Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2923-2934.doi: 10.3724/SP.J.1006.2023.24278

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Alkaline tolerance identification method of potato seedlings and comprehensive assessment of alkaline tolerance of 86 kinds of potato germplasms

ZHAO Peng(), CHEN Guang-Xia, ZHANG Yan-Ping, YANG Xiao-Hui, LIU Fang, DONG Dao-Feng   

  1. Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
  • Received:2022-12-19 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-06
  • Supported by:
    Innovative Talents and Teams Introduction Project of Shandong Academy of Agricultural Sciences (“Project 333”)(CXGC2021B17);Agricultural Variety Improvement Project of Shandong Province(2020LZGC003);Innovative Project of Shandong Academy of Agricultural Sciences—Innovation and Utilization of Potato Germplasm Resources(CXGC2022C03)

Abstract:

China is facing a serious land salinization problem. The area of saline-alkaline land reaches 100 million hectares, of which about 33 million hectares of saline-alkaline land could be used. Previous researches mostly concentrate on saline tolerance in potato, only a few research focuses on alkaline tolerance. In this study, the morphological traits such as plant height, shoot fresh weight, root fresh weight, and rooting rate of five different varieties of potato tissue culture seedlings under different concentrations of NaHCO3 simulated alkaline stress were measured, the corresponding coefficient of variation values were also calculated. Combined with coefficient of variation and the effective growth rate, the suitable simulated alkaline stress for alkaline tolerance assessment of potato tissue culture seedling was 5 mmol L-1 NaHCO3. Eighty-six kinds of tetraploid potato germplasms were treated with 5 mmol L-1 NaHCO3, alkaline tolerance coefficient of phenotypes including plant height, shoot fresh weight, root fresh weight, and rooting rate were measured. After principal component analysis and conversion by membership function, comprehensive assessment of alkaline tolerance (defined as A-value) was calculated. The A-values of Zhongshu 3 and Beifang 008 were the lowest and highest, respectively. Cluster analysis of comprehensive assessment of alkaline tolerance indicated that 86 kinds of tetraploid potato germplasms could be classified into 5 groups. Among them, the potato varieties (lines) with strong alkaline tolerance were Beifang 008, SDP632, SDP562, SDP274, SDP869, and SDP750. The regression equation between A-values and alkaline tolerance coefficients of phenotypes was established by stepwise regression analysis, A = 0.214X1 + 0.341X2 + 0.398X3 - 0.177X4 - 0.026. The four independent variables were the alkaline-tolerance coefficient of plant height, fresh weight of stem and leaf, fresh weight of root, and rooting rate. The comprehensive assessment system of alkaline tolerance of potato tissue culture seedlings established in this study could be helpful for the preliminary assessment of potato alkaline tolerance. The identified alkaline stress sensitive and tolerant gremplasms could be further used for the study of molecular regulation mechanism of alkaline stress tolerance and alkaline resistance breeding.

Key words: potato, seedling stage, alkaline stress tolerance, the comprehensive assessment

Table 1

Potato varieties and germplasms for assessment of alkaline stress tolerance"

名称
Name
类别
Category
名称
Name
类别
Category
名称
Name
类别
Category
名称
Name
类别
Category
名称
Name
类别
Category
大西洋Atlantic 栽培品种
Variety
SDP287 种质资源
Germplasm
SDP373 种质资源
Germplasm
SDP472 种质资源
Germplasm
SDP590 种质资源
Germplasm
宾杰
Bintje
栽培品种
Variety
SDP288 种质资源
Germplasm
SDP374 种质资源
Germplasm
SDP474 种质资源
Germplasm
SDP606 种质资源
Germplasm
底西瑞Desiree 栽培品种
Variety
SDP289 种质资源
Germplasm
SDP386 种质资源
Germplasm
SDP491 种质资源
Germplasm
SDP610 种质资源
Germplasm
费乌瑞它Favorita 栽培品种
Variety
SDP290 种质资源
Germplasm
SDP389 种质资源
Germplasm
SDP493 种质资源
Germplasm
SDP614 种质资源
Germplasm
米拉
Mira
栽培品种
Variety
SDP291 种质资源
Germplasm
SDP397 种质资源
Germplasm
SDP506 种质资源
Germplasm
SDP632 种质资源
Germplasm
夏波蒂Shepody 栽培品种
Variety
SDP292 种质资源
Germplasm
SDP398 种质资源
Germplasm
SDP527 种质资源
Germplasm
SDP671 种质资源
Germplasm
Sierra 栽培品种
Variety
SDP293 种质资源
Germplasm
SDP402 种质资源
Germplasm
SDP528 种质资源
Germplasm
SDP706 种质资源
Germplasm
北方001
Beifang 001
栽培品种
Variety
SDP297 种质资源
Germplasm
SDP404 种质资源
Germplasm
SDP531 种质资源
Germplasm
SDP707 种质资源
Germplasm
北方003
Beifang 003
栽培品种
Variety
SDP331 种质资源
Germplasm
SDP408 种质资源
Germplasm
SDP537 种质资源
Germplasm
SDP736 种质资源
Germplasm
北方007
Beifang 007
栽培品种
Variety
SDP334 种质资源
Germplasm
SDP414 种质资源
Germplasm
SDP539 种质资源
Germplasm
SDP744 种质资源
Germplasm
北方008
Beifang 008
栽培品种
Variety
SDP347 种质资源
Germplasm
SDP416 种质资源
Germplasm
SDP553 种质资源
Germplasm
SDP750 种质资源
Germplasm
黑金刚
Heijingang
栽培品种
Variety
SDP348 种质资源
Germplasm
SDP425 种质资源
Germplasm
SDP554 种质资源
Germplasm
SDP831 种质资源
Germplasm
陇薯9号
Longshu 9
栽培品种
Variety
SDP350 种质资源
Germplasm
SDP428 种质资源
Germplasm
SDP560 种质资源
Germplasm
SDP869 种质资源
Germplasm
闽薯1号
Minshu 1
栽培品种
Variety
SDP351 种质资源
Germplasm
SDP429 种质资源
Germplasm
SDP562 种质资源
Germplasm
SDP322Y 种质资源
Germplasm
青薯9号
Qingshu 9
栽培品种
Variety
SDP352 种质资源
Germplasm
SDP447 种质资源
Germplasm
SDP572 种质资源
Germplasm
希森3号
Xisen 3
栽培品种
Variety
SDP353 种质资源
Germplasm
SDP449 种质资源
Germplasm
SDP578 种质资源
Germplasm
中薯3号
Zhongshu 3
栽培品种
Variety
SDP365 种质资源
Germplasm
SDP458 种质资源
Germplasm
SDP583 种质资源
Germplasm
SDP274 种质资源
Germplasm
SDP371 种质资源
Germplasm
SDP461 种质资源
Germplasm
SDP584 种质资源
Germplasm

Table 2

Phenotypes of potato tissue-culture seedlings under different concentrations of NaHCO3 stresses"

性状
Trait
品种/指标Variety/indicator NaHCO3浓度 NaHCO3 concentration
0 mmol L-1 2.5 mmol L-1 5.0 mmol L-1 7.5 mmol L-1 10.0 mmol L-1
株高
Plant height (mm)
宾杰Bintje 71.7±5.2 a 68.5±4.5 a 33.8±5.1 b 16.8±7.3 c 3.3±0.5 d
SDP289 87.1±3.1 a 85.1±3.3 a 54.6±6.8 b 19.4±5.2 c 3.1±0.4 d
SDP292 75.6±5.4 a 76.6±1.2 a 33.0±1.5 b 9.8±1.5 c 13.3±3.4 c
SDP293 82.9±3.6 a 90.3±7.1 a 74.9±9.4 a 45.1±11.5 b 6.2±0.3 c
SDP297 76.9±7.1 a 73.4±7.7 a 69.1±5.3 a 27.0±3.7 b 10.3±0.8 c
平均值 Mean 78.9 78.8 53.1 23.6 7.2
标准差 SD 5.5 7.9 17.4 12.1 4.0
变异系数 CV 6.9% 10.0% 32.8% 51.2% 55.0%
茎叶鲜重
Shoot fresh weight (mg)
宾杰Bintje 90.3±7.9 a 53.5±10.7 b 46.8±12.3 b 9.5±3.4 c 3.4±0.3 c
SDP289 250.7±56.7 a 145.0±2.7 b 161.3±5.4 b 51.3±11.0 c 9.7±3.5 c
SDP292 200.0±34.3 a 122.9±7.7 b 82.3±19.8 bc 48.9±11.1 cd 10.9±3.1 d
SDP293 168.8±14.5 ab 172.0±19.0 a 133.9±25.1 b 56.3±7.4 c 9.4±2.3 d
SDP297 234.5±25.2 a 132.9±5.4 c 181.6±19.5 b 42.8±5.5 d 26.8±7.9 d
平均值 Mean 188.9 125.3 121.2 41.8 12.0
标准差 SD 56.8 39.5 49.9 16.7 7.8
变异系数 CV 30.1% 31.5% 41.2% 40.0% 65.0%
根鲜重
Root fresh weight (mg)
宾杰 Bintje 39.1±0.3 a 18.3±3.1 b 7.8±0.9 c 9.0±1.1 c 0.0±0.0 d
SDP289 102.4±11.9 a 32.3±8.0 b 39.6±2.6 b 6.3±2.8 c 0.0±0.0 c
SDP292 86.3±3.5 a 31.3±1.9 b 19.2±6.1 c 0.0±0.0 d 0.0±0.0 d
SDP293 70.0±5.8 a 49.6±1.9 b 59.0±8.9 ab 7.4±2.0 c 0.0±0.0 c
SDP297 61.1±6.8 a 30.3±3.5 b 33.7±4.6 b 0.7±0.2 c 0.0±0.0 c
平均值 Mean 71.8 32.4 31.9 4.7 0.0
标准差 SD 21.6 10.0 17.5 3.7 0.0
变异系数 CV 30.1% 30.9% 55.0% 78.2% 0.0%
生根率
Rooting rate (%)
宾杰 Bintje 100.0±0.0 a 100.0±0.0 a 66.7±4.7 b 23.3±4.7 c 0.0±0.0 d
SDP289 100.0±0.0 a 93.3±9.4 a 80.0±8.2 b 33.3±4.7 c 0.0±0.0 d
SDP292 100.0±0.0 a 86.7±4.7 b 56.7±4.7c 0.0±0.0 d 0.0±0.0 d
SDP293 100.0±0.0 a 100.0±0.0 a 86.7±9.4 b 40.0±8.2 c 0.0±0.0 d
SDP297 100.0±0.0 a 100.0±0.0 a 76.7±9.4 b 36.7±9.4 c 0.0±0.0 d
平均值 Mean 100.0 96.0 73.3 26.7 0.0
标准差 SD 0.0 5.3 10.5 14.5 0.0
变异系数 CV 0 5.6% 14.4% 54.2% 0
有效生长率Effective growth rate (%) 宾杰Bintje 100.0±0.0 a 100.0±0.0 a 80.0±8.2 b 53.3±4.7 c 0.0±0.0 d
SDP289 100.0±0.0 a 100.0±0.0 a 93.3±9.4 a 50.0±8.2 b 6.7±4.7 c
SDP292 100.0±0.0 a 100.0±0.0 a 76.7±4.7 b 36.7±4.7 c 16.7±4.7 d
SDP293 100.0±0.0 a 100.0±0.0 a 100.0±0.0 a 86.7±9.4 a 53.3±9.4 b
SDP297 100.0±0.0 a 100.0±0.0 a 100.0±0.0 a 63.3±9.4 b 30.0±8.2 c
平均值 Mean 100.0 100.0 90.0 58.0 21.3

Table 3

Variation coefficients of potato tissue-culture seedlings traits under different concentrations of NaHCO3 stresses (%)"

性状
Trait
NaHCO3浓度 NaHCO3 concentration
0 mmol L-1 2.5 mmol L-1 5 mmol L-1 7.5 mmol L-1 10 mmol L-1
株高Plant height 6.9 10.0 32.8 51.2 55.0
茎叶鲜重Shoot fresh weight 30.1 31.5 41.2 40.0 65.0
根鲜重Root fresh weight 30.1 30.9 55.0 78.2 0
生根率Rooting rate 0 5.6 14.4 54.2 0
总计Total 67.1 78.0 143.4 223.6 120.0

Fig. 1

Phenotypic traits of potato under normal condition or alkaline stresses CK: normal condition; T: alkaline stress; ***: P < 0.001."

Table 4

Alkaline tolerance coefficients of phenotypes of 86 potato varieties (lines)"

品种(系)
Variety (line)
株高
Plant height
茎叶鲜重
Shoot fresh weight
根鲜重
Root fresh weight
生根率
Rooting rate
品种(系)
Variety (line)
株高
Plant
height
茎叶鲜重
Shoot fresh weight
根鲜重
Root fresh weight
生根率
Rooting rate
大西洋Atlantic 0.886 0.988 0.718 1.000 SDP404 0.821 0.627 0.537 1.000
宾杰Bintje 0.432 0.639 0.323 0.467 SDP408 0.838 1.021 0.777 1.000
底西瑞Desiree 0.587 0.614 0.312 0.500 SDP414 0.789 0.793 0.553 0.938
费乌瑞它Favorita 0.775 1.039 0.725 0.600 SDP416 0.884 0.812 0.869 1.000
米拉Mira 0.813 1.021 0.317 0.867 SDP425 1.008 0.949 0.402 0.875
夏波蒂Shepody 0.725 0.797 0.709 0.500 SDP428 0.530 0.618 0.033 0.938
Sierra 0.951 0.842 0.823 1.000 SDP429 0.763 0.707 0.560 1.000
北方001 Beifang 001 0.529 0.620 0.505 1.000 SDP447 1.066 1.164 0.564 1.000
北方003 Beifang 003 0.971 0.955 0.762 1.000 SDP449 0.762 0.707 0.297 0.813
北方007 Beifang 007 0.828 0.886 0.874 0.600 SDP458 0.973 0.808 0.807 0.938
北方008 Beifang 008 0.979 1.417 0.601 0.300 SDP461 0.575 0.914 0.288 0.875
黑金刚Heijingang 0.845 1.023 0.592 1.000 SDP472 0.727 0.928 0.307 0.750
陇薯9号Longshu 9 0.341 0.452 0.329 0.563 SDP474 0.426 0.478 0.786 0.545
闽薯1号Minshu 1 0.542 0.659 0.241 0.824 SDP491 0.358 0.594 0.074 0.333
青薯9号Qingshu 9 0.760 0.717 0.270 0.727 SDP493 0.710 1.009 0.950 0.985
希森3号Xisen 3 0.432 0.570 0.495 0.438 SDP506 0.916 1.082 0.768 1.000
中薯3号Zhongshu 3 0.076 0.091 0.128 0.250 SDP527 0.564 0.912 0.462 0.647
SDP274 1.035 1.229 0.827 1.000 SDP528 0.593 0.948 0.700 0.750
SDP287 0.585 0.635 0.323 0.813 SDP531 0.252 0.524 0.264 0.375
SDP288 0.284 0.420 0.219 0.375 SDP537 0.676 0.543 0.484 0.688
SDP289 0.197 0.331 0.241 0.375 SDP539 0.081 0.182 0.059 0.083
SDP290 0.563 0.570 0.452 0.500 SDP553 0.802 0.740 0.400 1.000
SDP291 0.240 0.210 0.116 0.438 SDP554 0.534 0.534 0.333 0.750
SDP292 0.135 0.169 0.102 0.188 SDP560 0.831 0.931 0.644 1.000
SDP293 0.857 0.759 0.302 0.941 SDP562 1.199 1.478 0.610 1.000
SDP297 0.752 0.676 0.514 0.938 SDP572 0.577 0.631 0.460 1.000
SDP331 0.707 0.883 0.415 0.667 SDP578 0.908 0.968 0.542 0.910
SDP334 0.692 0.797 0.487 0.933 SDP583 0.752 0.781 0.601 0.938
SDP347 0.683 1.238 0.260 0.533 SDP584 0.910 0.881 0.669 1.000
SDP348 0.813 0.932 0.884 1.000 SDP590 0.794 0.999 0.745 0.667
SDP350 0.627 0.629 0.307 0.688 SDP606 0.243 0.236 0.234 0.551
SDP351 0.664 0.801 0.508 0.688 SDP610 0.657 0.549 0.260 1.000
SDP352 0.925 0.991 0.825 1.000 SDP614 0.493 0.868 0.298 0.938
SDP353 0.440 0.407 0.248 0.500 SDP632 1.122 1.275 0.812 0.889
SDP365 0.818 0.85 0.564 1.000 SDP671 0.683 0.674 0.418 0.882
SDP371 0.786 0.756 0.499 1.000 SDP706 0.616 0.716 0.403 0.407
SDP373 0.607 0.720 0.342 1.000 SDP707 0.613 0.562 0.568 0.750
SDP374 0.664 0.627 0.367 0.750 SDP736 0.554 0.777 0.344 0.926
SDP386 0.837 0.895 0.883 0.882 SDP744 0.289 0.321 0.245 0.500
SDP389 0.567 0.604 0.380 0.813 SDP750 1.024 1.140 0.868 0.969
SDP397 0.393 0.616 0.266 0.667 SDP831 0.887 0.922 1.043 1.000
SDP398 0.396 0.598 0.346 0.750 SDP869 0.837 1.061 0.951 0.727
SDP402 0.709 0.821 0.512 0.938 SDP322Y 0.651 1.109 1.005 1.000

Table 5

Correlation analysis of alkaline tolerance coefficients of potato phenotypes"

指标
Indicator
株高
Plant height
茎叶鲜重
Shoot fresh weight
根鲜重
Root fresh weight
茎叶鲜重Shoot fresh weight 0.851**
根鲜重Root fresh weight 0.687** 0.644**
生根率Rooting rate 0.706** 0.537** 0.507**

Table 6

Principal component analysis of alkaline tolerance coefficients of potato phenotypes"

综合指标
Comprehensive indicator
特征值
Eigen
value
贡献率
Contribution ratio (%)
累计贡献率
Cumulative
contribution ratio (%)
特征向量 Eigenvector
株高
Plant height
茎叶鲜重
Shoot fresh weight
根鲜重
Root fresh weight
生根率
Rooting rate
PC1 2.980 74.501 74.501 0.246 0.492 0.611 -0.459
PC2 0.519 12.966 87.467 0.202 -0.170 -0.372 1.081

Table 7

Comprehensive assessment of potato alkaline tolerance"

品种(系)
Variety (line)
A
A-value
品种(系)
Variety (line)
A
A-value
品种(系)
Variety (line)
A
A-value
品种(系)
Variety (line)
A
A-value
品种(系)
Variety (line)
A
A-value
大西洋Atlantic 0.609 SDP287 0.300 SDP373 0.309 SDP472 0.435 SDP590 0.663
宾杰Bintje 0.330 SDP288 0.199 SDP374 0.343 SDP474 0.445 SDP606 0.102
底西瑞Desiree 0.345 SDP289 0.159 SDP386 0.654 SDP491 0.223 SDP610 0.228
费乌瑞它Favorita 0.676 SDP290 0.380 SDP389 0.309 SDP493 0.674 SDP614 0.328
米拉Mira 0.469 SDP291 0.066 SDP397 0.256 SDP506 0.668 SDP632 0.815
夏波蒂Shepody 0.595 SDP292 0.068 SDP398 0.268 SDP527 0.475 SDP671 0.360
Sierra 0.615 SDP293 0.370 SDP402 0.443 SDP528 0.570 SDP706 0.438
北方001 Beifang 001 0.323 SDP297 0.404 SDP404 0.400 SDP531 0.245 SDP707 0.390
北方003 Beifang 003 0.634 SDP331 0.473 SDP408 0.634 SDP537 0.375 SDP736 0.330
北方007 Beifang 007 0.695 SDP334 0.423 SDP414 0.467 SDP539 0.062 SDP744 0.154
北方008 Beifang 008 0.852 SDP347 0.551 SDP416 0.609 SDP553 0.380 SDP750 0.756
黑金刚Heijingang 0.562 SDP348 0.641 SDP425 0.518 SDP554 0.270 SDP831 0.716
陇薯9号Longshu 9 0.232 SDP350 0.323 SDP428 0.145 SDP560 0.549 SDP869 0.765
闽薯1号Minshu 1 0.265 SDP351 0.470 SDP429 0.424 SDP562 0.800 SDP322Y 0.714
青薯9号Qingshu 9 0.360 SDP352 0.661 SDP447 0.646 SDP572 0.319
希森3号Xisen 3 0.380 SDP353 0.217 SDP449 0.352 SDP578 0.553
中薯3号Zhongshu 3 0.028 SDP365 0.486 SDP458 0.613 SDP583 0.474
SDP274 0.767 SDP371 0.422 SDP461 0.368 SDP584 0.558

Fig. 2

Cluster analysis of potato alkaline tolerance"

[26] Foolad M R, Lin G Y. Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breed, 1997, 116: 363-367.
doi: 10.1111/pbr.1997.116.issue-4
[27] 江应红, 刘易, 邢斌德, 孙慧, 冯怀章. 盐胁迫对马铃薯出苗及苗期生物学性状的影响. 中国马铃薯, 2021, 35: 326-333.
Jiang Y H, Liu Y, Xing B D, Sun H, Feng H Z. Effects of salt stress on biological characters of potato seedling emergence and seedling stage. Chin Potato J, 2021, 35: 326-333 (in Chinese with English abstract).
[28] Ahmad R, Abdullah Z. Salinity induced changes in the growth and chemical composition of potato. Pak J Bot, 1979, 11: 103-112.
[29] Morpurgo R. Correlation between potato clones grown in vivo and in vitro under sodium chloride stress conditions. Plant Breed, 1991, 107: 80-82.
doi: 10.1111/pbr.1991.107.issue-1
[30] Khrais T, Leclerc Y, Donnelly D J. Relative salinity tolerance of potato cultivars assessed by in vitro screening. Am J Potato Res, 1998, 75: 207-210.
doi: 10.1007/BF02854214
[31] Queirós F, Fidalgo F, Santos I, Salema R. In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant, 2007, 51: 728-734.
doi: 10.1007/s10535-007-0149-y
[32] Khan M S, Ahmad D, Adnan M, Khan M A. The effect of somaclonal variation on salt tolerance and glycoalkaloid content of potato tubers. Aust J Crop Sci, 2014, 8: 1597-1606.
[33] 包云飞, 程鹏, 熊兴耀, 洪亚辉. 马铃薯盐胁迫下生理生化变化研究. 见: 陈伊里, 屈冬玉主编. 马铃薯产业与科技扶贫(2011). 银川: 哈尔滨工程大学出版社, 2011. pp 166-168.
Bao Y F, Cheng P, Xiong X Y, Hong Y H. Physiological and biochemical changes of potato under salt stress. In: Chen Y L, Qu D Y, eds. Potato Industry and Technology Poverty Alleviation (2011). Yinchuan: Harbin Engineering University Press, 2011. pp 166-168 (in Chinese)
[34] 杨少辉, 季静, 王罡, 宋英今. 盐胁迫对植物影响的研究进展. 分子植物育种, 2006, 4(增刊3): 139-142.
Yang S H, Ji J, Wang G, Song Y J. Effects of salt stress on plants. Mol Plant Breed, 2006, 4(S3): 139-142 (in Chinese with English abstract).
[35] 刘艳, 王宝祥, 邢运高, 陈庭木, 徐波, 杨波, 孙志广, 刘金波, 迟铭, 李健, 卢百关, 方兆伟, 秦德荣, 徐大勇. 水稻品种资源苗期耐盐性评价指标分析. 江苏农业科学, 2021, 49(17): 75-79.
Liu Y, Wang B X, Xing Y G, Chen T M, Xu B, Yang B, Sun Z G, Liu J B, Chi M, Li J, Lu B G, Fang Z W, Qin D R, Xu D Y. Analysis of evaluation indices for salt tolerance of rice germplasm resources at seedling stage. Jiangsu Agric Sci, 2021, 49(17): 75-79 (in Chinese with English abstract).
[36] 刘彤彤, 李宁, 魏良迪, 杨进文, 史雨刚, 王曙光, 孙黛珍. 山西省主推小麦品种芽期及苗期耐盐性的综合评价. 中国农业大学学报, 2022, 27(2): 22-33.
Liu T T, Li N, Wei L D, Yang J W, Shi Y G, Wang S G, Sun D Z. Comprehensive evaluation of salt tolerance of wheat varieties in Shanxi province during germination and seedling stage. J China Agric Univ, 2022, 27(2): 22-33 (in Chinese with English abstract).
[37] 刘谢香, 常汝镇, 关荣霞, 邱丽娟. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选. 作物学报, 2020, 46: 1-8.
doi: 10.3724/SP.J.1006.2020.94062
Liu X X, Chang R Z, Guan R X, Qiu L J. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm. Acta Agron Sin, 2020, 46: 1-8 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2020.94062
[38] 徐宁, 陈冰嬬, 王明海, 包淑英, 王桂芳, 郭中校. 绿豆品种资源萌发期耐碱性鉴定. 作物学报, 2017, 43: 112-121.
doi: 10.3724/SP.J.1006.2017.00112
Xu N, Chen B R, Wang M H, Bao S Y, Wang G F, Guo Z X. Identification of alkali tolerance of mungbean germplasm resources during germination. Acta Agron Sin, 2017, 43: 112-121 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2017.00112
[39] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯苗期耐盐性鉴定及其指标筛选. 作物学报, 2018, 44: 1237-1247.
doi: 10.3724/SP.J.1006.2018.01237
Duan W X, Zhang H Y, Xie B T, Wang B Q, Zhang L M. Identification of salt tolerance and screening for its indicators in sweet potato varieties during seedling stage. Acta Agron Sin, 2018, 44: 1237-1247 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01237
[40] 杨升, 张华新, 张丽. 植物耐盐生理生化指标及耐盐植物筛选综述. 西北林学院学报, 2010, 25(3): 59-65.
Yang S, Zhang H X, Zhang L. Physiological and biochemical indices of salt tolerance and scanning of salt-tolerance plants: a review. J Northwest For Univ, 2010, 25(3): 59-65 (in Chinese with English abstract).
[41] 武永军, 何国强, 史艳茹, 梁宗锁. 不同pH值缓冲液处理下蚕豆叶片相对含水量、脯氨酸及丙二醛含量的变化. 干旱地区农业研究, 2009, 27(6): 169-172.
Wu Y J, He G Q, Shi Y R, Liang Z S. Change of relative water content, proline content and malondialdehyde content of Vicia faba leaves under different pH buffer treatments. Agric Res Arid Areas, 2009, 27(6): 169-172 (in Chinese with English abstract).
[42] 王宝山. 生物自由基与植物膜伤害. 植物生理学通讯, 1988, (2): 12-16.
Wang B S. Biological free radicals and membrane damage of plants. Plant Physiol Commun, 1988, (2): 12-16 (in Chinese).
[43] 彭振, 何守朴, 孙君灵, 许菲菲, 贾银华, 潘兆娥, 王立如, 杜雄明. 陆地棉苗期耐盐性的高效鉴定方法. 作物学报, 2014, 40: 476-486.
Peng Z, He S P, Sun J L, Xu F F, Jia Y H, Pan Z E, Wang L R, Du X M. An efficient approach to identify salt tolerance of upland cotton at seedling stage. Acta Agron Sin, 2014, 40: 476-486 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2014.00476
[1] 谢从华, 柳俊. 中国马铃薯从济荒作物到主粮之变迁. 华中农业大学学报, 2021, 40(4): 8-15.
Xie C H, Liu J. Transition of potato from a famine relief crop to staple food in China. J Huazhong Agric Univ, 2021, 40(4): 8-15 (in Chinese with English abstract).
[2] Maas E V, Hoffman G J. Crop salt tolerance-current assessment. J Irrig Drain Eng, 1977, 103: 115-134.
[3] Ghosh S C, Asanuma K, Kusutani A, Toyota M. Effect of salt stress on some chemical components and yield of potato. Soil Sci Plant Nutr, 2001, 47: 467-475.
doi: 10.1080/00380768.2001.10408411
[4] 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015, 47(4): 125-130.
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015, 47(4): 125-130 (in Chinese with English abstract).
[5] 商振芳, 谢思绮, 罗旺, 韦静静, 鹿荐, 张刚. 我国盐碱地现状及其改良技术研究进展. 见:2019中国环境科学学会科学技术年会论文集(第3卷). 西安: 中国环境科学学会, 2019. pp 386-395.
Shang Z F, Xie S Q, Luo W, Wei J J, Lu J, Zhang G. Current situation of saline-alkaline land in China and research progress of corresponding improvement technology. In: Proceedings of the 2019 Science and Technology Annual Conference of Chinese Society for Environmental Science (Volume 3). Xi’an: Chinese Society for Environmental Science, 2019. pp 386-395 (in Chinese).
[6] 黄立华, 梁正伟. 直播羊草在不同pH土壤环境下的离子吸收特性. 中国草地学报, 2008, 160(1): 35-39.
Huang L H, Liang Z W. Ionic absorption characteristics of Leymus chinensis seeded in various pH soils. Chin J Grassl, 2008, 160(1): 35-39 (in Chinese with English abstract).
[7] 曲元刚, 赵可夫. NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究. 作物学报, 2004, 30: 334-341.
Qu Y G, Zhao K F. Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stresses. Acta Agron Sin, 2004, 30: 334-341 (in Chinese with English abstract).
[8] 刘杰, 张美丽, 张义, 石德成. 人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响. 作物学报, 2008, 34: 1818-1825.
doi: 10.3724/SP.J.1006.2008.01818
Liu J, Zhang M L, Zhang Y, Shi D C. Effects of simulated salt and alkali conditions on seed germination and seedling growth of sunflower (Helianthus annuus L.). Acta Agron Sin, 2008, 34: 1818-1825 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.01818
[9] 王培伦, 孙慧生, 张振鸿, 马伟青, 郭奕明. 离体筛选耐盐碱马铃薯品种试验. 中国马铃薯, 1997, 11(4):197-200.
Wang P L, Sun H S, Zhang Z H, Ma W Q, Guo Y M. Screening salt tolerant potato clones in vitro. Chin Potato J, 1997, 11(4): 197-200 (in Chinese with English abstract).
[10] 李保国. 新时代下盐碱地改良与利用的科学之路. 中国农业综合开发, 2022, (1): 8-9.
Li B G. The scientific way to improve and utilize saline-alkali land in the new era. Agric Compreh Dev Chin, 2022, (1): 8-9 (in Chinese).
[11] 刘芳, 王培伦, 杨元军, 马伟清, 董道峰, 陈广侠. 不同马铃薯品种对盐胁迫反应的差异研究. 西南大学学报(自然科学版), 2010, 32(10): 47-53.
Liu F, Wang P L, Yang Y J, Ma W Q, Dong D F, Chen G X. Genetic difference in response to salt stress of different potato varieties. J Southwest Univ (Nat Sci Edn), 2010, 32(10): 47-53 (in Chinese with English abstract).
[44] 高玉坤, 杨溥原, 项晓冬, 魏世林, 任根增, 殷丛培, 梁红凯, 崔江慧, 常金华. 不同耐盐高粱品种全生育期对盐胁迫的响应. 华北农学报, 2020, 35(6): 113-121.
doi: 10.7668/hbnxb.20191411
Gao Y K, Yang P Y, Xiang X D, Wei S L, Ren G Z, Yin C P, Liang H K, Cui J H, Chang J H. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period. Acta Agric Boreali-Sin, 2020, 35(6): 113-121 (in Chinese with English abstract).
doi: 10.7668/hbnxb.20191411
[45] 凌云鹤, 周瑶, 景兵, 李春莲, 肖恩时, 王中华. 盐胁迫对向日葵幼苗生长及生理特性的影响. 干旱地区农业研究, 2019, 37(4): 139-145.
Ling Y H, Zhou Y, Jing B, Li C L, Xiao E S, Wang Z H. Effects of salt stress on growth and physiological characteristics of sunflower at seedling stage. Agric Res Arid Areas, 2019, 37(4): 139-145 (in Chinese with English abstract).
[46] 张景云, 缪南生, 白雅梅, 万新建, 吕文河. 盐胁迫下二倍体马铃薯叶绿素含量和抗氧化酶活性的变化. 作物杂志, 2014, (5): 59-63.
Zhang J Y, Miao N S, Bai Y M, Wan X J, Lyu W H. Changes of chlorophyll content and antioxidant enzyme activity of diploid potato under salt stress. Crops, 2014, (5): 59-63 (in Chinese with English abstract).
[47] 郑飞, 陈艳萍, 孟庆长, 赵文明, 孔令杰, 袁建华. 7份玉米自交系耐盐性鉴定. 江苏农业科学, 2012, 40(12): 112-115.
Zheng F, Chen Y P, Meng Q C, Zhao W M, Kong L J, Yuan J H. Salt tolerance identification of 7 maize inbred lines. Jiangsu Agric Sci, 2012, 40(12): 112-115 (in Chinese with English abstract).
[12] 李青, 秦玉芝, 胡新喜, 丁红映, 熊兴耀, 王万兴. 马铃薯耐盐性离体鉴定方法的建立及52份种质资源耐盐性评价. 植物遗传资源学报, 2018, 19: 587-597.
doi: 10.13430/j.cnki.jpgr.20171029001
Li Q, Qin Y Z, Hu X X, Ding H Y, Xiong X Y, Wang W X. Establishment of an optimized bioassay being valuable for determining salt tolerance in 52 potato germplasm accessions. J Plant Genet Resour, 2018, 19: 587-597 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.20171029001
[13] 尹江, 马恢, 崔红军. 马铃薯亲本材料试管苗的耐盐性筛选. 中国马铃薯, 2005, 19(1):13-16.
Yin J, Ma H, Cui H J. Salt tolerance of plantlets in vitro in some potato germplasm. Chin Potato J, 2005, 19(1): 13-16 (in Chinese with English abstract).
[14] 梁春波, 韩秀峰, 邸宏, 陈伊里. 马铃薯新型栽培种耐盐性鉴定与筛选. 中国马铃薯, 2006, 20(2): 68-72.
Liang C B, Han X F, Di H, Chen Y L. Identification and selection of salt-tolerant clones in neo-tuberosum. Chin Potato J, 2006, 20(2): 68-72 (in Chinese with English abstract).
[15] 裴怀弟, 张敏敏, 刘新星, 厚毅清, 陈玉梁. NaCl胁迫条件下马铃薯再生苗耐盐性研究. 甘肃农业科技, 2014, (11): 39-42.
Pei H D, Zhang M M, Liu X X, Hou Y Q, Chen Y L. Research of NaCl tolerance on potato regeneration seedlings. Gansu Agric Sci Technol, 2014, (11): 39-42 (in Chinese with English abstract).
[16] 李欣, 张俊莲, 刘玉汇, 王丽, 余斌, 杨宏羽, 李丽霞, 黎雪梅, 王蒂. 四个引自国际马铃薯中心的马铃薯试管苗耐盐性鉴定. 甘肃农业大学学报, 2017, 52(1): 44-50.
Li X, Zhang J L, Liu Y H, Wang L, Yu B, Yang H Y, Li L X, Li X M, Wang D. Identification of salt tolerance on four plantlets of potato lines from International Potato Center. J Gansu Agric Univ, 2017, 52(1): 44-50 (in Chinese with English abstract).
[17] 陈彦云, 李紫辰, 曹君迈, 徐胜明, 莫磊. 马铃薯脱毒苗对NaCl胁迫的响应及耐盐性评价. 西南农业学报, 2018, 31: 2052-2059.
Chen Y Y, Li Z C, Cao J M, Xu S M, Mo L. Response of potato virus-free seedlings to NaCl stress and evaluation of salt tolerance. Southwest China J Agric Sci, 2018, 31: 2052-2059 (in Chinese with English abstract).
[18] 赵海红, 王士强, 胡喜平, 杜吉到, 申晓慧. 9个马铃薯品种苏打盐碱适应性盆栽试验. 中国马铃薯, 2010, 24(3): 129-132.
Zhao H H, Wang S Q, Hu X P, Du J D, Shen X H. Evaluation for saline-sodic tolerance of nine potato cultivars in pot-experiment. Chin Potato J, 2010, 24(3): 129-132 (in Chinese with English abstract).
[19] 赵海红. 马铃薯抗苏打盐碱性研究离体试验. 中国马铃薯, 2010, 24(2): 65-68.
Zhao H H. Evaluation and identification of potatoes with saline-sodic tolerance in vitro culture. Chin Potato J, 2010, 24(2): 65-68 (in Chinese with English abstract).
[20] 赵明辉, 白雅梅, 李文霞, 吕文河. 对NaCl敏感度不同的二倍体马铃薯在NaHCO3胁迫下的表现. 核农学报, 2014, 28: 358-363.
doi: 10.11869/j.issn.100-8551.2014.02.0358
Zhao M H, Bai Y M, Li W X, Lyu W H. Performance of diploid potatoes with various levels of NaCl tolerance under stress of NaHCO3. J Nucl Agric Sci, 2014, 28: 358-363 (in Chinese with English abstract).
[21] 赵明辉, 白雅梅, 吕文河. 离体条件下评价二倍体马铃薯(Solanum phureja × S. stenotomum)耐盐性. 核农学报, 2020, 34: 1-9.
doi: 10.11869/j.issn.100-8551.2020.01.0001
