Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 209-218.doi: 10.3724/SP.J.1006.2024.34039

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton

LIU Tao-Fen1(), LUO Dan1(), ZHANG Qi-Peng1, SUN Yuan-Yuan1, LI Pei-Song1, TIAN Jing-Shan1,*(), ZHANG Wang-Feng1, XIANG Dao2, ZHANG Ya-Li1, YANG Ming-Feng2, GOU Ling1   

  1. 1College of Agronomy, Shihezi University / Key Laboratory of Oasis Eco-Agriculture, the Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang, China
    2Wulanwusu Agrometeorological Experiment Station of Shihezi Meteorological Bureau, Shihezi 832003, Xinjiang, China
  • Received:2023-02-27 Accepted:2023-06-29 Online:2024-01-12 Published:2023-07-20
  • Contact: *E-mail: tianjs@shzu.edu.cn
  • About author:**Contributed equally to this study
  • Supported by:
    National Key Research and Development Program of China(2020YFD1001001);Open Project of State Key Laboratory of Cotton Biology(CB2022A26);Financial Science and Technology Planning Project of the XPCC(2021CB044)

Abstract:

The use of ethephon can achieve early and concentrated the machine-harvested cotton boll opening. The purpose of this study is to analyze the effect of the boll-period shortening on the boll weight, fiber quality, and relationship, when the ethephon was sprayed at different stages of the boll development with a selection of 18 materials. The results showed that when the period of cotton was 47-69 days, spraying ethephon at the age of boll was 40.5-49.7 days, which could advance boll opening by 3.5-5.7 days. It took 64.1-69.7 days for fiber to fully mature under ethephon, while it took 54.8-60.5 days for cotton seed. When boll was opened 1.5-6.2 days earlier, the probability of boll weight and fiber quality decreasing was up to 58.0%-76.5%. To achieve an early opening of the boll, ethephon can be applied at the boll age of 34.8-44.1 days, when the boll weight (< 0.26 g) and fiber quality damage (length reduction < 0.28 mm and fiber strength < 0.30 cN tex-1) at the top of cotton plant are reduced by 5% and 1%, respectively. In addition, the boll period was shortened in some materials, but the boll weight, fiber length, and strength were increased, with the 9.5%-23.5% probability. Therefore, the reasonable use of ethephon in some cotton varieties can shorten the boll period and improve the boll weight and quality.

Key words: cotton, ripening, boll weight, fiber quality, concentrated boll-opening

Table 1

Materials, boll growth period, date of flower hanging and treatment time of ripening agent test"

年份
Year
品种(材料)
Cotton cultivars (materials)
对照棉铃铃期
(d, CK)
挂花日期(月/日)
Marked date
(month/day)
催熟剂喷施
时间处理
Treatment time
2020 苏K202, 巴1, 巴2, 巴4, 巴6, 巴8, 新陆早33号,
新陆早50号, 新陆早57号, 新陆早61号, 新陆早74号, 新陆早80号, 65-38, 16566, 2A0620, 80511, 80506, 3413
Su K202, Ba 1, Ba 2, Ba 4, Ba 6, Ba 8, Xinluzao 33, Xinluzao 50, Xinluzao 57, Xinluzao 61, Xinluzao 74, Xinluzao 80, 65-38, 16566, 2A0620, 80511, 80506, 3413
47, 50, 48, 51, 47, 51, 52, 50, 47, 50, 51, 52, 60, 60, 64, 57, 60, 69 7/6 Rd/b 0.82
7/11 Rd/b 0.72
7/16 Rd/b 0.62
2021 苏K202, 巴8, 新陆早33号, 新陆早50号,
新陆早80号, 16566, 2A0620, 80506, 3413
Su K202, Ba 8, Xinluzao 33, Xinluzao 50,
Xinluzao 80, 16566, 2A0620, 80506, 3413
47, 51, 52, 57, 60,
60, 64, 60, 69
7/11 Rd/b 0.82
7/16 Rd/b 0.72
7/21 Rd/b 0.62
7/25 Rd/b 0.52

Fig. 1

Effect of ethephon on cotton boll period days The thick solid line in the figure represents the average value. The sample number n of Rd/b (0.82, 0.72, 0.62, 0.52) was 25, 25, 25, 9, respectively. ** indicates significant difference between different treatments at the same time at P < 0.01. The number of days of boll shortening is the difference between the boll period of the ethephon sprayed sample and the control. Each spraying time treatment had a control treatment (CK)."

Fig. 2

Relationship between shortening of boll period days and decrease amounts of fiber weight and seed weight under ethephon ripening The number in the figure represents the number of samples in the quadrant. The total number of samples was 84. The sample number n of Rd/b(0.82, 0.72, 0.62, 0.52) was 25, 25, 25, 9, respectively. The amount of damage is the difference between the single boll fiber weight and the single boll seed weight of the ethephon sprayed sample and the control."

Fig. 3

Relationship between boll weight and boll period days and shortening of boll period days under ethephon ripening The total number of samples was 84. The amount of damage is the difference between the single boll fiber weight and the single boll seed weight of the ethephon sprayed sample and the control."

Fig. 4

Relationship between shortening of boll period days days and fiber quality decrease amount of cotton bolls under ethephon ripening The number in the figure represents the number of samples in the quadrant. The total number of samples was 81. The sample number of Rd/b(0.82, 0.72, 0.62, 0.52) was 25, 25, 25, 9, respectively. The amount of fiber quality damage is the difference between the fiber quality index of the sample sprayed with ethephon and the control."

Fig. 5

Relationship between fiber quality decrease amount and boll period days and shortening of boll growth period under ethephon ripening The total number of samples was 81. The amount of fiber quality damage is the difference between the fiber quality index of the sample sprayed with ethephon and the control."

Table 2

Effect of spraying ethephon on fiber length, strength, and boll weight after shortening the boll period"

品种(材料)
Cotton cultivars (materials)
催熟剂喷施时间
Treatment time
喷施处理
Treatment
棉铃铃期
Boll period days (d)
纤维长度
Fiber length (mm)
断裂比强度
Fiber strength
(cN tex-1)
单铃重
Fiber weight
(g per boll)
苏K202
Su K202
Rd/b 0.82 对照 CK 60.3±0.91 a 29.1±0.28 b 30.7±0.12 b 4.77±0.67 a
乙烯利 Ethephon 57.1±0.87 b 30.1±0.18 a 31.2±0.15 a 4.87±0.72 a
新陆早61号
Xinluzao 61
Rd/b 0.82 对照 CK 57.1±0.87 a 26.2±0.37 b 27.4±0.92 a 4.50±0.10 a
乙烯利 Ethephon 54.6±1.25 a 28.1±0.01 a 28.1±1.15 a 4.60±0.17 a
新陆早74号
Xinluzao 74
Rd/b 0.82 对照 CK 61.8±1.04 a 27.7±0.70 a 29.3±0.58 a 5.07±0.67 a
乙烯利 Ethephon 61.3±0.78 a 28.6±0.57 a 29.8±0.58 a 4.27±0.30 a
新陆早74号
Xinluzao 74
Rd/b 0.72 对照 CK 58.6±0.93 a 27.8±0.15 b 31.7±0.36 a 5.03±0.13 a
乙烯利 Ethephon 55.8±0.18 a 29.4±0.50 a 29.5±0.58 b 4.40±0.20 a
新陆早57号
Xinluzao 57
Rd/b 0.62 对照 CK 57.2±1.09 a 29.2±0.58 a 29.1±0.49 b 5.37±0.18 a
乙烯利 Ethephon 51.4±0.85 b 29.3±0.58 a 31.2±0.33 a 5.10±0.21 a
3413 Rd/b 0.62 对照 CK 49.1±0.42 a 27.2±0.78 a 25.7±0.52 b 3.40±0.26 a
乙烯利 Ethephon 47.2±0.86 a 28.0±0.58 a 28.1±0.64 a 4.13±0.24 a
[1] 聂军军, 代建龙, 杜明伟, 张艳军, 田晓莉, 李召虎, 董合忠. 我国现代植棉理论与技术的新发展: 棉花集中成熟栽培. 中国农业科学, 2021, 54: 4286-4298.
doi: 10.3864/j.issn.0578-1752.2021.20.004
Nie J J, Dai J L, Du M W, Zhang Y J, Tian X L, Li Z H, Dong H Z. New development of modern cotton farming theory and technology in China: concentrated maturation cultivation of cotton. Sci Agric Sin, 2021, 54: 4286-4298 (in Chinese with English abstract).
[2] Tian J S, Zhang X Y, Yang Y L, Yang C X, Xu S Z, Zuo W Q, Zhang W F, Dong H Y, Jiu X L, Yu Y C, Zhao Z. How to reduce cotton fiber damage in the Xinjiang China. Ind Crop Prod, 2017, 109: 803-811.
doi: 10.1016/j.indcrop.2017.09.036
[3] 田晓莉, 段留生, 李召虎, 王保民, 何钟佩. 棉花化学催熟与脱叶的生理基础. 植物生理学通讯, 2004, 40: 758-762.
Tian X L, Duan L S, Li Z H, Wang B M, He Z P. Physiological bases of chemical accelerated boll maturation and defoliation in cotton. Plant Physiol J, 2004, 40: 758-762. (in Chinese with English abstract)
[4] 田景山, 张煦怡, 王文敏, 杨延龙, 随龙龙, 张鹏鹏, 张亚黎, 张旺锋, 勾玲. 棉花脱叶催熟剂对纤维品质的影响及应用时间的确定. 作物学报, 2020, 46: 1388-1397.
doi: 10.3724/SP.J.1006.2020.94196
Tian J S, Zhang X Y, Wang W M, Yang Y L, Sui L L, Zhang P P, Zhang Y L, Zhang W F, Gou L. A method of defoliant application based on fiber damage and boll growth period of machine- harvested cotton. Acta Agron Sin, 2020, 46: 1388-1397. (in Chinese with English abstract)
[5] Cathey G W, Luckett K E, Rayburn S T Jr. Accelerated cotton boll dehiscence with growth regulator and desiccant chemicals. Field Crops Res, 1982, 5: 113-120.
doi: 10.1016/0378-4290(82)90011-9
[6] Meng L, Zhang L Z, Qi H K, Du M W, Zuo Y L, Zhang M C, Tian X L, Li Z H. Optimizing the application of a novel harvest aid to improve the quality of mechanically harvested cotton in the North China Plain. J Integr Agric, 2021, 20: 2892-2899.
doi: 10.1016/S2095-3119(20)63280-4
[7] 田景山, 张煦怡, 张丽娜, 徐守振, 祁炳琴, 随龙龙, 张鹏鹏, 杨延龙, 张旺锋, 勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件. 作物学报, 2019, 45: 624-631.
Tian J S, Zhang X Y, Zhang L N, Xu S Z, Qi B Q, Sui L L, Zhang P P, Yang Y L, Zhang W F, Gou L. Temperatures of promoting rapid leaf abscission of cotton in Xinjiang region. Acta Agron Sin, 2019, 45: 624-631. (in Chinese with English abstract)
[8] 李丕明, 韩碧文, 奚惠达, 何钟佩, 徐楚年. 棉花应用乙烯利催熟技术及其原理. 中国农业科学, 1981, 14(3): 47-53.
Li P M, Han B W, Xi H D, He Z P, Xu C N. Enhancement of cotton maturity by ethrel spray. Sci Agric Sin, 1981, 14(3): 47-53. (in Chinese with English abstract)
[9] 沈岳清, 方炳初, 盛敏智. 乙烯利催熟棉铃生理原因的探讨. 植物学报, 1980, 22: 236-240.
Shen Y Q, Fang B C, Sheng M Z. A study of the physiological causes of ethephon ripening cotton bolls. Acta Bot Sin, 1980, 22: 236-240. (in Chinese with English abstract)
[10] 上海植物生理研究所. 乙烯利催熟棉花的生理基础. 植物杂志, 1977, (3): 14-16.
Shanghai Plant Physiology Institute. Physiological basis of ethephon ripening cotton. Plant J, 1977, (3): 14-16. (in Chinese)
[11] 盛敏智, 方炳初, 沈岳清, 曹惠芳. 用乙烯利催熟棉铃效果分析. 上海农业科技, 1980, (6): 19-20.
Sheng M Z, Fang B C, Shen Y Q, Cao H F. Effect analysis of ripening cotton boll with ethephon. Shanghai Agric Sci Technol, 1980, (6): 19-20. (in Chinese)
[12] 韩碧文, 徐楚年, 何钟佩, 奚惠达, 李丕明, 白玉良. 乙烯利催熟棉铃机理的探讨: 1. 乙烯利催熟对棉铃内部过氧化物酶的影响. 北京农业大学学报, 1981, 7(2): 47-53.
