Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 219-236.doi: 10.3724/SP.J.1006.2024.34035
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
GUO Jia-Xin(), YE Yang, GUO Hui-Juan, MIN Wei*()
[1] | 刘祎, 钱玉源, 崔淑芳, 金卫平, 王广恩, 张曦, 张海娜, 李俊兰. 低酚棉种子利用研究进展. 中国棉花, 2018, 45(8): 4-8. |
Liu W, Qian Y Y, Cui S F, Jin W P, Wang G E, Zhang X, Zhang H N, Li J L. Research progress on seed utilization of glandless cotton. China Cotton, 2018, 45(8): 4-8. (in Chinese with English abstract) | |
[2] | Chinnusamy V, Zhu J, Zhu J K. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng, 2006, 27: 141-177. |
[3] |
Feng L, Dai J L, Tian L W, Zhang H J, Li W J, Dong H Z. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of China. Field Crops Res, 2017, 208: 18-26.
doi: 10.1016/j.fcr.2017.03.008 |
[4] |
白岩, 毛树春, 田立文, 李莉, 董合忠. 新疆棉花高产简化栽培技术评述与展. 中国农业科学, 2017, 50: 38-50.
doi: 10.3864/j.issn.0578-1752.2017.01.004 |
Bai Y, Mao S C, Tian L W, Li L, Dong H Z. Advances and prospects of high-yielding and simplified cotton cultivation technology in Xinjiang Cotton-Growing area. Sci Agric Sin, 2017, 50: 38-50. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.01.004 |
|
[5] |
Yang H C, Wang G J Y, Zhang F H. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area. Environ Sci Pollut Res, 2016, 23: 23920-23929.
doi: 10.1007/s11356-016-7583-3 |
[6] |
Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci, 2014, 5: 170.
doi: 10.3389/fpls.2014.00170 pmid: 24904597 |
[7] |
Shaar-Moshe L, Blumwald E, Peleg Z. Unique physiological and transcriptional shifts under combinations of salinity, drought, and heat. Plant Physiol, 2017, 174: 421-434.
doi: 10.1104/pp.17.00030 pmid: 28314795 |
[8] |
Munns R, Gilliham M. Salinity tolerance of crops—what is the cost. New Phytol, 2015, 208: 668-673.
doi: 10.1111/nph.13519 pmid: 26108441 |
[9] |
Volkov V, Beilby M J. Salinity tolerance in plants: mechanisms and regulation of ion transport. Front Plant Sci, 2017, 8: 1795-1798.
doi: 10.3389/fpls.2017.01795 pmid: 29114255 |
[10] |
Zhu J K. Abiotic stress signaling and responses in plants. Cell, 2016, 167: 313-324.
doi: 10.1016/j.cell.2016.08.029 |
[11] |
Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Li J. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci, 2016, 7: 573-587.
doi: 10.3389/fpls.2016.00573 pmid: 27200046 |
[12] |
张小红, 彭琼, 鄢铮. 盐胁迫下不同甘薯品种的转录组测序分析. 作物学报, 2023, 49: 1432-1444.
doi: 10.3724/SP.J.1006.2023.24143 |
Zhang X H, Peng Q, Yan Z. Transcriptome sequencing analysis of different sweet potato varieties under salt stress. Acta Agron Sin, 2023, 49: 1432-1444. (in Chinese with English abstract) | |
[13] |
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651-685.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[14] |
Munns R, Day D A, Fricke W, Watt M, Arsova B, Barkla B J, Tyerman S D. Energy costs of salt tolerance in crop plants. New Phytol, 2019, 225: 1072-1090.
doi: 10.1111/nph.v225.3 |
[15] |
Munns R, Passioura J B, Colmer T D, Byrt C S. Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol, 2019, 225: 1091-1096.
doi: 10.1111/nph.v225.3 |
[16] |
Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
doi: 10.1007/s11099-013-0021-6 |
[17] |
Zhou Y, Gong Z Y, Yang Z F, Yuan Y, Zhu J Y, Wang M, Yuan F H, Wu S J, Wang Z Q, Yi C D, Xu T H, Ryom M C, Gu M H, Liang G H. Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One, 2013, 8: e75299.
doi: 10.1371/journal.pone.0075299 |
[18] |
Wei Y, Xu X, Tao H B, Wang P. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil. Ann Appl Biol, 2006, 149: 263-269.
doi: 10.1111/aab.2006.149.issue-3 |
[19] | 王文静, 麻冬梅, 蔡进军, 黄婷, 马巧利, 赵丽娟, 张莹. 基于FvCB模型的盐胁迫下紫花苜蓿幼苗光合特性的研究. 中国生态农业学报, 2021, 29: 540-548. |
Wang W J, Ma D M, Cai J J, Huang T, Ma Q L, Zhao L J, Zhang Y. Photosynthetic characteristics of alfalfa seedlings under salt stress based on FvCB model. Chin J Eco-Agric, 2021, 29: 540-548. (in Chinese with English abstract) | |
[20] |
Yang C W, Shi D C, Wang D L. Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 2008, 56: 179-190.
doi: 10.1007/s10725-008-9299-y |
[21] |
Yang C W, Chong J N, LI C Y, Kim C M, Shi D C, Wang D L. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
doi: 10.1007/s11104-007-9251-3 |
[22] |
Liska A J, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol, 2004, 136: 2806-2817.
doi: 10.1104/pp.104.039438 pmid: 15333751 |
[23] |
Jacoby R P, Taylor N L, Millar A H. The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci, 2011, 16: 614-623.
doi: 10.1016/j.tplants.2011.08.002 pmid: 21903446 |
[24] |
Ashraf M, Harris P J C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci, 2004, 166: 3-16.
doi: 10.1016/j.plantsci.2003.10.024 |
[27] |
Zhang Y, Xia G H, Ma K, Li G Y, Dai Y C, Yan C X. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea. Chin J Appl Ecol, 2014, 25: 1940-1948. (in Chinese with English abstract)
pmid: 25345043 |
[28] |
Bai J H, Yan W K, Wang Y Q, Liu J H, Wight C, Ma B L. Screening oat genotypes for tolerance to salinity and alkalinity. Front Plant Sci, 2018, 9: 1302-1318.
doi: 10.3389/fpls.2018.01302 pmid: 30333838 |
[29] |
才华, 许慧慧, 孙娜, 宋婷婷, 任永晶, 杨圣秋. 从光合作用和有机酸积累角度探索转GsPPCK1和GsPPCK3基因苜蓿耐碱性增强的生理机制. 草业学报, 2018, 27(8): 107-117.
doi: 10.11686/cyxb2017391 |
Cai H, Xu H H, Sun N, Song T T, Ren Y J, Yang S Q. Physiological aspects of photosynthesis and organic acid accumulation in alkali-resistant transgenic alfalfa containing the GsPPCK1 and GsPPCK3 gens. Acta Pratac Sin, 2018, 27(8): 107-117. (in Chinese with English abstract) | |
[30] |
Nishiyama Y, Allakhverdiev S I, Murata N. Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant, 2011, 142: 35-46.
doi: 10.1111/j.1399-3054.2011.01457.x pmid: 21320129 |
[31] | Zhang H H, Shi G L, Shao J Y, Li X, Li M B, Meng L, Xu N, Sun G Y. Photochemistry and proteomics of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress. Ecotox Environl Safe, 2019, 184: 109624-109635. |
[32] | 宋奇娉, 封鹏雯, 刘洋, 杨兴洪. PS II组装与修复循环机制研究进展. 植物生理学报, 2019, 55: 133-140. |
Song Q P, Feng P W, Liu Y, Yang X H. The research progress of the mechanism on PS II assemble and repair circulation. Plant Physiol J, 2019, 55: 133-140. (in Chinese with English abstract) | |
[33] | Li W, Zhang C Y, Lu Q T, Wen X G, Lu C M. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol, 2011, 168: 1743-1752. |
[34] |
Berkowitz O, Clercq I D, Breusegem F V, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant Cell Environ, 2016, 39: 1127-1139.
doi: 10.1111/pce.v39.5 |
[35] |
Meyer E H, Welchen E, Carrie C. Assembly of the complexes of the oxidative phosphorylation system in land plant mitochondria. Annu Rev Plant Biol, 2019, 70: 23-50.
doi: 10.1146/annurev-arplant-050718-100412 pmid: 30822116 |
[36] |
Zhang A Q, Zang W, Zhang X Y, Ma Y Y, Yan X F, Pang Q Y. Global proteomic mapping of alkali stress regulated molecular networks in Helianthus tuberosus L. Plant Soil, 2016, 409: 175-202.
doi: 10.1007/s11104-016-2945-7 |
[37] |
Li J K, Cui G W, Hu G F, Wang M J, Zhang P, Qin L G, Shang C, Zhang H L, Zhu X C, Qu M N. Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves. PLoS One, 2017, 12: e0183615.
doi: 10.1371/journal.pone.0183615 |
[38] |
Li M N, Zhang K, Long R C, Sun Y, Kang J M, Zhang T J, Cao S H. iTRAQ-based comparative proteomic analysis reveals tissue- specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot, 2017, 143: 99-114.
doi: 10.1016/j.envexpbot.2017.08.010 |
[39] |
Gupta A K, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plant. J Biosciences, 2005, 30: 761-776.
doi: 10.1007/BF02703574 pmid: 16388148 |
[40] |
Sellami S, Hir R L, Thorpe M R, Vilaine F, Wolff N, Brini F, Dinant S. Salinity effects on sugar homeostasis and vascular anatomy in the stem of the Arabidopsis thaliana inflorescence. Int J Mol Sci, 2019, 20: 3167-3185.
doi: 10.3390/ijms20133167 |
[41] |
Xiang G Q, Ma W Y, Gao S W, Jin Z X, Yue Q Y, Yao Y X. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots. BMC Plant Biol, 2019, 19: 383.
doi: 10.1186/s12870-019-1990-9 |
[42] |
Zhang Y J, Beard K F M, Swart C, Bergamann S, Krahnert I, Nikoloski Z, Graf A, Ratcliffe R G, Sweetlove L J, Fernie A R, Obata T. Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle. Nat Commun, 2017, 8: 15212.
doi: 10.1038/ncomms15212 pmid: 28508886 |
[43] |
Ge Y D, Cao Z Y, Wang Z D, Chen L L, Zhu Y M, Zhu G P. Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem, 2010, 74: 2194-2201.
doi: 10.1271/bbb.100357 |
[44] |
Sweetman C, Deluc L G, Cramer G R, Ford C M, Soole K. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry, 2009, 70: 1329-1344.
doi: 10.1016/j.phytochem.2009.08.006 pmid: 19762054 |
[45] |
Zorrilla-Fontanesi Y, Rouard M, Cenci A, Kissel E, Do H, Dubois E, Nidelet S, Roux N, Swennen R, Carpentier S C. Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep, 2016, 6: 25683.
doi: 10.1038/srep25683 |
[46] |
Guo J X, Lu X Y, Tao Y F, Guo H J, Min W. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress. Front Plant Sci, 2022, 13: 871387.
doi: 10.3389/fpls.2022.871387 |
[47] |
Yu H T, Wang T. Proteomic dissection of endosperm starch granule associated proteins reveals a network coordinating starch biosynthesis and amino acid metabolism and glycolysis in rice endosperms. Front Plant Sci, 2016, 7: 707-715.
doi: 10.3389/fpls.2016.00707 pmid: 27252723 |
[48] |
Patterson J H, Newbigin E D, Tester M, Bacic A, Roessner U. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. J Exp Bot, 2009, 60: 4089-4103.
doi: 10.1093/jxb/erp243 |
[49] |
Amir R, Galili G, Cohen H. The metabolic roles of free amino acids during seed development. Plant Sci, 2018, 275: 11-18.
doi: S0168-9452(18)30461-8 pmid: 30107877 |
[50] |
TzinV, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant, 2010, 3: 956-972.
doi: 10.1093/mp/ssq048 pmid: 20817774 |
[51] |
Schenck C A, Maeda H A. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry, 2018, 149: 82-102.
doi: S0031-9422(18)30034-7 pmid: 29477627 |
[52] | 蒋佳, 朱星宇, 李晶. 外源色氨酸对油菜幼苗色氨酸下游代谢网络及生长发育的影响. 西北植物学报, 2020, 40: 1549-1557. |
Jiang J, Zhu X Y, Li J. Effect of exogenous tryptophan on the downstream metabolic network of tryptophan and growth in rapa seedlings. Acta Bot Boreali-Occident Sin, 2020, 40: 1549-1557. (in Chinese with English abstract) | |
[25] |
Poorter H, Remkes C, Lambers H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol, 1990, 94: 621-627.
doi: 10.1104/pp.94.2.621 pmid: 16667757 |
[26] |
Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot, 2015, 115: 419-431.
doi: 10.1093/aob/mcu217 |
[27] |
张云, 夏国华, 马凯, 李根有, 代英超, 严彩霞. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响. 应用生态学报, 2014, 25: 1940-1948.
pmid: 25345043 |
[53] |
Yang Q Q, Zhao D S, Liu Q Q. Connections between amino acid metabolisms in plants: lysine as an example. Front Plant Sci, 2020, 11: 928-935.
doi: 10.3389/fpls.2020.00928 pmid: 32636870 |
[54] |
Wang W Y, Xu M Y, Wang G P, Galili G. New insights into the metabolism of aspartate-family amino acids in plant seeds. Plant Reprod, 2018, 31: 203-211.
doi: 10.1007/s00497-018-0322-9 pmid: 29399717 |
[55] |
Li H Y, Pan Y, Zhuang Y X, Wu C, Ma C Q, Yu B, Zhu N, Koh J, Chen S X. Salt stress response of membrane proteome of sugar beet monosomic addition line M14. J Proteomics, 2015, 127: 18-33.
doi: 10.1016/j.jprot.2015.03.025 pmid: 25845583 |
[56] |
Martin G, Marquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 35.
doi: 10.1186/s13059-020-02258-y |
[57] |
Weng X, Zhou X X, Xie S Q, Gu J B, Wang Z Y. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress. Plant Physiol Biochem, 2021, 160: 130-142.
doi: 10.1016/j.plaphy.2021.01.016 |
[58] |
Albaqami M, Laluk K, Reddy A S N. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform- dependent manner. Plant Mol Biol, 2019, 100: 379-390.
doi: 10.1007/s11103-019-00864-4 |
[59] |
Lu D W, Zhu G R, Zhu D, Bian Y W, Liang X N, Cheng Z W, Deng X, Yan Y M. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics, 2016, 143: 93-105.
doi: 10.1016/j.jprot.2016.04.013 |
[60] | Hardie D G, Ross F A, Hawley S A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol, 2012, 13: 251-262. |
[61] |
Gonzalez A, Hall M N, Lin S C, Hardie D G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metabolism, 2020, 31: 472-492.
doi: S1550-4131(20)30058-9 pmid: 32130880 |
[1] | KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293. |
[2] | LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528. |
[3] | YANG Chuang, WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi. Relative expression profiles of genes response to salt stress and constructions of gene co-expression networks in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(1): 237-250. |
[4] | XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137. |
[5] | SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148. |
[6] | TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208. |
[7] | SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198. |
[8] | LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218. |
[9] | LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516. |
[10] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[11] | DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121. |
[12] | WEI Hai-Min, TAO Wei-Ke, ZHOU Yan, YAN Fei-Yu, LI Wei-Wei, DING Yan-Feng, LIU Zheng-Hui, LI Gang-Hua. Panicle silicon fertilizer optimizes the absorption and distribution of mineral elements in rice (Oryza sativa L.) in coastal saline-alkali soil to improve salt tolerance [J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349. |
[13] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[14] | XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271. |
[15] | WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089. |
|