Zhao M H, Bai Y M, Lyu W H. In vitro evaluation of salt tolerance of diploid potato (Solanum phureja × S. stenotomum). J Nucl Agric Sci, 2020, 34: 1-9 (in Chinese with English abstract).
[22] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析. 作物学报, 2022, 48: 2100-2114.
doi: 10.3724/SP.J.1006.2022.14110
Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Analysis of metabolites and pathways in cotton under salt alkali stresses. Acta Agron Sin, 2022, 48: 2100-2114 (in Chinese with English abstract).
[23] Potiuri S D P, Devi Prasad P V, Influence of salinity on axillary bud cultures of six lowland tropical varieties of potato (Solanum tuberosum). Plant Cell Tissue Organ, 1993, 32: 185-191.
doi: 10.1007/BF00029841
[24] Flowers T J. Improving crop salt tolerance. J Exp Bot, 2004, 55: 307-319.
doi: 10.1093/jxb/erh003 pmid: 14718494
[25] Khatun S, Flowers T J. Effects of salinity on seed set in rice. Plant Cell Environ, 1995, 18: 61-67.
doi: 10.1111/pce.1995.18.issue-1
[1] LIU Jie, CAI Cheng-Cheng, LIU Shi-Feng, DENG Meng-Sheng, WANG Xue-Feng, WEN He, LI Luo-Pin, YAN Feng-Jun, WANG Xi-Yao. Function analysis of potato StCYP85A3 in promoting germination and root elongation [J]. Acta Agronomica Sinica, 2023, 49(9): 2462-2471.
[2] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[3] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[4] JIA Rui-Xue, CHEN Yi-Hang, ZHANG Rong, TANG Chao-Chen, WANG Zhang-Ying. Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography [J]. Acta Agronomica Sinica, 2023, 49(8): 2259-2274.
[5] ZHAO Xi-Juan, LIU Sheng-Xuan, LIU Teng-Fei, ZHENG Jie, DU Juan, HU Xin-Xi, SONG Bo-Tao, HE Chang-Zheng. Transcriptome analysis reveals the regulatory role of the transcription factor StMYB113 in light-induced chlorophyll synthesis of potato tuber epidermis [J]. Acta Agronomica Sinica, 2023, 49(7): 1860-1870.
[6] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[7] SUO Hai-Cui, LIU Ji-Tao, WANG Li, LI Cheng-Chen, SHAN Jian-Wei, LI Xiao-Bo. Functional analysis of StZIP12 in regulating potato Zn uptake [J]. Acta Agronomica Sinica, 2023, 49(7): 1994-2001.
[8] MEI Yu-Qin, LIU Yi, WANG Chong, LEI Jian, ZHU Guo-Peng, YANG Xin-Sun. Genome-wide identification and expression analysis of PHB gene family in sweet potato [J]. Acta Agronomica Sinica, 2023, 49(6): 1715-1725.
[9] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[10] CHEN Yi-Hang, TANG Chao-Chen, ZHANG Xiong-Jian, YAO Zhu-Fang, JIANG Bing-Zhi, WANG Zhang-Ying. Construction of core collection of sweetpotato based on phenotypic traits and SSR markers [J]. Acta Agronomica Sinica, 2023, 49(5): 1249-1261.
[11] SUN Xian-Jun, JIANG Qi-Yan, HU Zheng, LI Hong-Bo, PANG Bin-Shuang, ZHANG Feng-Ting, ZHANG Sheng-Quan, ZHANG Hui. Identification and evaluation of wheat germplasm resources at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 1132-1139.
[12] LIU Ming, FAN Wen-Jing, ZHAO Peng, JIN Rong, ZHANG Qiang-Qiang, ZHU Xiao-Ya, WANG Jing, LI Qiang. Genotypes screening and comprehensive evaluation of sweetpotato tolerant to low potassium stress at seedling stage [J]. Acta Agronomica Sinica, 2023, 49(4): 926-937.
[13] LI Hong-Yan, LI Jie-Ya, LI Xiang, YE Guang-Ji, ZHOU Yun, WANG Jian. Effects of overexpression of LrAN2 gene on contents of anthocyanins and glycoalkaloids in potato [J]. Acta Agronomica Sinica, 2023, 49(4): 988-995.
[14] ZHANG Wei-Na, YU Hui-Fang, AN Zhen, LIU Wen-Kai, KANG Yi-Chen, SHI Ming-Fu, YANG Xin-Yu, ZHANG Ru-Yang, WANG Yong, QIN Shu-Hao. StEFR1 regulates late blight resistance positively in potato (Solanum tuberosum) [J]. Acta Agronomica Sinica, 2023, 49(4): 996-1005.
[15] WU Shi-Yu, CHEN Kuang-Ji, LYU Zun-Fu, XU Xi-Ming, PANG Lin-Jiang, LU Guo-Quan. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweetpotato [J]. Acta Agronomica Sinica, 2023, 49(4): 1090-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .