Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 219-236.doi: 10.3724/SP.J.1006.2024.34035

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves

GUO Jia-Xin(), YE Yang, GUO Hui-Juan, MIN Wei*()   

  1. Agricultual College, Shihezi University, Shihezi 832000, Xinjiang, China
  • Received:2023-02-22 Accepted:2023-05-24 Online:2024-01-12 Published:2023-12-16
  • Contact: *E-mail: minwei555@126.com
  • Supported by:
    Youth Innovation Talent Cultivation Program of Shihezi University(CXPY202111);Open Fund of Key Laboratory of Northwest Oasis Agro-Environment of Ministry of Agriculture and Rural Affairs of China(XBLZ-20214);Scientific Research Starting Foundation for High Level Talents of Shihezi University(RCZK202017)

Abstract:

Salt stress and alkali stress are two different abiotic stresses that seriously affect agricultural production. Exploring the differences between salt stress and alkali stress in cotton provides a theoretical basis for cotton cultivation on different types of saline alkali land. In this experiment, three treatments of CK, NaCl (CS), and NaHCO3+Na2CO3 (AS) were conducted. Proteomics analysis and physiological index verification revealed that the tolerance mechanism of cotton to salt stress and alkali stress. Compared with CK, CS, and AS cotton plants decreased by 51.1% and 50.9% at P < 0.05 in biomass, respectively. The chlorophyll content and Pn under salt stress decreased significantly by 53.9% and 57.2%, respectively. Under salt stress, the activities of hexokinase, fructose phosphate kinase, pyruvate kinase, citrate synthase, glutamate dehydrogenase, and glutamic oxaloacetic transaminase in cotton leaves increased significantly by 13.8%, 14.4%, 4.7%, 4.5%, 36.6%, and 12.9%, respectively. Under alkali stress, the activities of hexokinase, phosphofructose kinase, pyruvate kinase, malate dehydrogenase, citrate synthase, glutamate dehydrogenase, and glutamic oxaloacetic transaminase in cotton leaves significantly increased by 4.8%, 38.8%, 15.1%, 4.3%, 3.4%, 15.2%, and 21.1%, respectively. Based on TMT proteomics, 458 differentially expressed proteins and 140 differentially expressed proteins in salt stress and alkali stress species were detected, respectively. These proteins were involved in photosynthesis, sugar metabolism, 2-oxocarbonic acid metabolism, amino acid synthesis and metabolism, and other life processes. These results showed that both salt stress and alkali stress inhibited cotton growth. The difference was that under salt stress, proteins expression related to photosynthesis decreased, photosynthesis was significantly inhibited, and carbon water and energy metabolism were enhanced, and more photosynthates were used for energy metabolism. Alkali stress had no significant effect on cotton photosynthesis, and more photosynthates might be transported to the roots to secrete organic acids.

Key words: salt stress, alkali stress, cotton, proteome, photosynthesis

Table 1

Type and degree of salinity and alkalinity in soil under different treatments"

处理
Treatment
盐碱类型及盐碱化程度
Saline and alkaline
含盐量
Salt content (g kg-1)
电导率
Electrical conductivity EC1:5 (dS m-1)
pH
(1:2.5)
对照
CK
对照-非盐(碱)化
Control-non salting (alkalization)
0.53 0.17 8.16
盐胁迫
CS
NaCl-中度盐化
NaCl-moderate salinization
4.43 1.39 8.43
碱胁迫
AS
Na2CO3+NaHCO3-中度碱化
Na2CO3+NaHCO3-moderate alkalization
2.03 0.63 9.92

Table 2

Effects of salt stress and alkali stress on cotton biomass"

处理
Treatment
生物量Biomass (g plant-1)
叶Leaf 茎Stem 根Root 总Total
CK 2.45±0.200 a 1.81±0.100 a 0.87±0.040 a 5.13±0.260 a
CS 1.24±0.015 b 0.73±0.006 c 0.54±0.015 c 2.51±0.025 c
AS 1.27±0.095 b 0.72±0.050 b 0.53±0.045 b 2.52±0.190 b

Fig. 1

Effects of salt stress and alkali stress on cotton photosynthesis Different lowercase letters above the bars indicate significant differences among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 2."

Fig. 2

Principal coordinate analysis of protein expression in cotton leaves under salt and alkali stresses Treatments are the same as those given in Table 2."

Fig. 3

Volcanic graph of proteins expressed in cotton leaves A: CS vs CK; B: AS vs CK. Scatter color: protein that are significantly up-regulated are shown in red, protein that are significantly down- regulated are shown in blue, and protein that are not significantly different are shown in gray. Treatments are the same as those given in Table 2."

Fig. 4

Classification histogram of GO enrichment of differentially expressed proteins in cotton leaves A: CS vs CK; B: AS vs CK. Number of enrichment terms less than top 10, the ordinate is the number of mapped differential expression proteins. BP: biological process; CC: cellular component; MF: molecular function. Treatments are the same as those given in Table 2."

Fig. 5

Top 10 KEGG metabolic pathways of differentially expressed proteins in cotton leaves A: CS vs CK; B: AS vs CK. The abscissa in the figure is the rich factor value of the enrichment degree, and the ordinate is the KEGG Pathway information. The size of the circle indicates the number of differentially expressed proteins in the mapping pathway. The larger the circle, the more the number; The color of the circle indicates the size of the P-value. The redder the color, the lower the P-value. Treatments are the same as those given in Table 2."

Fig. 6

Effects of salt stress and alkali stress on photosynthesis and carbon transforming protein in cotton A: photosynthesis; B: glycolysis; C: citric acid cycle; D: amino acid conversion. Different lowercase letters above the bars indicate significant differences among different treatments in the 0.05 probability level. Treatments are the same as those given in Table 2."

Table 3

Effects of salt stress and alkali stress on energy metabolism of cotton leaves"

处理
Treatment
代谢通路
Pathway name
序列号
Accession
功能描述
Description
变化倍数
Fold change
(CS or AS)/CK
CS 2-氧代羧酸代谢
2-oxocarboxylic acid metabolism
A0A7J9KP33 酮酸还原酶
Ketol-acid reductoisomerase
1.29*
A0A7J9MR64 乙酰谷氨酸激酶
Acetylglutamate kinase
1.36**
A0A7J9M5F7 乌头酸水合酶
Aconitate hydratase
0.73*
A0A7J9N0C5 芳香脱硫葡萄糖酸磺基转移酶
Aromatic desulfoglucosinolate sulfotransferase
1.27*
氧化磷酸化
Oxidative
phosphorylation
A0A7J9LU75 F型H+转运ATP酶亚基δ
F-type H+-transporting ATPase subunit delta
1.37*
A0A7J9LUR9 F型H+转运ATP酶亚基γ
F-type H+-transporting ATPase subunit gamma
1.21*
A0A7J9KQM1 F型H+转运ATP酶亚基d
F-type H+-transporting ATPase subunit d
1.57*
A0A7J9MB87 F型H+转运ATP酶亚基g
F-type H+-transporting ATPase subunit g
1.40**
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.31*
A0A7J9N9Y3 细胞色素c氧化酶亚基5b
Cytochrome c oxidase subunit 5b
2.86**
A0A7J9ML93 NADH脱氢酶(泛醌) 1α亚基1
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 1
1.27**
A0A7J9LKQ6 NADH脱氢酶(泛醌)1α亚基9
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex subunit 9
1.22*
脂肪酸代谢
Fatty acid
metabolism
A0A7J9M364 长链酰基辅酶A合成酶 Long-chain acyl-CoA synthetase 1.68**
A0A7J9KWA3 3-羟基酰基-[酰基载体蛋白]脱水酶
3-hydroxyacyl-[acyl-carrier-protein] dehydratase
1.24*
A0A7J9LZQ8 3-氧代酰基-[酰基载体蛋白]合成酶II
3-oxoacyl-[acyl-carrier-protein] synthase II
1.29*
原核生物中的碳固定途径
Carbon fixation pathways in
prokaryotes
A0A7J9KVG7 磷酸烯醇式丙酮酸羧化酶
Phosphoenolpyruvate carboxylase
0.64*
A0A7J9M5F7 乌头酸水合酶
Aconitate hydratase
0.73*
甲烷代谢
Methane metabolism
A0A7J9KVG7 磷酸烯醇式丙酮酸羧化酶
Phosphoenolpyruvate carboxylase
0.64*
A0A7J9KMU6 烯醇化酶
Enolase
1.25*
AS 2-氧代羧酸代谢
2-Oxocarboxylic acid metabolism
A0A7J9KP33 酮酸还原酶
Ketol-acid reductoisomerase
1.39*
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83**
A0A7J9L982 乙酰乳酸合成酶I/III小亚基
Acetolactate synthase I/III small subunit
1.22*
AS 脂肪酸代谢
Fatty acid
metabolism
A0A7J9N2P9 酰基-[酰基载体蛋白]去饱和酶
Acyl-[acyl-carrier-protein] desaturase
1.39*
A0A7J9LKB6 乙酰辅酶A酰基转移酶1
Acetyl-CoA acyltransferase 1
0.71**
硫代谢
Sulfur metabolism
A0A7J9MMD9 胱硫醚γ合酶
Cystathionine gamma-synthase
1.48*
A0A7J9L9D5 3’-磷酸腺苷5’-磷酸硫酸合成酶
3’-phosphoadenosine 5’-phosphosulfate synthase
1.29*
氧化磷酸化
Oxidative
phosphorylation
A0A7J9LGN1 无机焦磷酸酶
Inorganic pyrophosphatase
0.80*
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.26**

Table 4

Effects of salt stress and alkali stress on amino acid metabolism in cotton leaves"

处理
Treatment
代谢通路
Pathway name
序列号
Accession
功能描述
Description
变化倍数
Fold change
(CS or AS)/CK
CS 苯丙氨酸、酪氨酸和色氨酸
生物合成
Phenylalanine, tyrosine, and tryptophan biosynthesis
A0A7J9LV20 蒽酰磷酸核糖转移酶
Anthranilate phosphoribosyl transferase
1.30*
A0A7J9KNK6 蒽合酶
Anthranilate synthase
0.83**
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.64**
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.78**
A0A7J9N2E0 芳香烃脱水酶
Arogenate dehydratase
1.32*
A0A7J9LLN6 色氨酸合成酶β链
Tryptophan synthase beta chain
1.39*
甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine and threonine metabolism
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.64**
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.78**
A0A7J9M6Y0 苏氨酸合酶
Threonine synthase
1.57**
A0A7J9LLN6 色氨酸合成酶β链
Tryptophan synthase beta chain
1.39*
A0A7J9M104 乙醛酸/羟基丙酮酸还原酶
Glyoxylate/hydroxypyruvate reductase
0.79**
酪氨酸代谢
Tyrosine metabolism
A0A7J9MAI5 多酚氧化酶
Polyphenol oxidase
0.68*
A0A7J9M832 富马酸酯酶
Fumarylacetoacetase
0.75*
A0A7J9M104 羟基苯基丙酮酸还原酶
Hydroxyphenylpyruvate reductase
0.79**
精氨酸生物合成
Arginine biosynthesis
A0A7J9MR64 乙酰谷氨酸激酶
Acetylglutamate kinase
1.36**
CS 精氨酸生物合成
Arginine biosynthesis
A0A7J9KRZ6 精氨酸琥珀酸裂解酶
Argininosuccinate lyase
1.53*
丙氨酸、天冬氨酸和谷氨酸
代谢
Alanine, aspartate, and
glutamate metabolism
A0A7J9KPZ3 谷氨酸脱羧酶
Glutamate decarboxylase
0.77*
A0A7J9KRZ6 精氨酸琥珀酸裂解酶
Argininosuccinate lyase
1.53*
色氨酸代谢
Tryptophan metabolism
A0A7J9KNP8 细胞色素P450家族1亚家族A1
Cytochrome P450 family 1 subfamily A1
0.16**
A0A7J9N0C5 芳香脱硫葡萄糖酸磺基转移酶
Aromatic desulfoglucosinolate sulfotransferase
1.27*
AS 缬氨酸、亮氨酸和异亮氨酸
生物合成
Valine, leucine, and isoleucine biosynthesis
A0A7J9KP33 酮酸还原酶
Ketol-acid reductoisomerase
1.39*
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83*
A0A7J9L982 乙酰乳酸合成酶I/III小亚基
Acetolactate synthase I/III small subunit
1.22*
苯丙氨酸、酪氨酸和色氨酸
生物合成
Phenylalanine, tyrosine, and tryptophan biosynthesis
A0A7J9LV20 蒽酰磷酸核糖转移酶
Anthranilate phosphoribosyl transferase
1.25*
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.41*
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.49*
A0A7J9MCV6 预苯酸脱水酶
Prephenate dehydratase
1.29**
A0A7J9M850 芳香酸脱氢酶(NADP+)
Arogenate dehydrogenase (NADP+)
1.44*
缬氨酸、亮氨酸和异亮氨酸
降解
Valine, leucine, and isoleucine degradation
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83*
A0A7J9LT42 羟甲基戊二酰辅酶A合酶
Hydroxymethylglutaryl-CoA synthase
1.27**
A0A7J9LKB6 乙酰辅酶A酰基转移酶1
Acetyl-CoA acyltransferase 1
0.71*
半胱氨酸和蛋氨酸代谢
Cysteine and methionine
metabolism
A0A7J9LQ81 5-甲基四氢蝶酰三谷氨酸 5-methyltetrahydropteroyltriglutamate 0.73*
A0A7J9M6Q9 支链氨基酸氨基转移酶
Branched-chain amino acid aminotransferase
0.83*
A0A7J9MMD9 胱硫苷γ合酶
Cystathionine gamma-synthase
1.48*
A0A7J9LCJ0 1,2-二羟基-3-酮-5-甲基硫戊烯双加氧酶
1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase
0.80**
甘氨酸、丝氨酸和苏氨酸代谢
Glycine, serine, and threonine metabolism
A0A7J9N2J2 色氨酸合成酶α链
Tryptophan synthase alpha chain
1.41*
A0A7J9N2X9 色氨酸合成酶β链
Tryptophan synthase beta chain
1.49*

Fig. 7

Effect of salt stress on protein metabolism A: translation; B: replication and repair; C: transcription; D: folding, sorting, and degradation. Treatments are the same as those given in Table 2."

Fig. 8

Effect of alkali stress on protein metabolism A: transcription; B: folding, sorting and degradation; C: translation. Treatments are the same as those given in Table 2."

Table 5

Effects of salt stress and alkali stress on signal transduction in cotton leaves"

处理
Treatment
代谢通路
Pathway name
序列号
Accession
功能描述
Description
变化倍数
Fold change
(CS or AS)/CK
CS AMPK信号通路
AMPK signaling pathway
A0A7J9L324 5'-AMP激活蛋白激酶, 调节β亚基
5'-AMP-activated protein kinase, regulatory beta subunit
1.29*
A0A7J9MK06 5'-AMP激活蛋白激酶, 调节γ亚基
5'-AMP-activated protein kinase, regulatory gamma subunit
0.64**
A0A7J9MBY1 钙结合蛋白39
Calcium binding protein 39
1.37*
MAPK信号通路
MAPK signaling pathway
A0A7J9KIX8 酪蛋白激酶1
Casein kinase 1
0.75*
A0A7J9KNP5 14-3-3蛋白ε
14-3-3 protein epsilon
1.45*
FoxO信号通路
FoxO signaling pathway
A0A7J9L324 5'-AMP激活蛋白激酶, 调节β亚基
5'-AMP-activated protein kinase, regulatory beta subunit
1.29*
A0A7J9MK06 5'-AMP激活蛋白激酶, 调节γ亚基
5'-AMP-activated protein kinase, regulatory gamma subunit
0.64**
Apelin信号通路
Apelin signaling pathway
A0A7J9L324 5'-AMP激活蛋白激酶, 调节β亚基
5'-AMP-activated protein kinase, regulatory beta subunit
1.29*
A0A7J9MK06 5'-AMP激活蛋白激酶, 调节γ亚基
5'-AMP-activated protein kinase, regulatory gamma subunit
0.64**
CS mTOR信号通路
mTOR signaling pathway
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.31*
A0A7J9MBY1 钙结合蛋白39
Calcium binding protein 39
1.37*
AS 植物激素信号转导
Plant hormone signal transduction
A0A7J9LIK5 含组氨酸磷酸转移蛋白
Histidine-containing phosphotransfer peotein
1.30**
A0A7J9MIA1 丝氨酸/苏氨酸蛋白激酶SRK2
Serine/threonine-protein kinase SRK2
1.23*
mTOR信号通路
mTOR signaling pathway
A0A7J9LJA3 V型H+转运ATP酶亚基D
V-type H+-transporting ATPase subunit D
1.26**
A0A7J9MBY1 钙结合蛋白39
Calcium binding protein 39
1.29*
[1] 刘祎, 钱玉源, 崔淑芳, 金卫平, 王广恩, 张曦, 张海娜, 李俊兰. 低酚棉种子利用研究进展. 中国棉花, 2018, 45(8): 4-8.
Liu W, Qian Y Y, Cui S F, Jin W P, Wang G E, Zhang X, Zhang H N, Li J L. Research progress on seed utilization of glandless cotton. China Cotton, 2018, 45(8): 4-8. (in Chinese with English abstract)
[2] Chinnusamy V, Zhu J, Zhu J K. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng, 2006, 27: 141-177.
[3] Feng L, Dai J L, Tian L W, Zhang H J, Li W J, Dong H Z. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Res, 2017, 208: 18-26.
doi: 10.1016/j.fcr.2017.03.008
[4] 白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展. 中国农业科学, 2017, 50: 38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004
Bai Y, Mao S C, Tian L W, Li L, Dong H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang Cotton-Growing area. Sci Agric Sin, 2017, 50: 38-50. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.01.004
[5] Yang H C, Wang G J Y, Zhang F H. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area. Environ Sci Pollut Res, 2016, 23: 23920-23929.
doi: 10.1007/s11356-016-7583-3
[6] Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci, 2014, 5: 170.
doi: 10.3389/fpls.2014.00170 pmid: 24904597
[7] Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol, 2017, 174: 421-434.
doi: 10.1104/pp.17.00030 pmid: 28314795
[8] Munns R, Gilliham M. Salinity tolerance of crops—what is the cost. New Phytol, 2015, 208: 668-673.
doi: 10.1111/nph.13519 pmid: 26108441
[9] Volkov V, Beilby M J. Salinity tolerance in plants: mechanisms and regulation of ion transport. Front Plant Sci, 2017, 8: 1795-1798.
doi: 10.3389/fpls.2017.01795 pmid: 29114255
[10] Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029
[11] Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Li J. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci, 2016, 7: 573-587.
doi: 10.3389/fpls.2016.00573 pmid: 27200046
[12] 张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析. 作物学报, 2023, 49: 1432-1444.
doi: 10.3724/SP.J.1006.2023.24143
Zhang X H, Peng Q, Yan Z. Transcriptome sequencing analysis of different sweet potato varieties under salt stress. Acta Agron Sin, 2023, 49: 1432-1444. (in Chinese with English abstract)
[13] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-685.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910
[14] Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Tyerman S D. Energy costs of salt tolerance in crop plants. New Phytol, 2019, 225: 1072-1090.
doi: 10.1111/nph.v225.3
[15] Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol, 2019, 225: 1091-1096.
doi: 10.1111/nph.v225.3
[16] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
doi: 10.1007/s11099-013-0021-6
[17] Zhou Y, Gong Z Y, Yang Z F, Yuan Y, Zhu J Y, Wang M, Yuan F H, Wu S J, Wang Z Q, Yi C D, Xu T H, Ryom M C, Gu M H, Liang G H. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One, 2013, 8: e75299.
doi: 10.1371/journal.pone.0075299
[18] Wei Y, Xu X, Tao H B, Wang P. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol, 2006, 149: 263-269.
doi: 10.1111/aab.2006.149.issue-3
[19] 王文静, 麻冬梅, 蔡进军, 黄婷, 马巧利, 赵丽娟, 张莹. 基于FvCB模型的盐胁迫下紫花苜蓿幼苗光合特性的研究. 中国生态农业学报, 2021, 29: 540-548.
Wang W J, Ma D M, Cai J J, Huang T, Ma Q L, Zhao L J, Zhang Y. Photosynthetic characteristics of alfalfa seedlings under salt stress based on FvCB model. Chin J Eco-Agric, 2021, 29: 540-548. (in Chinese with English abstract)
[20] Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 2008, 56: 179-190.
doi: 10.1007/s10725-008-9299-y
[21] Yang C W, Chong J N, LI C Y, Kim C M, Shi D C, Wang D L. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3
[22] Liska A J, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol, 2004, 136: 2806-2817.
doi: 10.1104/pp.104.039438 pmid: 15333751
[23] Jacoby R P, Taylor N L, Millar A H. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci, 2011, 16: 614-623.
doi: 10.1016/j.tplants.2011.08.002 pmid: 21903446
[24] Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2004, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024
[27] Zhang Y, Xia G H, Ma K, Li G Y, Dai Y C, Yan C X. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea. Chin J Appl Ecol, 2014, 25: 1940-1948. (in Chinese with English abstract)
pmid: 25345043
[28] Bai J H, Yan W K, Wang Y Q, Liu J H, Wight C, Ma B L. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci, 2018, 9: 1302-1318.
doi: 10.3389/fpls.2018.01302 pmid: 30333838
[29] 才华, 许慧慧, 孙娜, 宋婷婷, 任永晶, 杨圣秋. 从光合作用和有机酸积累角度探索转GsPPCK1GsPPCK3基因苜蓿耐碱性增强的生理机制. 草业学报, 2018, 27(8): 107-117.
doi: 10.11686/cyxb2017391
Cai H, Xu H H, Sun N, Song T T, Ren Y J, Yang S Q. Physiological aspects of photosynthesis and organic acid accumulation in alkali-resistant transgenic alfalfa containing the GsPPCK1 and GsPPCK3 gens. Acta Pratac Sin, 2018, 27(8): 107-117. (in Chinese with English abstract)
[30] Nishiyama Y, Allakhverdiev S I, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant, 2011, 142: 35-46.
doi: 10.1111/j.1399-3054.2011.01457.x pmid: 21320129
[31] Zhang H H, Shi G L, Shao J Y, Li X, Li M B, Meng L, Xu N, Sun G Y. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotox Environl Safe, 2019, 184: 109624-109635.
[32] 宋奇娉, 封鹏雯, 刘洋, 杨兴洪. PS II组装与修复循环机制研究进展. 植物生理学报, 2019, 55: 133-140.
Song Q P, Feng P W, Liu Y, Yang X H. The research progress of the mechanism on PS II assemble and repair circulation. Plant Physiol J, 2019, 55: 133-140. (in Chinese with English abstract)
[33] Li W, Zhang C Y, Lu Q T, Wen X G, Lu C M. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol, 2011, 168: 1743-1752.
[34] Berkowitz O, Clercq I D, Breusegem F V, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ, 2016, 39: 1127-1139.
doi: 10.1111/pce.v39.5
[35] Meyer E H, Welchen E, Carrie C. Assembly of the complexes of the oxidative phosphorylation system in land plant mitochondria. Annu Rev Plant Biol, 2019, 70: 23-50.
doi: 10.1146/annurev-arplant-050718-100412 pmid: 30822116
[36] Zhang A Q, Zang W, Zhang X Y, Ma Y Y, Yan X F, Pang Q Y. Global proteomic mapping of alkali stress regulated molecular networks in Helianthus tuberosus L. Plant Soil, 2016, 409: 175-202.
doi: 10.1007/s11104-016-2945-7
[37] Li J K, Cui G W, Hu G F, Wang M J, Zhang P, Qin L G, Shang C, Zhang H L, Zhu X C, Qu M N. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS One, 2017, 12: e0183615.
doi: 10.1371/journal.pone.0183615
[38] Li M N, Zhang K, Long R C, Sun Y, Kang J M, Zhang T J, Cao S H. iTRAQ-based comparative proteomic analysis reveals tissue- specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot, 2017, 143: 99-114.
doi: 10.1016/j.envexpbot.2017.08.010
[39] Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plant. J Biosciences, 2005, 30: 761-776.
doi: 10.1007/BF02703574 pmid: 16388148
[40] Sellami S, Hir R L, Thorpe M R, Vilaine F, Wolff N, Brini F, Dinant S. Salinity effects on sugar homeostasis and vascular anatomy in the stem of the Arabidopsis thaliana inflorescence. Int J Mol Sci, 2019, 20: 3167-3185.
doi: 10.3390/ijms20133167
[41] Xiang G Q, Ma W Y, Gao S W, Jin Z X, Yue Q Y, Yao Y X. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots. BMC Plant Biol, 2019, 19: 383.
doi: 10.1186/s12870-019-1990-9
[42] Zhang Y J, Beard K F M, Swart C, Bergamann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe R G, Sweetlove L J, Fernie A R, Obata T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun, 2017, 8: 15212.
doi: 10.1038/ncomms15212 pmid: 28508886
[43] Ge Y D, Cao Z Y, Wang Z D, Chen L L, Zhu Y M, Zhu G P. Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem, 2010, 74: 2194-2201.
doi: 10.1271/bbb.100357
[44] Sweetman C, Deluc L G, Cramer G R, Ford C M, Soole K. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 2009, 70: 1329-1344.
doi: 10.1016/j.phytochem.2009.08.006 pmid: 19762054
[45] Zorrilla-Fontanesi Y, Rouard M, Cenci A, Kissel E, Do H, Dubois E, Nidelet S, Roux N, Swennen R, Carpentier S C. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep, 2016, 6: 25683.
doi: 10.1038/srep25683
[46] Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci, 2022, 13: 871387.
doi: 10.3389/fpls.2022.871387
[47] Yu H T, Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms. Front Plant Sci, 2016, 7: 707-715.
doi: 10.3389/fpls.2016.00707 pmid: 27252723
[48] Patterson J H, Newbigin E D, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot, 2009, 60: 4089-4103.
doi: 10.1093/jxb/erp243
[49] Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development. Plant Sci, 2018, 275: 11-18.
doi: S0168-9452(18)30461-8 pmid: 30107877
[50] TzinV, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant, 2010, 3: 956-972.
doi: 10.1093/mp/ssq048 pmid: 20817774
[51] Schenck C A, Maeda H A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry, 2018, 149: 82-102.
doi: S0031-9422(18)30034-7 pmid: 29477627
[52] 蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响. 西北植物学报, 2020, 40: 1549-1557.
Jiang J, Zhu X Y, Li J. Effect of exogenous tryptophan on the downstream metabolic network of tryptophan and growth in rapa seedlings. Acta Bot Boreali-Occident Sin, 2020, 40: 1549-1557. (in Chinese with English abstract)
[25] Poorter H, Remkes C, Lambers H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol, 1990, 94: 621-627.
doi: 10.1104/pp.94.2.621 pmid: 16667757
[26] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419-431.
doi: 10.1093/aob/mcu217
[27] 张云, 夏国华, 马凯, 李根有, 代英超, 严彩霞. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响. 应用生态学报, 2014, 25: 1940-1948.
pmid: 25345043
[53] Yang Q Q, Zhao D S, Liu Q Q. Connections between amino acid metabolisms in plants: lysine as an example. Front Plant Sci, 2020, 11: 928-935.
doi: 10.3389/fpls.2020.00928 pmid: 32636870
[54] Wang W Y, Xu M Y, Wang G P, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. Plant Reprod, 2018, 31: 203-211.
doi: 10.1007/s00497-018-0322-9 pmid: 29399717
[55] Li H Y, Pan Y, Zhuang Y X, Wu C, Ma C Q, Yu B, Zhu N, Koh J, Chen S X. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteomics, 2015, 127: 18-33.
doi: 10.1016/j.jprot.2015.03.025 pmid: 25845583
[56] Martin G, Marquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 35.
doi: 10.1186/s13059-020-02258-y
[57] Weng X, Zhou X X, Xie S Q, Gu J B, Wang Z Y. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress. Plant Physiol Biochem, 2021, 160: 130-142.
doi: 10.1016/j.plaphy.2021.01.016
[58] Albaqami M, Laluk K, Reddy A S N. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform- dependent manner. Plant Mol Biol, 2019, 100: 379-390.
doi: 10.1007/s11103-019-00864-4
[59] Lu D W, Zhu G R, Zhu D, Bian Y W, Liang X N, Cheng Z W, Deng X, Yan Y M. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics, 2016, 143: 93-105.
doi: 10.1016/j.jprot.2016.04.013
[60] Hardie D G, Ross F A, Hawley S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13: 251-262.
[61] Gonzalez A, Hall M N, Lin S C, Hardie D G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metabolism, 2020, 31: 472-492.
doi: S1550-4131(20)30058-9 pmid: 32130880
[1] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[2] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[3] YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250.
[4] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[5] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[6] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[7] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[8] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[9] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[10] XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384.
[11] DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121.
[12] WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349.
[13] ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444.
[14] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[15] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .