Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2275-2287.doi: 10.3724/SP.J.1006.2023.21060
• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
LIN Fen-Fang1,2,3(), CHEN Xing-Yu1, ZHOU Wei-Xun1, WANG Qian2, ZHANG Dong-Yan2,*()
[1] | 张昊, 陈万权. 小麦赤霉菌群体结构和病害监控技术研究进展. 植物保护学报, 2022, 49: 250-262. |
Zhang H, Chen W Q. Research progresses on population structure of pathogen and monitoring and controlling technology of Fusarium head blight in wheat. Acta Phytophy Sin, 2022, 49: 250-262. (in Chinese with English abstract) | |
[2] | 陶晡, 齐永志, 屈赟, 曹志艳, 赵绪生, 甄文超.基于增强回归树的海河平原小麦赤霉病预测模型构建与验证. 中国农业 |
科学, 2021, 54: 3860-3870. | |
Tao B, Qi Y Z, Qu Y, Cao Z Y, Zhao X S, Zhen W C. Construction and verification of fusarium head blight prediction model in Haihe plain based on boosted regression tree. Sci Agric Sin, 2021, 54: 3860-3870. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.18.006 |
|
[3] | 邢瑜琪, 姚卫平, 户雪敏, 戴纪琛, 张太学, 黄卫利, 胡小平. 基于监测预警的小麦赤霉病药剂防治效果评价. 植物保护, 2021, 47: 323-326. |
Xing Y Q, Yao W P, Hu X M, Dai J S, Zhang T X, Huang W L, Hu X P. Evaluation of control effects of pesticides on wheat scab based on monitoring and early warning system. Plant Prot, 2021, 47: 323-326. (in Chinese with English abstract) | |
[4] | 黄文江, 师越, 董莹莹, 叶回春, 邬明权, 崔贝, 刘林毅. 作物病虫害遥感监测研究进展与展望. 智慧农业, 2019, 1(4): 1-11. |
Huang W J, Shi Y, Dong Y Y, Ye H C, Wu M Q, Cui B, Liu L Y. Progress and prospects of crop diseases and pests monitoring by remote sensing. Smart Agric, 2019, 1(4): 1-11. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2019.1.4.201905-SA005 |
|
[5] |
孙瑞琳, 孙全, 孙成明, 刘涛, 李冬双, 吴峰峰. 基于不同平台的小麦病虫害遥感监测研究进展. 中国农机化学报, 2021, 42(3): 142-150.
doi: 10.13733/j.jcam.issn.2095-5553.2021.03.020 |
Sun R L, Sun Q, Sun C M, Liu T, Li D S, Wu F F. Recent advances in remote sensing monitoring on wheat pests and diseases based on different platforms. J Chin Agric Mech, 2021, 42(3): 142-150. (in Chinese with English abstract) | |
[6] | Zhang N, Yang G, Pan Y, Yang X, Zhao C. A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sens (Basel), 2020, 12: 3188. |
[7] | Qiu R C, Yang C, Moghimi A, Zhang M, Steffenson B J, Hirsch C D. Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sens (Basel), 2019, 11: 2658. |
[8] | 鲍文霞, 孙庆, 胡根生, 黄林生, 梁栋, 赵健. 基于多路卷积神经网络的大田小麦赤霉病图像识别. 农业工程学报, 2020, 36(11): 174-181. |
Bao W X, Sun Q, Hu G S, Huang L S, Liang D, Zhao J. Image recognition of field wheat scab based on multi-way convolutional neural network. Trans CSAE, 2020, 36(11): 174-181. (in Chinese with English abstract) | |
[9] | 邓国强, 王君婵, 杨俊, 刘涛, 李冬双, 孙成明. 基于图像和改进U-net模型的小麦赤霉病穗识别. 麦类作物学报, 2021, 41: 1432-1440. |
Deng G Q, Wang J C, Yang J, Liu T, Li D S, Sun C M. Identification of fusarium head blight in wheat ears based on image and improved U-net model. J Triticeae Crops, 2021, 41: 1432-1440. (in Chinese with English abstract) | |
[10] |
戴雨舒, 仲晓春, 孙成明, 杨俊, 刘涛, 刘升平. 基于图像处理和Deeplabv3+模型的小麦赤霉病识别. 中国农机化学报, 2021, 42(9): 209-215.
doi: 10.13733/j.jcam.issn.2095-5553.2021.09.29 |
Dai Y S, Zhong X C, Sun C M, Yang J, Liu T, Liu S P. Identification of fusarium head blight in wheat-based on image processing and Deeplabv3+ model. J Chin Agric Mech, 2021, 42(9): 209-215. (in Chinese with English abstract) | |
[11] |
Zhang D Y, Wang Z C, Jin N, Gu C Y, Chen Y, Huang Y B. Evaluation of efficacy of fungicides for control of wheat fusarium head blight based on digital imaging. IEEE Access, 2020, 8: 109876-109890.
doi: 10.1109/Access.6287639 |
[12] |
Zhang D Y, Gu C Y, Wang Z C, Zhou X G, Li W F. Evaluating the efficacy of fungicides for wheat scab control by combined image processing technologies. Biosyst Eng, 2021, 211: 230-246.
doi: 10.1016/j.biosystemseng.2021.09.008 |
[13] | 张凝, 杨贵军, 赵春江, 张竞成, 杨小冬, 潘瑜春, 黄文江, 徐波, 李明, 朱西存, 李振海. 作物病虫害高光谱遥感进展与展望. 遥感学报, 2021, 25: 403-422. |
Zhang N, Yang G J, Zhao C J, Zhang J C, Yang X D, Pan Y C, Huang W J, Xu B, Li M, Zhu X C, Li Z H. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. J Remote Sens, 2021, 25: 403-422. (in Chinese with English abstract) | |
[14] |
Behmann J, Steinrucken, Plumer L. Detection of early plant stress responses in hyperspectral images. ISPRS J Photogr, 2014, 93: 98-111.
doi: 10.1016/j.isprsjprs.2014.03.016 |
[15] |
Zhang J C, Huang Y B, Pu R L, Gonzalez-moreno P, Yuan L, Wu K H, Huang W J. Monitoring plant diseases and pests through remote sensing technology: a review. Comput Electron Agric, 2019, 165: 104943.
doi: 10.1016/j.compag.2019.104943 |
[16] | Xiao Y X, Dong Y Y, Huang W J, Liu L Y, Mm H Q. Wheat fusarium head blight detection using UAV-based spectral and texture features in optimal window size. Remote Sens (Basel), 2021, 13: 2437. |
[17] | Liu L Y, Dong Y Y, Huang W J, Dd X P, Ma H Q. Monitoring wheat fusarium head blight using unmanned aerial vehicle hyperspectral imagery. Remote Sens (Basel), 2020, 12: 3811. |
[18] |
Alisaac E, Behmann J, Kuska M T, Dehne H W, Mahlein A K. Hyperspectral quantification of wheat resistance to fusarium head blight: comparison of two fusarium species. Eur J Plant Pathol, 2018, 152: 869-884.
doi: 10.1007/s10658-018-1505-9 |
[19] |
Whetton R L, Hassall K L, Waine T W, Mouazen A M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosyst Eng, 2018, 166: 101-115.
doi: 10.1016/j.biosystemseng.2017.11.008 |
[20] |
Whetton R L, Waine T W, Mouazen A M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst Eng, 2018, 167: 144-158.
doi: 10.1016/j.biosystemseng.2018.01.004 |
[21] |
Zelazny W R, Chrpova J, Hamouz P. Fusarium head blight detection from spectral measurements in a field phenotyping setting: a pre-registered study. Biosyst Eng, 2021, 211: 97-113.
doi: 10.1016/j.biosystemseng.2021.08.019 |
[22] |
Ma H Q, Huang W J, Jing Y S, Pignatti S, Laneve G, Dong Y Y, Ye H C, Liu L Y, Guo A T, Jiang J. Identification of fusarium head blight in winter wheat ears using continuous wavelet analysis. Sensors (Basel), 2020, 20: 2001.
doi: 10.3390/s20072001 |
[23] |
Ma H Q, Huang W J, Dong Y Y, Liu L Y, Guo A T. Using UAV-based hyperspectral imagery to detect winter wheat fusarium head blight. Remote Sens-Basel, 2021, 13: 3024.
doi: 10.3390/rs13153024 |
[24] |
Thenkabail P S, Smith R B, Depauwd E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71: 158-182.
doi: 10.1016/S0034-4257(99)00067-X |
[25] |
Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich W B. Early detection of fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric, 2011, 75: 304-312.
doi: 10.1016/j.compag.2010.12.006 |
[26] |
Liu L Y, Dong Y Y, Huang W J, Du X P, Ma H Q. A disease index for efficiently detecting wheat fusarium head blight using Sentinel-2 multispectral imagery. IEEE Access, 2020, 8: 52181-52191.
doi: 10.1109/Access.6287639 |
[27] | Zhang D Y, Wang Q, Lin F F, Yin X, Gu C Y, Qiao H B. Development and evaluation of a new spectral disease index to detect wheat fusarium head blight using hyperspectral imaging. Sensors (Basel), 2020, 20: 2260. |
[28] | 丁文娟.基于不同尺度的冬小麦赤霉病高光谱遥感监测. 安徽大学硕士学位论文, 安徽合肥, 2019. |
Ding W J. Hyperspectral Remote Sensing Monitoring of Winter Wheat Head Blight Based on Different Scales. MS Thesis of Anhui University, Hefei, Anhui, China, 2019. (in Chinese with English abstract) | |
[29] |
Zhang N, Pan Y C, Feng H K, Zhao X Q, Yang X G, Ding C L, Yang G J. Development of fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets. Biosyst Eng, 2019, 186: 83-99.
doi: 10.1016/j.biosystemseng.2019.06.008 |
[30] | Jin X, Jie L, Wang S, Qi H, Li S. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field. Remote Sens (Basel), 2018, 10: 395. |
[31] | 何晓军, 徐爱功, 李玉. 基于模糊相似性的彩色形态学图像处理方法. 计算机应用研究, 2019, 36(1): 258-263. |
He X J, Xu A G, Li Y. Color morphological image processing method based on fuzzy similarity. Appl Res Comput, 2019, 36(1): 258-263. (in Chinese with English abstract) | |
[32] |
Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. LWT-Food Sci Technol, 2021, 152: 112295.
doi: 10.1016/j.lwt.2021.112295 |
[33] | 中华人民共和国农业部. 小麦赤霉病测报技术规范, GB/T 157962011, 2011. |
Ministry of Agriculture. Rules for Monitoring and Forecast of the Wheat Head Blight (Fusarium graminearum Schw. /Gibberella zeae (Schw.) Petch), GB/T 15796-2011, 2011. (in Chinese) | |
[34] | Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man CY-S, 1979, 9: 62-66. |
[35] |
Wang D Y, Fu Y Y, Yang G J, Yang X D, Liang D, Zhou C Q, Zhang N, Wu H, Zhang D Y. Combined use of FCN and Harris corner detection for counting wheat ears in field conditions. IEEE Access, 2019, 7: 178930-178941.
doi: 10.1109/Access.6287639 |
[36] | 马红强, 马时平, 许悦雷, 吕超, 辛鹏, 朱明明. 基于改进栈式稀疏去噪自编码器的图像去噪. 计算机工程与应用, 2018, 54(4): 199-204. |
Ma H Q, Ma S P, Xu Y L, Lyu C, Xin P, Zhu M M. Image denoising based on improved stacked sparse denoising auto- encoder. Comp Engr Appl, 2018, 54(4): 199-204. (in Chinese with English abstract) | |
[37] |
Bai Y, Xiong Y, Huang J, Zhou J, Zhang B. Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features. Postharvest Biol Technol, 2019, 156: 110943.
doi: 10.1016/j.postharvbio.2019.110943 |
[38] |
Ahman M, Alqarni M A, Khan A M, Hussain R, Mazzara M, Distefano S. Segmented and non-segmented stacked denoising autoencoder for hyperspectral band reduction. Optik, 2019, 180: 370-378.
doi: 10.1016/j.ijleo.2018.10.142 |
[39] | 戴晓爱, 郭守恒, 任清, 杨晓霞, 刘汉湖. 基于堆栈式稀疏自编码器的高光谱影像分类. 电子科技大学学报, 2016, 45: 382-386. |
Dai X A, Guo S H, Ren Q, Yang X X, Liu H H. Hyperspectral remote sensing image classification using the stacked sparse autoencoder. J Univ Elec Sci Technol Chin, 2016, 45: 382-386. (in Chinese with English abstract) | |
[40] |
Zhao C H, Wan X Q, Zhao G P, Cui B, Liu W, Qi B. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest. Eur J Remote Sens, 2017, 50: 47-63.
doi: 10.1080/22797254.2017.1274566 |
[41] |
Wan X Q, Zhao C H. Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images. J Opt Soc Am A, 2017, 34: 1011-1020.
doi: 10.1364/JOSAA.34.001011 pmid: 29036085 |
[42] | Shao Z F, Zhang L J, Wang L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass. IEEE J-Stars, 2017, 10: 5569-5582. |
[43] | Zhang L J, Shao Z F, Liu J C, Cheng Q M. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and Landsat 8 data. Remote Sens (Basel), 2019, 11: 1459. |
[44] | Fan Y Y, Zhang C, Liu Z Y, Qiu Z J, He Y. Cost-sensitive stacked auto-encoder models to detect striped stem borer infestation on rice based on hyperspectral imaging. Knowl-Based Syst, 2019, 168: 49-58. |
[45] |
Yang D, Yuan J H, Chang Q, Zhao H Y, Cao Y. Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm. Infrared Phys Technol, 2020, 109: 103412.
doi: 10.1016/j.infrared.2020.103412 |
[1] | ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551. |
[2] | ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581. |
[3] | SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143. |
[4] | YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209. |
[5] | LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224. |
[6] | LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258. |
[7] | LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307. |
[8] | ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905. |
[9] | ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918. |
[10] | DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953. |
[11] | LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817. |
[12] | WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600. |
[13] | GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454. |
[14] | LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714. |
[15] | LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, WANG Meng, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689. |
|