Han B W, Xu C N, He Z P, Xi H D, Li P M, Bai Y L. Studies on the mechanism of the ripening of cotton bolls: 1. The effect of the peroxidase activity of ethrel. Acta Agric Univ Pek, 1981, 7(2): 47-53. (in Chinese with English abstract)
[13] 沈岳清, 方炳初, 盛敏智. 乙烯利对棉叶光合能力和物质运输等方面的影响. 植物学报, 1980, 22: 136-140.
Shen Y Q, Fang B C, Sheng M Z. The effect of photosynthesis and translocation in cotton leaf. Acta Bot Sin, 1980, 22: 136-140. (in Chinese with English abstract)
[14] Xu J, Liu S D, Cai L C, Wang L Y, Dong Y F, Qi Z Y, Yu J Q, Zhou Y H. SPINDLY interacts with EIN2 to facilitate ethylene signaling-mediated fruit ripening in tomato. Plant Biol J, 2023, 21: 219-231.
[15] Li Y X, Hu W, Setter T L, He J Q, Zou J, Zhu H H, Zheng G Y, Zhao W Q, Wang Y H, Chen B L, Meng Y L, Wang S S, Zhou Z G. Soil drought decreases oil synthesis and increases protein synthesis in cottonseed kernel during the flowering and boll formation of cotton. Environ Exp Bot, 2022, 201: 104964.
doi: 10.1016/j.envexpbot.2022.104964
[16] Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell, 2003, 15: 952-964.
doi: 10.1105/tpc.010108
[17] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell, 2013, 25: 4421-4438.
doi: 10.1105/tpc.113.116970
[18] Huang J F, Guo Y J, Sun Q W, Zeng W, Li J, Li X B, Xu W L. Genome-wide identification of R2R3-MYB transcription factors regulating secondary cell wall thickening in cotton fiber development. Plant Cell Physiol, 2018, 60: 687-701.
doi: 10.1093/pcp/pcy238
[19] Jin D S, Wang X R, Xu Y C, Gui H P, Zhang H H, Dong Q, Sikder R K, Yang G Z, Song M Z. Chemical defoliant promotes leaf abscission by altering ROS metabolism and photosynthetic efficiency in Gossypium hirsutum. Int J Mol Sci, 2020, 21: 2738.
[20] Du M W, Li Y, Tian X L, Duan L S, Zhang M C, Tan W M, Xu D Y, Li Z H. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One, 2014, 9: e97652.
doi: 10.1371/journal.pone.0097652
[21] Bange M P, Long R L. Optimizing timing of chemical harvest aid application in cotton by predicting its influence on fiber quality. Agron J, 2011, 103: 390-395.
doi: 10.2134/agronj2010.0293
[22] 张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28: 164-171.
doi: 10.17521/cjpe.2004.0024
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S. Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Chin J Plant Ecol, 2004, 28: 164-171 (in Chinese with English abstract).
doi: 10.17521/cjpe.2004.0024
[23] 曹新川, 胡守林, 韩秀锋, 何良荣, 郭伟锋. 海岛棉棉铃阶段性发育与产量品质的关系. 作物学报, 2020, 46: 300-306.
doi: 10.3724/SP.J.1006.2020.94051
Cao X C, Hu S L, Han X F, He L R, Guo W F. Relationship of stage development of cotton bolls with yield and quality in island cotton. Acta Agron Sin, 2020, 46: 300-306. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94051
[24] Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. J Exp Bot, 2019, 70: 1525-1538.
doi: 10.1093/jxb/erz036 pmid: 30715415
[25] Yue P T, Wang Y N, Bu H D, Li X Y, Yuan H, Wang A D. Ethylene promotes IAA reduction through PuERFs-activated PuGH3.1 during fruit ripening in pear (Pyrus ussuriensis). Postharvest Biol Technol, 2019, 157: 110955.
doi: 10.1016/j.postharvbio.2019.110955
[26] Zhang G C, Dai L X, Ding H, Ci D W, Ning T Y, Yang J S, Zhao X H, Yu H Q, Zhang Z M. Response and adaptation to the accumulation and distribution of photosynthetic product in peanut under salt stress. J Integr Agric, 2020, 19: 690-699.
doi: 10.1016/S2095-3119(19)62608-0
[27] Long R L, Bange M P. Consequences of immature fiber on the processing performance of upland cotton. Field Crops Res, 2011, 121: 401-407.
doi: 10.1016/j.fcr.2011.01.008
[28] Hu W, Gao M, Xu B J, Wang S S, Wang Y H, Zhou Z G. Co-occurring elevated temperature and drought stresses during cotton fiber thickening stage inhibit fiber biomass accumulation and cellulose synthesis. Ind Crop Prod, 2022, 187: 115348.
doi: 10.1016/j.indcrop.2022.115348
[29] Yin C C, Zhao H, Ma B, Chen S Y, Zhang J S. Diverse roles of ethylene in regulating agronomic traits in rice. Front Plant Sci, 2017, 8: 1676.
doi: 10.3389/fpls.2017.01676
[30] Jie H D, Ma Y S, Xie D Y, Jie Y C. Transcriptional and metabolic characterization of feeding ramie growth enhanced by a combined application of gibberellin and ethrel. Int J Mol Sci, 2022, 23: 12025.
doi: 10.3390/ijms231912025
[31] Ahmed M, Iqbal A, Latif A, Din S U, Sarwar M B, Wang X D, Rao A Q, Husnain T, Shahid A A. Overexpression of a sucrose synthase gene indirectly improves cotton fiber quality through sucrose cleavage. Front Plant Sci, 2020, 11: 476251.
doi: 10.3389/fpls.2020.476251
[32] Lee B R, Zaman R, La V H, Bae D W, Kim T H. Ethephon- induced ethylene enhances starch degradation and sucrose transport with an interactive abscisic acid-mediated manner in mature leaves of oilseed rape (Brassica napus L.). Plants, 2021, 10: 1670.
doi: 10.3390/plants10081670
[33] Gao H Y, Li N N, Li J H, Khan A, Ahmad I, Wang Y Y, Wang F Y, Luo H H. Improving boll capsule wall, subtending leaves anatomy and photosynthetic capacity can increase seed cotton yield under limited drip irrigation systems. Ind Crop Prod, 2021, 161: 113214.
doi: 10.1016/j.indcrop.2020.113214
[34] Tang F Y, Wang T, Zhu J M. Carbohydrate profiles during cotton (Gossypium hirsutum L.) boll development and their relationships to boll characters. Field Crops Res, 2014, 164: 98-106.
doi: 10.1016/j.fcr.2014.06.002
[35] Zhang Q P, Luo D, Sun Y Y, Li P S, Xiang D, Zhang Y L, Yang M F, Gou L, Tian J S, Zhang W F. Cotton harvest aids promote the translocation of bur-stored photoassimilates to enhance single boll weight. Ind Crop Prod, 2023, 195: 116375.
doi: 10.1016/j.indcrop.2023.116375
[36] Guo J, Qu L L, Hu Y F, Lu W P, Lu D L. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize. BMC Plant Biol, 2021, 21: 434.
doi: 10.1186/s12870-021-03214-z pmid: 34556041
[37] Li H J, Wang J W, Huang X L, Zhou Z G, Wang S S, Hu W. Novel intra-boll yield components and Q-score can further evaluate the effect of phosphorus fertilizer on cotton yield and fiber quality. Field Crops Res, 2022, 275: 108325.
doi: 10.1016/j.fcr.2021.108325
[38] 董合忠, 毛树春, 张旺锋, 陈德华. 棉花优化成铃栽培理论及其新发展. 中国农业科学, 2014, 47: 441-451.
doi: 10.3864/j.issn.0578-1752.2014.03.004
Dong H Z, Mao S C, Zhang W F, Chen D H. On boll-setting optimization theory for cotton cultivation and its new development. Sci Agric Sin, 2014, 47: 441-451 (in Chinese with English abstract).
[39] Iqbal N, Khan N A, Ferrante A, Trivellini A, Francini A, Khan M I R. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci, 2017, 8: 475.
doi: 10.3389/fpls.2017.00475 pmid: 28421102
[40] Wang L K, Zhang Z Y, Zhang F, Shao Z Y, Zhao B, Huang A, Tran J, Hernandez F V, Qiao H. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. Plant Cell, 2021, 33: 322-337.
doi: 10.1093/plcell/koaa029
[1] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[2] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[3] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[4] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[5] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[6] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[7] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[8] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[9] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[10] MENG Lu, DU Ming-Wei, LI Fang, QI Hai-Kun, LU Zheng-Ying, XU Dong-Yong, LI Cun-Dong, ZHANG Ming-Cai, TIAN Xiao-Li, LI Zhao-Hu. Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China [J]. Acta Agronomica Sinica, 2023, 49(4): 1028-1038.
[11] LEI Jian-Feng, LI Yue, DAI Pei-Hong, ZHAO Yi, YOU Yang-Zi, JIA Jian-Guo, ZHAO Shuai, QU Yan-Ying, LIU Xiao-Dong. Study on VIGE system mediated by different plant viruses in cotton [J]. Acta Agronomica Sinica, 2023, 49(4): 978-987.
[12] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[13] LOU Shan-Wei, GAO Fei, WANG Chong, TIAN Xiao-Li, DU Ming-Wei, DUAN Liu-Sheng. Screening of different dropping formulations about mepiquat chloride and their effects on cotton growth and development [J]. Acta Agronomica Sinica, 2023, 49(2): 552-560.
[14] ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716.
[15] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .