storme N, Copenhaver G P, Geelen D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol, 2012, 160: 1808-1826.
doi: 10.1104/pp.112.208611 pmid: 23096158
[38] Zeng D Y, Hao M, Luo J T, Zhang L Q, Yuan Z W, Ning S Z, Zheng Y L, Liu D C. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. J Genet, 2014, 93: 531-534.
doi: 10.1007/s12041-014-0393-9
[39] Yang Y W, Zhang L Q, Yen Y, Zheng Y L, Liu D C. Cytological evidence on meiotic restitution in pentaploid F1 hybrids between synthetic hexaploid wheat and Aegilops variabilis. Caryologia, 2010, 63: 354-358.
doi: 10.1080/00087114.2010.10589746
[40] Hao M, Luo J T, Zeng D Y, Zhang L, Ning S Z, Yuan Z W, Yan Z H, Zhang H G, Zheng Y L, Feuillet C, Choulet F, Yen Y, Zhang L Q, Liu D C. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3: Genes Genom Genet, 2014, 4: 1943-1953.
[41] 寇春兰, 赵来宾, 刘梦, 郝明, 甯顺腙, 袁中伟, 刘登才, 张连全. 小麦未减数配子基因的连锁标记及染色体区段检测. 作物学报, 2016, 42: 984-989.
doi: 10.3724/SP.J.1006.2016.00984
Kou C L, Zhao L B, Liu M, Hao M, Ning S Z, Yuan Z W, Liu D C, Zhang L Q. Detection of the molecular marker and chromosomal segment linked to unreduced gamete gene in common wheat. Acta Agron Sin, 2016, 42: 984-989. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00984
[42] Depauw R M, Knox R E, Humphreys D G, Thomas J B, Fox S L, Brown P D, Singh A K, Pozniak C, Randhawa H S, Fowler D B, Graf R J, Hucl P. New breeding tools impact Canadian commercial farmer fields. Czech J Genet Plant Breed, 2011, 47: S28-S34.
doi: 10.17221/3250-CJGPB
[43] Pauk J, Mihály R, Puolimatka M. Protocol for wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha K J, Forster B P, Szarejko I, eds. Doubled Haploid Production in Crop Plants. Dordrecht: Springer Netherlands, 2003. pp 59-64.
[44] Patial M, Pal D, Thakur A, Bana R S, Patial S. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview. Natl Acad Sci India Proc, Section B: Biol Sci, 2019, 89: 27-41.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .