Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2259-2274.doi: 10.3724/SP.J.1006.2023.24202

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Simultaneous determination of 13 carotenoids in sweetpotato by Ultra- Performance Liquid Chromatography

JIA Rui-Xue1,2(), CHEN Yi-Hang1,3(), ZHANG Rong1, TANG Chao-Chen1, WANG Zhang-Ying1,*()   

  1. 1 Crops Research Institute, Guangdong Academy of Agricultural Science / Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou 510640, Guangdong, China
    2 College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, Hebei, China
    3 College of Grassland Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2022-08-31 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-22
  • Contact: WANG Zhang-Ying E-mail:jiaruixue91@126.com;chenyihang2022@126.com;wangzhangying@gdaas.cn
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-10);Guangdong Modern Agro-industry Technology Research System(2022KJ111);Construction and Operation of the Food Nutrition and Health Research Center of Guangdong Academy of Agricultural Sciences(XTXM202205)

Abstract:

Carotenoids as important indexes to evaluate the edible and process quality of sweetpotato, are crucial to promoting sweetpotato breeding. However, the lack of rapid detection methods for the compositions and contents of carotenoids in sweetpotato has limited the progress of edible quality analysis and breeding of sweetpotato. In this study, an Ultra- Performance Liquid Chromatography (UPLC) method was established for simultaneous determination of 13 carotenoids in sweetpotato by optimizing the chromatographic conditions and sample pretreatment process. The results showed that ethanol: acetone: hexane (1:1:1, v/v/v) was used as the extraction solution, and methyl tert-butyl ether was used as the dissolution solution to obtain the highest yield of carotenoids. Analysis conditions of UPLC: methanol: acetonitrile (1:3, v/v) containing 0.01% 2,6-butylated hydroxytoluene (BHT) and 0.1% formic acid as mobile phase A, methyl tert-butyl ether containing 0.01% BHT as mobile phase B gradient elution, YMC Carotenoid C30 (2 mm×100 mm, 3 μm), the flow rate was 0.8 mL min-1, injection volume was 1 μL, the detection wavelength was 450 nm, and the analysis time was 8 min. The linear relationships of 13 carotenoids in this method were good, the correlation coefficients were all greater than 0.997. The test results of precision, repeatability, stability and recovery were all in line with the requirements. The UPLC method in this study can quickly, accurately and simultaneously detect the contents of 13 carotenoids in sweetpotato, which can lay a foundation for quality analysis of germplasm resources and breeding materials in large quantities of sweetpotato.

Key words: UPLC, sweetpotato cultivar, β-carotene, content determination

Fig. 1

Chromatograms of the different elution programs A: the chromatograms under the first elution condition; B: the chromatograms under the second elution condition; C: the chromatograms under the third elution condition; D-E: the chromatograms under the fourth elution condition, D-E: 10 and 13 carotenoids, respectively. 1: lutein; 2: zeaxanthin; 3: α-cryptoxanthin; 4: ε-carotene; 5: β-cryptoxanthin; 6: α-carotene; 7: β-carotene; 8: δ-carotene; 9: γ-carotene; 10: lycopene; 11: violaxanthin; 12: neoxanthin; 13: antheraxanthin."

Fig. 2

Chromatograms of carotenoid at different column temperatures A-E are chromatograms of carotenoids at 20, 23, 25, 28, and 30℃, respectively. 1: violaxanthin; 2: neoxanthin; 3: antheraxanthin; 4: lutein; 5: zeaxanthin; 6: α-cryptoxanthin; 7: ε-carotene; 8: β-cryptoxanthin; 9: α-carotene; 10: β-carotene; 11: δ-carotene; 12: γ-carotene; 13: lycopene."

Table 1

Resolution of 13 carotenoids under different chromatographic conditions"

色谱条件
Chromatographic
conditions
分离度 Resolution
1 2 3 4 5 6 7 8 9 10 11 12 13 14
色谱柱温度
Chromatographic column
temperature
(℃)
20 3.09 1.01 1.67 2.28 2.61 1.49 1.87 1.93 1.67 3.94 3.61 3.69 10.11 2.49
23 2.88 0.88 1.62 2.18 2.45 1.57 2.00 1.68 1.80 3.87 3.71 3.70 9.89 2.97
25 2.46 0.67 1.51 2.06 2.26 1.71 2.13 1.33 1.98 3.79 3.79 3.73 9.75 3.37
28 2.38 0.57 1.58 1.91 2.04 1.86 2.29 0.92 2.14 3.62 3.87 3.76 9.48 3.98
30 1.58 1.35 1.77 1.89 1.97 2.36 0.59 2.35 3.48 3.89 3.78 9.21 4.30
流速
Flow rate
(mL min-1)
0.6 4.02 1.19 1.89 2.59 2.99 1.53 1.93 2.29 1.71 4.22 3.60 3.60 10.43 1.25
0.8 2.88 0.88 1.62 2.18 2.45 1.57 2.00 1.68 1.80 3.87 3.71 3.70 9.89 2.97
1 2.64 0.66 1.48 2.00 2.18 2.03 2.44 0.89 2.36 3.70 3.69 3.55 9.75 3.29
进样量
Injection volume (μL)
1 4.23 1.12 2.01 2.56 2.74 1.80 2.23 1.68 1.99 3.98 3.78 3.74 9.88 2.72
2 2.88 0.88 1.62 2.18 2.45 1.57 2.00 1.68 1.80 3.87 3.71 3.70 9.89 2.97
3 2.80 0.78 1.30 1.88 2.29 1.20 1.58 2.03 1.43 3.79 3.49 3.58 9.94 2.20

Fig. 3

Chromatograms of the different flow rates A-C represents chromatograms of carotenoids at flow rates of 0.6, 0.8, and 1.0 mL min-1, respectively. 1: violaxanthin; 2: neoxanthin; 3: antheraxanthin; 4: lutein; 5: zeaxanthin; 6: α-cryptoxanthin; 7: ε-carotene; 8: β-cryptoxanthin; 9: α-carotene; 10: β-carotene; 11: δ-carotene; 12: γ-carotene; 13: lycopene."

Fig. 4

Chromatograms of the different injection volumes A-C represents the chromatograms of carotenoids at injection volumes of 1, 2, and 3 μL, respectively. 1: violaxanthin; 2: neoxanthin; 3: antheraxanthin; 4: lutein; 5: zeaxanthin; 6: α-cryptoxanthin; 7: ε-carotene; 8: β-cryptoxanthin; 9: α-carotene; 10: β-carotene; 11: δ-carotene; 12: γ-carotene; 13: lycopene."

Table 2

Regression equations, correlation coefficients, and detection limits of carotenoids"

类胡萝卜素
Carotenoids
保留时间
Retention time (min)
线性范围
Linear range
(μg mL-1)
线性方程
Linear
equation
相关系数
Correlation
coefficient (r)
检出限
LOD
(μg mL-1)
定量限
LOQ
(μg mL-1)
紫黄质 Violaxanthin 0.709 0.1-100 y = 14.2103x-2.2023 0.9997 0.003 0.009
新黄质 Neoxanthin 0.831 0.1-50 y = 11.9700x+5.1485 0.9995 0.004 0.015
环氧玉米黄质 Antheraxanthin 1.057 0.1-100 y = 9.3125x-0.0484 0.9996 0.004 0.015
叶黄素 Lutein 1.370 0.1-100 y = 16.0211x+18.3307 0.9985 0.003 0.012
玉米黄质 Zeaxanthin 1.678 0.1-100 y = 11.7821x+13.2805 0.9971 0.005 0.016
α-隐黄质 α-cryptoxanthin 1.961 0.1-100 y = 20.9719x+10.9579 0.9984 0.003 0.010
ε-胡萝卜素 ε-carotene 2.363 0.1-100 y = 16.7789x+16.6374 0.9975 0.003 0.011
β-隐黄质 β-cryptoxanthin 2.506 0.1-100 y = 17.7172x+5.8782 0.9990 0.004 0.012
α-胡萝卜素 α-carotene 2.874 0.1-100 y = 18.1369x+9.9311 0.9986 0.003 0.010
β-胡萝卜素 β-carotene 3.317 0.1-200 y = 16.3936x-4.5911 0.9993 0.004 0.012
δ-胡萝卜素 δ-carotene 4.326 0.1-100 y = 15.1643x+8.9234 0.9982 0.003 0.011
γ-胡萝卜素 γ-carotene 4.712 0.1-100 y = 9.4632x+3.0909 0.9997 0.005 0.016
番茄红素 Lycopene 5.770 0.1-100 y = 2.9934x+1.1650 0.9990 0.018 0.060

Table 3

Relative standard deviations (RSD) of precision, repeatability, and stability"

类胡萝卜素
Carotenoids
精密度Precision RSD (%) 重复性 Repeatability RSD (%) 稳定性Stability RSD (%)
峰面积Area 保留时间
Retention time
(min)
峰面积
Area
保留时间
Retention time
(min)
峰面积
Area
保留时间
Retention time
(min)
紫黄质 Violaxanthin 0.46 1.31 0.51 1.61 7.03 5.07
新黄质 Neoxanthin 0.89 1.82 1.10 2.23 1.80 6.61
环氧玉米黄质 Antheraxanthin 0.49 1.75 0.79 2.23 6.97 6.95
叶黄素 Lutein 0.55 1.91 0.82 2.43 3.90 7.64
玉米黄质 Zeaxanthin 0.60 2.02 0.99 2.76 6.67 8.16
α-隐黄质 α-cryptoxanthin 0.55 1.55 0.80 2.21 5.36 6.88
ε-胡萝卜素 ε-carotene 0.73 1.14 1.20 1.70 4.75 5.76
β-隐黄质 β-cryptoxanthin 0.74 1.47 1.45 2.25 8.15 6.85
α-胡萝卜素 α-carotene 0.86 1.09 1.05 1.74 6.48 5.75
β-胡萝卜素 β-carotene 8.66 0.92 1.19 1.55 11.08 5.33
δ-胡萝卜素 δ-carotene 0.50 0.61 0.35 1.32 6.69 4.64
γ-胡萝卜素 γ-carotene 0.86 0.48 0.59 1.15 10.51 4.38
番茄红素 Lycopene 5.76 0.45 3.14 1.07 14.05 4.57

Table 4

Recovery rate of 13 carotenoids"

类胡萝卜素
Carotenoids
本底值
Background content
回收率Recovery rate (%) 平均值回收率
Average recovery rate (%)
添加量1 μg
Addition amount 1 μg
添加量2 μg
Addition amount 2 μg
添加量3 μg
Addition amount 3 μg
紫黄质 Violaxanthin 0 138.35 132.15 96.65 122.38
新黄质 Neoxanthin 0 74.64 91.43 91.32 85.80
环氧玉米黄质 Antheraxanthin 0 116.19 110.63 97.25 108.02
叶黄素 Lutein 1 104.71 103.42 117.10 108.41
玉米黄质 Zeaxanthin 1 111.90 112.67 130.56 118.38
α-隐黄质 α-cryptoxanthin 1 96.12 95.93 110.95 101.00
ε-胡萝卜素 ε-carotene 1 97.73 98.90 113.73 103.45
β-隐黄质 β-cryptoxanthin 1 91.99 91.58 105.84 96.47
α-胡萝卜素 α-carotene 1 92.94 93.89 108.49 98.44
β-胡萝卜素 β-carotene 1 80.54 80.11 93.19 84.61
δ-胡萝卜素 δ-carotene 1 83.79 89.19 105.73 92.90
γ-胡萝卜素 γ-carotene 1 92.51 93.31 110.18 98.67
番茄红素 Lycopene 1 84.82 87.86 106.71 93.13

Table 5

Carotenoid content of Gangshu 79 in the different extraction and resolution"

提取溶剂
Extraction solution
复溶液Dissolution solution F检验
F-test
显著性
Significant
甲醇:甲基叔丁基醚(3:1, v/v)
Methanol:Methyl tert-butyl ether (3:1, v/v)
甲醇:甲基叔丁基醚(1:1,v/v)
Methanol:Methyl tert-butyl ether (1:1, v/v)
甲醇:甲基叔丁基醚(1:3,v/v)
Methanol:Methyl tert-butyl ether (1:3, v/v)
甲基叔丁基醚
Methyl tert-butyl ether
乙醇:丙酮:正己烷(1:1:1,v/v/v) Ethanol: acetone: n-hexane (1:1:1, v/v/v) 18.06 ± 1.88 37.33 ± 5.31 172.23 ± 14.88 214.49 ± 19.92
乙醇:丙酮:正己烷(1:1:2,v/v/v) Ethanol: acetone: n-hexane (1:1:2, v/v/v) 19.44 ± 3.38 39.28 ± 3.33 199.29 ± 34.94 193.91 ± 18.14
甲醇:丙酮:正己烷(1:1:1,v/v/v) Methanol: acetone: n-hexane (1:1:1, v/v/v) 17.11 ± 1.58 32.46 ± 0.71 152.99 ± 12.03 205.36 ± 16.49
甲醇:丙酮:正己烷(1:1:2,v/v/v) Methanol: acetone: n-hexane (1:1:2, v/v/v) 17.06 ± 1.72 38.42 ± 3.35 167.99 ± 28.8 195.71 ± 33.25
提取溶剂 Extraction solution 1.074 0.374
复溶液 Dissolution solution 366.885 < 0.001
提取溶剂×复溶液 Extraction solution×dissolution solution 1.293 0.279

Table 6

Carotenoid content of different sweetpotato cultivars"

类胡萝卜素
Carotenoids
含量 Content (μg g-1)
龙薯9号Longshu 9 广薯87
Guangshu 87
普薯32
Pushu 32
广薯79
Guangshu 79
济薯26
Jishu 26
烟薯25
Yanshu 25
紫黄质 Violaxanthin 2.22 0.79 1.16 0.41 0.62 0.72
新黄质 Neoxanthin 1.54 1.60 ND ND 0.50 0.39
环氧玉米黄质 Antheraxanthin 4.07 5.79 1.11 3.19 6.30 3.55
叶黄素 Lutein 3.18 ND ND ND ND 0.81
玉米黄质 Zeaxanthin 0.41 0.99 ND 0.10 ND 0.67
α-隐黄质 α-cryptoxanthin 0.88 ND 0.78 2.88 ND 2.70
ε-胡萝卜素 ε-carotene ND 0.41 2.62 2.00 ND 1.28
β-隐黄质 β-cryptoxanthin ND ND ND ND ND ND
α-胡萝卜素 α-carotene ND ND ND ND ND ND
β-胡萝卜素 β-carotene 58.66 27.86 178.08 205.91 3.79 125.34
δ-胡萝卜素 δ-carotene ND ND ND ND ND ND
γ-胡萝卜素 γ-carotene ND ND 0.00 ND ND ND
番茄红素 Lycopene ND ND 0.00 ND ND ND
总含量 Total content 70.97 37.49 183.76 214.49 11.29 135.15

Table 7

Comparison of carotenoid detection methods among different species"

物种Species 检测方法Detection method 部位Part 类胡萝卜素种类 Carotenoid composition 提取方法Extraction method 提取溶剂
Extraction solution
复溶液
Dissolution solution
色谱柱
Chromatographic column
洗脱程序Elution programs 温度Temperature
(℃)
流速Flow rate
(mL min-1)
进样量Injection volume
(μL)
分析时间Time
(min)
参考文献References
甘薯
Sweetpotato
UPLC
UPLC
薯肉
Flesh
13 非皂化
Non saponification
乙醇:丙酮:正己烷(1:1:1)
Ethanol: acetone: n-hexane (1:1:1)
甲基叔丁基醚
Methyl tert-butyl ether
YMC Carotenoid C30 (2 mm×100 mm,3 μm) 梯度洗脱
Gradient elution
23 0.8 1 8 本研究
This study
甘薯
Sweetpotato
分光光度计法
Spectrophotometry
薯肉
Flesh
1 非皂化
Non saponification
丙酮
Acetone
[8]
甘薯
Sweetpotato
HPLC
HPLC
薯肉
Flesh
17 非皂化
Non saponification
Wakopack Navi C30 (30 mm×250 mm,5 μm) 梯度洗脱
Gradient elution
35 0.85 60 [6]
甘薯
Sweetpotato
HPLC
HPLC
愈伤组织
Callus
6 非皂化
Non saponification
丙酮
Acetone
二氯甲烷:丙酮(1:1)
Methylene chloride: acetone (1:1)
YMC Carotenoid C30 (4.6 mm×250 mm,3 μm) 梯度洗脱
Gradient elution
22 0.7 60 [10]
甘薯
Sweetpotato
HPLC
HPLC
茎叶
Leaves
2 非皂化
Non saponification
甲醇
Methanol
Wondasil C18 (4.6 mm×250 mm,5 μm) 梯度洗脱
Gradient elution
20 1 10 30 [34]
柑橘
Citrus
HPLC
HPLC
果皮
Peel
7 皂化
Saponification
丙酮
Acetone
C18 (3.9 mm×300 mm,10 μm) 等度洗脱
Isocratic elution
25 1 20 [22]
菠萝蜜
Jackfruit
HPLC
HPLC
果肉
Flesh
16 皂化
Saponification
乙醇:丙酮:正己烷(1:1:2)
Ethanol: acetone: n-hexane (1:1:2)
甲醇和甲基叔丁基醚
Methanol and methyl tert-butyl ether
YMC Carotenoid C30 (4.6 mm×250 mm,5 μm) 梯度洗脱
Gradient elution
1 60 [23]
香蕉
Banana
HPLC
HPLC
果肉
Pulp
9 皂化
Saponification
乙醇:丙酮:正己烷(1:1:2)
Ethanol: acetone: n-hexane (1:1:2)
甲醇:甲基叔丁基醚(1:1)
Methanol: methyl tert-butyl ether (1:1)
YMC Carotenoid C30 (4.5 mm×250 mm,5 μm) 梯度洗脱
Gradient elution
20 1 10 50 [24]
草莓
Strawberry
UPLC
UPLC
果实
Fruit
4 皂化
Saponification
丙酮:石油醚(1:2)
Acetone: petroleum ether (1:2)
丙酮
Acetone
C18 (2.1 mm×50 mm,1.7 μm) 等度洗脱
Isocratic elution
27.4 0.5 50 5 [26]
南瓜
Pumpkin
UPLC
UPLC
果肉
Pulp
4 皂化
Saponification
乙醇
Ethanol
C18 (2.1 mm×100 mm,1.7 μm) 等度洗脱
Isocratic elution
30 0.5 10 8 [17]
小麦
Wheat
UPLC
UPLC
麦粒
Kernel
4 非皂化
Non saponification
正己烷:丙酮(80:20)
N-hexane: acetone (80:20)
甲醇:乙酸乙酯(68:32)
Methanol: ethyl acetate (68:32)
YMC Carotenoid C30 (4.6 mm×100 mm, 3 μm) 梯度洗脱
Gradient elution
35 0.4 8 25 [27]
[1] CIP.Discovery to Impact:Science-Based Solutions for Global Challenges, CIP Annual Report 2019 edn. Pyrmont, Australia: CIP, 2020. p9.
[2] Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res, 2004, 43: 228-265.
doi: 10.1016/j.plipres.2003.10.002 pmid: 15003396
[3] Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys, 2018, 652: 18-26.
doi: S0003-9861(18)30165-6 pmid: 29885291
[4] Abdel-Aal E, Akhtar H, Zaheer K, Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients, 2013, 5: 1169-1185.
doi: 10.3390/nu5041169 pmid: 23571649
[5] Lian F, Hu K Q, Russell R M, Wang X D. Beta-cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptor beta expression. Int J Cancer, 2006, 119: 2084-2089.
pmid: 16841329
[6] Ishiguro K, Yoshinaga M, Kai Y, Maoka T, Yoshimoto M. Composition, content and antioxidative activity of the carotenoids in yellow-fleshed sweetpotato (Ipomoea batatas L.). Breed Sci, 2010, 60: 324-329.
doi: 10.1270/jsbbs.60.324
[7] 唐忠厚, 魏猛, 陈晓光, 史新敏, 张爱君, 李洪民, 丁艳锋. 不同肉色甘薯块根主要营养品质特征与综合评价. 中国农业科学, 2014, 47: 1705-1714.
doi: 10.3864/j.issn.0578-1752.2014.09.005
Tang Z H, Wei M, Chen X G, Shi X M, Zhang A J, Li H M, Ding Y F. Characters and comprehensive evaluation of nutrient quality of sweetpotato storage root with different flesh colors. Sci Agric Sin, 2014, 47: 1705-1714. (in Chinese with English abstract)
[8] 张允刚, 房伯平. 甘薯种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006. p 89.
Zhang Y G, Fang B P.Descriptors and Data Standard for Sweetpotato [Ipomoea batatas (L.) Lam.]. Beijing: China Agriculture Press, 2006. p 89. (in Chinese)
[9] Alam M K, Rana Z H, Islam S N. Comparison of the proximate composition, total carotenoids and total polyphenol content of nine orange-fleshed sweet potato varieties grown in Bangladesh. Foods, 2016, 5: 64.
doi: 10.3390/foods5030064
[10] Kim S H, Ahn Y O, Ahn M, Lee H, Kwak S. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry (Oxford), 2012, 74: 69-78.
doi: 10.1016/j.phytochem.2011.11.003
[11] Achir N, Pénicaud C, Bechoff A, Boulanger R, Dornier M, Dhuique-Mayer C. Use of multi-response modelling to investigate mechanisms of β-carotene degradation in dried orange-fleshed sweet potato during storage: from carotenoids to aroma compounds. Food Bioproc Technol, 2013, 7: 1656-1669.
doi: 10.1007/s11947-013-1229-y
[12] Rios-Romero E A, Ochoa-Martínez L A, Bello-Pérez L A, Morales-Castro J, Quintero-Ramos A, Gallegos-Infante J A. Effect of ultrasound and steam treatments on bioaccessibility of β-carotene and physicochemical parameters in orange-fleshed sweet potato juice. Heliyon, 2021, 7: e6632.
[13] Suzuki K, Kamimura A, Hooker S B. Rapid and highly sensitive analysis of chlorophylls and carotenoids from marine phytoplankton using ultra-high performance liquid chromatography (UHPLC) with the first derivative spectrum chromatogram (FDSC) technique. Mar Chem, 2015, 176: 96-109.
doi: 10.1016/j.marchem.2015.07.010
[14] 方波, 赵其阳, 席万鹏, 周志钦, 焦必宁. 十种柚类及柚杂种果实中类黄酮含量的超高效液相色谱分析. 中国农业科学, 2013, 46: 1892-1901.
doi: 10.3864/j.issn.0578-1752.2013.09.017
Fang B, Zhao Q Y, Xi W P, Zhou Z Q, Jiao B N. Determination of flavonoids in 10 pummelo and pummelo hybrid fruits by ultra-performance liquid chromatography. Sci Agric Sin, 2013, 46: 1892-1901. (in Chinese with English abstract)
[15] 郑洁, 赵其阳, 张耀海, 焦必宁. 超高效液相色谱法同时测定柑橘中主要酚酸和类黄酮物质. 中国农业科学, 2014, 47: 4706-4717.
doi: 10.3864/j.issn.0578-1752.2014.23.015
Zheng J, Zhao Q Y, Zhang Y H, Jiao B N. Simultaneous determination of main flavonoids and phenolic acids in citrus fruit by ultra-performance liquid chromatography. Sci Agric Sin, 2014, 47: 4706-4717. (in Chinese with English abstract)
[16] 袁文新, 刘志平, 刘平, 赵榕, 吴国华, 范赛, 周洋. 固相萃取-超高效液相色谱法同时测定豆芽中4种植物生长调节剂. 卫生研究, 2017, 46: 783-787.
Yuan W X, Liu Z P, Liu P, Zhao R, Wu G H, Fan S, Zhou Y. Determination of 4 kinds of plant growth regulator in bean sprout by solid phase extraction column coupled with ultra-high performance liquid chromatography. J Hygiene Res, 2017, 46: 783-787. (in Chinese with English abstract)
[17] 王彬, 林亮, 陈敏氡, 刘建汀, 叶新如, 朱海生, 温庆放. 南瓜类胡萝卜素含量的超高效液相色谱分析. 农学学报, 2017, 7(12): 22-27.
doi: 10.11924/j.issn.1000-6850.casb17070077
Wang B, Lin L, Chen M D, Liu J T, Ye X R, Zhu H S, Wen Q F. Analysis of carotenoids contents in pumpkin by ultra-performance liquid chromatography. J Agric, 2017, 7(12): 22-27. (in Chinese with English abstract)
[18] 刘婉沂, 张英丰, 陈竞之, 曾珂琪, 周欣. 超高效液相色谱法同时测定补阳还五汤冻干物中10种成分的含量. 中药新药与临床药理, 2022, 33: 830-835.
Liu W Y, Zhang Y F, Chen J Z, Zeng K Q, Zhou X. Simultaneous content determination of 10 components in lyophilized product of Buyang Huanwu decoction on UPLC. Trad Chin Drug Res Clin Pharmacol, 2022, 33: 830-835. (in Chinese with English abstract)
[19] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China. Sci Agric Sin, 2021, 54: 483-492 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.003
[20] Xu X, Lu X, Tang Z, Zhang X, Lei F, Hou L, Li M. Combined analysis of carotenoid metabolites and the transcriptome to reveal the molecular mechanism underlying fruit colouration in zucchini (Cucurbita pepo L.). Food Chem: Mol Sci, 2021, 2: 100021.
[21] 惠伯棣. 类胡萝卜素化学及生物化学. 北京: 中国轻工业出版社, 2003. pp 88-94.
Hui B D. Carotenoid Chemistry and Biochemistry. Beijing: China Light Industry Press, 2003. pp 88-94. (in Chinese)
[22] Yoo K, Moon B. Comparative carotenoid compositions during maturation and their antioxidative capacities of three citrus varieties. Food Chem, 2016, 196: 544-549.
doi: 10.1016/j.foodchem.2015.09.079
[23] 胡丽松, 吴刚, 郝朝运, 范睿, 伍宝朵, 谭乐和. 菠萝蜜类胡萝卜素检测方法研究及呈色物质分析. 热带作物学报, 2017, 38: 950-956.
Hu L S, Wu G, Hao C Y, Fan R, Wu B D, Tan L H. Method of carotenoids analysis and pigments identification in Jackfruit. Chin J Trop Crops, 2017, 38: 950-956. (in Chinese with English abstract)
[24] 范迎康, 李莉, 詹妮, 况梦宇, 邓贵明, 吕培涛, 盛鸥. 香蕉果肉类胡萝卜素提取与测定方法的研究. 热带作物学报, 2022, 43: 1945-1952.
Fan Y K, Li L, Zhan N, Kuang M Y, Deng G M, Lyu P T, Sheng O. Optimization of extraction and determination of carotenoids from banana pulp. Chin J Trop Crops, 2022, 43: 1945-1952. (in Chinese with English abstract)
[25] 张帅, 丛海林, 于冰. 超高效液相色谱的发展及在分析领域的应用. 分析仪器, 2017, (6): 16-27.
Zhang S, Cong H L, Yu B. Development of ultra-high performance liquid chromatography and its application in the field of analysis. Analy Instrument, 2017, (6): 16-27. (in Chinese with English abstract)
[26] 陈敏氡, 朱海生, 温庆放, 马宏棋, 林义章. UPLC测定草莓果实中类胡萝卜素含量. 果树学报, 2013, 30: 706-711.
Chen M D, Zhu H S, Wen Q F, Ma H Q, Lin Y Z. Determination of carotenoids in strawberry by UPLC. J Fruit Sci, 2013, 30: 706-711. (in Chinese with English abstract)
[27] 李文爽, 夏先春, 何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法. 作物学报, 2016, 42: 706-713.
doi: 10.3724/SP.J.1006.2016.00706
Li W S, Xia X C, He Z H. Establishment of ultra-performance liquid chromatography (UPLC) protocol for analyzing carotenoids in common wheat. Acta Agron Sin, 2016, 42: 706-713. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00706
[28] 徐佳佳, 崔亚娟, 姜菲菲, 李全霞, 李东, 王竹, 王国栋, 门建华. 几种常见的类胡萝卜素提取技术. 食品研究与开发, 2014, 35(19): 141-144.
Xu J J, Cui Y J, Jiang F F, Li Q X, Li D, Wang Z, Wang G D, Men J H. Study on the extraction of carotenoids. Food Res Dev, 2014, 35(19): 141-144. (in Chinese with English abstract)
[29] Watkins J L, Pogson B J. Prospects for carotenoid biofortification targeting retention and catabolism. Trends Plant Sci, 2020, 25: 501-512.
doi: S1360-1385(19)30346-2 pmid: 31956035
[30] Rodriguez-Amaya D B, Kimura M. HarvestPlus Handbook for Carotenoid Analysis. Washington, DC and Cali: International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), 2004. pp 24-30.
[31] Amorim-Carrilho K T, Cepeda A, Fente C, Regal P. Review of methods for analysis of carotenoids. Trends Analy Chem, 2014, 56: 49-73.
doi: 10.1016/j.trac.2013.12.011
[32] Saini R K, Nile S H, Park S W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int, 2015, 76: 735-750.
doi: S0963-9969(15)30135-6 pmid: 28455059
[33] 付莉, 王歆姬. 南瓜皮类胡萝卜素的提取工艺研究. 中国农学通报, 2012, 28(36): 295-299.
Fu L, Wang X J. Extraction of carotenoids from pumpkin peel. Chin Agric Sci Bull, 2012, 28(36): 295-299. (in Chinese with English abstract)
[34] 邢鹏, 包兢兢, 秦玉芝, 陆英. HPLC同时测定甘薯茎叶中叶黄素和β-胡萝卜素. 湖南农业大学学报(自然科学版), 2015, 41: 533-537.
Xing P, Bao J J, Qin Y Z, Lu Y.HPLC analysis method on Lutein and β-carotene in sweet potato (Ipomoea batatas Lam.) leaves. J Hunan Agric Univ (Nat Sci), 2015, 41: 533-537. (in Chinese with English abstract)
[1] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[2] NIU Xin-Ning,WANG Bu-Jun. Evaluation of matrix reference material of Fumonisins FB1 in corn flour [J]. Acta Agronomica Sinica, 2020, 46(7): 1128-1133.
[3] Li-Na WANG,Bu-Jun WANG. Analysis method of wheat germination metabolomics based on UPLC-QTOF/ MS [J]. Acta Agronomica Sinica, 2019, 45(12): 1899-1904.
[4] LI Wen-Shuang,XIA Xian-Chun,HE Zhong-Hu. Establishment of Ultra Performance Liquid Chromatography (UPLC) Protocol for Analyzing Carotenoids in Common Wheat [J]. Acta Agron Sin, 2016, 42(05): 706-713.
[5] UN Juan,LI Wei-Xi,ZHANG Yan,SUN Li-Juan,DONG Xiao-Li,HU Xue-Xu,WANG Bu-Jun. Simultaneous Determination of Twelve Mycotoxins in Cereals by Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Acta Agron Sin, 2014, 40(04): 691-701.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .