Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2275-2287.doi: 10.3724/SP.J.1006.2023.21060

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm

LIN Fen-Fang1,2,3(), CHEN Xing-Yu1, ZHOU Wei-Xun1, WANG Qian2, ZHANG Dong-Yan2,*()   

  1. 1 School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
    2 National Engineering Research Center for Agro-Ecological Big Data Analysis and Application (Anhui University), Hefei 230601, Anhui, China
    3 Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Kaifeng 475004, Henan, China
  • Received:2022-09-07 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-28
  • Contact: ZHANG Dong-Yan E-mail:linfenfang@126.com;zhangdy@ahu.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(42271364);Science and Technology Plan in Jiangsu Province(BK20211287);Open Fund of Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University)the Ministry of Education(GTYR202104)

Abstract:

Fusarium head blight (FHB) has the characteristics of rapid onset and short cycle. The deep learning feature extraction method was used to establish a disease severity detection model to provide guidance for the prevention and control of FHB. The hyperspectral data of wheat ears from flowering to maturity under three varieties from 2018 to 2020 were collected. The spectral curves of wheat ears were obtained by morphological processing and multi-source scattering correction. Then spectral features of FHB were extracted by stacked sparse auto-encoder (SSAE), combined with Softmax classifier and the partial least squares regression method to detect FHB. Through pre-training, the two-layer SSAE model with 12-6 neurons performed better, the mean square error of the model was lower, and the characteristics of each disease level were significantly different. The deep learning features extracted by the trained SSAE model were the basis of the establishment of FHB disease severity level discrimination model and severity prediction model. The overall accuracy and Kappa coefficient of the model were 88.2% and 0.84, respectively, and the accuracy was the highest for the variety of ‘Huaimai 35’. The prediction coefficient of determination (R2) and root mean square error (RMSE) of the model for the test set of all varieties were 0.927 and 0.062 in the severity prediction model, respectively, and R2 for each variety was around 0.95. The FHB prediction model based on SSAE deep learning features has higher accuracy than those with several common FHB spectral indices. Hyperspectral remote sensing had the characteristics of large amount of data and many spectral bands. The stack sparse auto-encoder builded a more complex model by adding the limiting conditions of sparse representation to the auto-encoder model, and increasing the number of hidden layers and hidden neurons. The extracted spectral features can better reflect the spectral characteristics of FHB in all aspects, so the detection model of FHB constructed by using these features has higher accuracy, which provides a reference for timely and accurate monitoring of FHB.

Key words: Fusarium head blight, stacked sparse auto-encoder, hyperspectral, detection, wheat

Fig. 1

Schematic diagram of the methodology adopted in the study"

Fig. 2

Morphological treatment of wheat ears (a): the original image; (b): the image after morphological processing; (c): binary image."

Fig. 3

Dr component of wheat ears in YDbDr space (a) and OTSU threshold segmentation results of wheat ears (b)"

Table 1

Severity grade of FHB"

级别
Grade
病害严重度DI值范围
Range of DI
病害等级
Grade of disease
1 0<DI<0.05 健康 Healthy
2 0.05≤DI<0.20 轻度 Slight
3 0.20≤DI<0.50 中度 Moderate
4 DI≥0.50 重度 Serious

Fig. 4

Structure of stack sparse auto-encoder (SAE) The first box means the data input layer, the second box for the first layer SAE, the third box for the second layer SAE, the fourth box for the output layer, and the fifth box for the connected classifiers or regression methods in the figure."

Fig. 5

Reflectance spectral curves of wheat ears with different varieties and disease levels Different colors represent disease levels, among which, black for healthy, red for slight, blue for moderate, and green for serious."

Fig. 6

Mean square error of the model with different combinations of neurons at each layer"

Fig. 7

SAE features of all disease grades at each layer under different neurons (a): the first layer; (b): the second layer. Different types of lines represent disease levels, double dotted lines for healthy, dashed lines for slight, straight lines for moderate, and dotted lines for serious."

Fig. 8

Overall accuracy and kappa coefficient of the discrimination model"

Fig. 9

Producer accuracy (a) and User accuracy (b) for each disease level under different varieties"

Fig. 10

Accuracy of the prediction models (a): all varieties test set; (b): Xinong 979 test set; (c): Huaimai 35 test set; (d): Luomai 10 test set."

Table 2

Spectral disease indices of FHB and their calculation formulas"

光谱指数
Spectral index
光谱指数全称
Full name of spectral index
计算公式
Formula of calculation
REHBI Red-edge head blight index $\frac{\left( 842-665 \right)\times \left( {{R}_{\text{Re3}}}-{{R}_{\text{R}}} \right)-\left( 783-665 \right)\times \left( {{R}_{\text{NIR}}}-{{R}_{\text{R}}} \right)}{\text{2}}$
FDI Fusarium disease index $\frac{{{R}_{560}}-{{R}_{663}}}{{{R}_{560}}+{{R}_{663}}}$
WSI Wheat scab index $\frac{\text{S}{{\text{D}}_{450-488}}-\text{S}{{\text{D}}_{500-540}}}{\text{S}{{\text{D}}_{450-488}}+{{\operatorname{SD}}_{500-540}}}$
FCI Fusarium classification index $\frac{2\left( {{R}_{668}}-{{R}_{471}} \right)-{{R}_{539}}}{4}$
HBI Head blight index ${{R}_{550-560}}-{{R}_{665-675}}$

Fig. 11

The comparison of prediction accuracy of models constructed by deep learning features and various spectral indices (a): SSAE; (b): WSI; (c): FCI; (d): FDI; (e): REHBI; (f): HBI."

[1] 张昊, 陈万权. 小麦赤霉菌群体结构和病害监控技术研究进展. 植物保护学报, 2022, 49: 250-262.
Zhang H, Chen W Q. Research progresses on population structure of pathogen and monitoring and controlling technology of Fusarium head blight in wheat. Acta Phytophy Sin, 2022, 49: 250-262. (in Chinese with English abstract)
[2] 陶晡, 齐永志, 屈赟, 曹志艳, 赵绪生, 甄文超.基于增强回归树的海河平原小麦赤霉病预测模型构建与验证. 中国农业
科学, 2021, 54: 3860-3870.
Tao B, Qi Y Z, Qu Y, Cao Z Y, Zhao X S, Zhen W C. Construction and verification of fusarium head blight prediction model in Haihe plain based on boosted regression tree. Sci Agric Sin, 2021, 54: 3860-3870. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2021.18.006
[3] 邢瑜琪, 姚卫平, 户雪敏, 戴纪琛, 张太学, 黄卫利, 胡小平. 基于监测预警的小麦赤霉病药剂防治效果评价. 植物保护, 2021, 47: 323-326.
Xing Y Q, Yao W P, Hu X M, Dai J S, Zhang T X, Huang W L, Hu X P. Evaluation of control effects of pesticides on wheat scab based on monitoring and early warning system. Plant Prot, 2021, 47: 323-326. (in Chinese with English abstract)
[4] 黄文江, 师越, 董莹莹, 叶回春, 邬明权, 崔贝, 刘林毅. 作物病虫害遥感监测研究进展与展望. 智慧农业, 2019, 1(4): 1-11.
Huang W J, Shi Y, Dong Y Y, Ye H C, Wu M Q, Cui B, Liu L Y. Progress and prospects of crop diseases and pests monitoring by remote sensing. Smart Agric, 2019, 1(4): 1-11. (in Chinese with English abstract)
doi: 10.12133/j.smartag.2019.1.4.201905-SA005
[5] 孙瑞琳, 孙全, 孙成明, 刘涛, 李冬双, 吴峰峰. 基于不同平台的小麦病虫害遥感监测研究进展. 中国农机化学报, 2021, 42(3): 142-150.
doi: 10.13733/j.jcam.issn.2095-5553.2021.03.020
Sun R L, Sun Q, Sun C M, Liu T, Li D S, Wu F F. Recent advances in remote sensing monitoring on wheat pests and diseases based on different platforms. J Chin Agric Mech, 2021, 42(3): 142-150. (in Chinese with English abstract)
[6] Zhang N, Yang G, Pan Y, Yang X, Zhao C. A review of advanced technologies and development for hyperspectral-based plant disease detection in the past three decades. Remote Sens (Basel), 2020, 12: 3188.
[7] Qiu R C, Yang C, Moghimi A, Zhang M, Steffenson B J, Hirsch C D. Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sens (Basel), 2019, 11: 2658.
[8] 鲍文霞, 孙庆, 胡根生, 黄林生, 梁栋, 赵健. 基于多路卷积神经网络的大田小麦赤霉病图像识别. 农业工程学报, 2020, 36(11): 174-181.
Bao W X, Sun Q, Hu G S, Huang L S, Liang D, Zhao J. Image recognition of field wheat scab based on multi-way convolutional neural network. Trans CSAE, 2020, 36(11): 174-181. (in Chinese with English abstract)
[9] 邓国强, 王君婵, 杨俊, 刘涛, 李冬双, 孙成明. 基于图像和改进U-net模型的小麦赤霉病穗识别. 麦类作物学报, 2021, 41: 1432-1440.
Deng G Q, Wang J C, Yang J, Liu T, Li D S, Sun C M. Identification of fusarium head blight in wheat ears based on image and improved U-net model. J Triticeae Crops, 2021, 41: 1432-1440. (in Chinese with English abstract)
[10] 戴雨舒, 仲晓春, 孙成明, 杨俊, 刘涛, 刘升平. 基于图像处理和Deeplabv3+模型的小麦赤霉病识别. 中国农机化学报, 2021, 42(9): 209-215.
doi: 10.13733/j.jcam.issn.2095-5553.2021.09.29
Dai Y S, Zhong X C, Sun C M, Yang J, Liu T, Liu S P. Identification of fusarium head blight in wheat-based on image processing and Deeplabv3+ model. J Chin Agric Mech, 2021, 42(9): 209-215. (in Chinese with English abstract)
[11] Zhang D Y, Wang Z C, Jin N, Gu C Y, Chen Y, Huang Y B. Evaluation of efficacy of fungicides for control of wheat fusarium head blight based on digital imaging. IEEE Access, 2020, 8: 109876-109890.
doi: 10.1109/Access.6287639
[12] Zhang D Y, Gu C Y, Wang Z C, Zhou X G, Li W F. Evaluating the efficacy of fungicides for wheat scab control by combined image processing technologies. Biosyst Eng, 2021, 211: 230-246.
doi: 10.1016/j.biosystemseng.2021.09.008
[13] 张凝, 杨贵军, 赵春江, 张竞成, 杨小冬, 潘瑜春, 黄文江, 徐波, 李明, 朱西存, 李振海. 作物病虫害高光谱遥感进展与展望. 遥感学报, 2021, 25: 403-422.
Zhang N, Yang G J, Zhao C J, Zhang J C, Yang X D, Pan Y C, Huang W J, Xu B, Li M, Zhu X C, Li Z H. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests. J Remote Sens, 2021, 25: 403-422. (in Chinese with English abstract)
[14] Behmann J, Steinrucken, Plumer L. Detection of early plant stress responses in hyperspectral images. ISPRS J Photogr, 2014, 93: 98-111.
doi: 10.1016/j.isprsjprs.2014.03.016
[15] Zhang J C, Huang Y B, Pu R L, Gonzalez-moreno P, Yuan L, Wu K H, Huang W J. Monitoring plant diseases and pests through remote sensing technology: a review. Comput Electron Agric, 2019, 165: 104943.
doi: 10.1016/j.compag.2019.104943
[16] Xiao Y X, Dong Y Y, Huang W J, Liu L Y, Mm H Q. Wheat fusarium head blight detection using UAV-based spectral and texture features in optimal window size. Remote Sens (Basel), 2021, 13: 2437.
[17] Liu L Y, Dong Y Y, Huang W J, Dd X P, Ma H Q. Monitoring wheat fusarium head blight using unmanned aerial vehicle hyperspectral imagery. Remote Sens (Basel), 2020, 12: 3811.
[18] Alisaac E, Behmann J, Kuska M T, Dehne H W, Mahlein A K. Hyperspectral quantification of wheat resistance to fusarium head blight: comparison of two fusarium species. Eur J Plant Pathol, 2018, 152: 869-884.
doi: 10.1007/s10658-018-1505-9
[19] Whetton R L, Hassall K L, Waine T W, Mouazen A M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study. Biosyst Eng, 2018, 166: 101-115.
doi: 10.1016/j.biosystemseng.2017.11.008
[20] Whetton R L, Waine T W, Mouazen A M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst Eng, 2018, 167: 144-158.
doi: 10.1016/j.biosystemseng.2018.01.004
[21] Zelazny W R, Chrpova J, Hamouz P. Fusarium head blight detection from spectral measurements in a field phenotyping setting: a pre-registered study. Biosyst Eng, 2021, 211: 97-113.
doi: 10.1016/j.biosystemseng.2021.08.019
[22] Ma H Q, Huang W J, Jing Y S, Pignatti S, Laneve G, Dong Y Y, Ye H C, Liu L Y, Guo A T, Jiang J. Identification of fusarium head blight in winter wheat ears using continuous wavelet analysis. Sensors (Basel), 2020, 20: 2001.
doi: 10.3390/s20072001
[23] Ma H Q, Huang W J, Dong Y Y, Liu L Y, Guo A T. Using UAV-based hyperspectral imagery to detect winter wheat fusarium head blight. Remote Sens-Basel, 2021, 13: 3024.
doi: 10.3390/rs13153024
[24] Thenkabail P S, Smith R B, Depauwd E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71: 158-182.
doi: 10.1016/S0034-4257(99)00067-X
[25] Bauriegel E, Giebel A, Geyer M, Schmidt U, Herppich W B. Early detection of fusarium infection in wheat using hyper-spectral imaging. Comput Electron Agric, 2011, 75: 304-312.
doi: 10.1016/j.compag.2010.12.006
[26] Liu L Y, Dong Y Y, Huang W J, Du X P, Ma H Q. A disease index for efficiently detecting wheat fusarium head blight using Sentinel-2 multispectral imagery. IEEE Access, 2020, 8: 52181-52191.
doi: 10.1109/Access.6287639
[27] Zhang D Y, Wang Q, Lin F F, Yin X, Gu C Y, Qiao H B. Development and evaluation of a new spectral disease index to detect wheat fusarium head blight using hyperspectral imaging. Sensors (Basel), 2020, 20: 2260.
[28] 丁文娟.基于不同尺度的冬小麦赤霉病高光谱遥感监测. 安徽大学硕士学位论文, 安徽合肥, 2019.
Ding W J. Hyperspectral Remote Sensing Monitoring of Winter Wheat Head Blight Based on Different Scales. MS Thesis of Anhui University, Hefei, Anhui, China, 2019. (in Chinese with English abstract)
[29] Zhang N, Pan Y C, Feng H K, Zhao X Q, Yang X G, Ding C L, Yang G J. Development of fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets. Biosyst Eng, 2019, 186: 83-99.
doi: 10.1016/j.biosystemseng.2019.06.008
[30] Jin X, Jie L, Wang S, Qi H, Li S. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field. Remote Sens (Basel), 2018, 10: 395.
[31] 何晓军, 徐爱功, 李玉. 基于模糊相似性的彩色形态学图像处理方法. 计算机应用研究, 2019, 36(1): 258-263.
He X J, Xu A G, Li Y. Color morphological image processing method based on fuzzy similarity. Appl Res Comput, 2019, 36(1): 258-263. (in Chinese with English abstract)
[32] Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. LWT-Food Sci Technol, 2021, 152: 112295.
doi: 10.1016/j.lwt.2021.112295
[33] 中华人民共和国农业部. 小麦赤霉病测报技术规范, GB/T 157962011, 2011.
Ministry of Agriculture. Rules for Monitoring and Forecast of the Wheat Head Blight (Fusarium graminearum Schw. /Gibberella zeae (Schw.) Petch), GB/T 15796-2011, 2011. (in Chinese)
[34] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man CY-S, 1979, 9: 62-66.
[35] Wang D Y, Fu Y Y, Yang G J, Yang X D, Liang D, Zhou C Q, Zhang N, Wu H, Zhang D Y. Combined use of FCN and Harris corner detection for counting wheat ears in field conditions. IEEE Access, 2019, 7: 178930-178941.
doi: 10.1109/Access.6287639
[36] 马红强, 马时平, 许悦雷, 吕超, 辛鹏, 朱明明. 基于改进栈式稀疏去噪自编码器的图像去噪. 计算机工程与应用, 2018, 54(4): 199-204.
Ma H Q, Ma S P, Xu Y L, Lyu C, Xin P, Zhu M M. Image denoising based on improved stacked sparse denoising auto- encoder. Comp Engr Appl, 2018, 54(4): 199-204. (in Chinese with English abstract)
[37] Bai Y, Xiong Y, Huang J, Zhou J, Zhang B. Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features. Postharvest Biol Technol, 2019, 156: 110943.
doi: 10.1016/j.postharvbio.2019.110943
[38] Ahman M, Alqarni M A, Khan A M, Hussain R, Mazzara M, Distefano S. Segmented and non-segmented stacked denoising autoencoder for hyperspectral band reduction. Optik, 2019, 180: 370-378.
doi: 10.1016/j.ijleo.2018.10.142
[39] 戴晓爱, 郭守恒, 任清, 杨晓霞, 刘汉湖. 基于堆栈式稀疏自编码器的高光谱影像分类. 电子科技大学学报, 2016, 45: 382-386.
Dai X A, Guo S H, Ren Q, Yang X X, Liu H H. Hyperspectral remote sensing image classification using the stacked sparse autoencoder. J Univ Elec Sci Technol Chin, 2016, 45: 382-386. (in Chinese with English abstract)
[40] Zhao C H, Wan X Q, Zhao G P, Cui B, Liu W, Qi B. Spectral-spatial classification of hyperspectral imagery based on stacked sparse autoencoder and random forest. Eur J Remote Sens, 2017, 50: 47-63.
doi: 10.1080/22797254.2017.1274566
[41] Wan X Q, Zhao C H. Local receptive field constrained stacked sparse autoencoder for classification of hyperspectral images. J Opt Soc Am A, 2017, 34: 1011-1020.
doi: 10.1364/JOSAA.34.001011 pmid: 29036085
[42] Shao Z F, Zhang L J, Wang L. Stacked sparse autoencoder modeling using the synergy of airborne LiDAR and satellite optical and SAR data to map forest above-ground biomass. IEEE J-Stars, 2017, 10: 5569-5582.
[43] Zhang L J, Shao Z F, Liu J C, Cheng Q M. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and Landsat 8 data. Remote Sens (Basel), 2019, 11: 1459.
[44] Fan Y Y, Zhang C, Liu Z Y, Qiu Z J, He Y. Cost-sensitive stacked auto-encoder models to detect striped stem borer infestation on rice based on hyperspectral imaging. Knowl-Based Syst, 2019, 168: 49-58.
[45] Yang D, Yuan J H, Chang Q, Zhao H Y, Cao Y. Early determination of mildew status in storage maize kernels using hyperspectral imaging combined with the stacked sparse auto-encoder algorithm. Infrared Phys Technol, 2020, 109: 103412.
doi: 10.1016/j.infrared.2020.103412
[1] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[2] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[3] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
[4] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[5] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[6] LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[7] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[8] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[9] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[10] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[11] LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817.
[12] WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600.
[13] GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454.
[14] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[15] LEI Xin-Hui, LENG Jia-Jun, TAO Jin-Cai, WAN Chen-Xi, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, FENG Bai-Li, WANG Meng, GAO Jin-Feng. Effects of foliar spraying selenium on photosynthetic characteristics, yield, and selenium accumulation of common buckwheat (Fagopyrum esculentum M.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1678-1689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .