Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 237-250.doi: 10.3724/SP.J.1006.2024.34076
• RESEARCH NOTES • Previous Articles Next Articles
YANG Chuang(), WANG Ling, QUAN Cheng-Tao, YU Liang-Qian, DAI Cheng, GUO Liang, FU Ting-Dong, MA Chao-Zhi*()
[1] | Hazell P, Wood S. Drivers of change in global agriculture. Philosoph Trans Royal Soc B Biol Sci, 2008, 363: 495-515. |
[2] |
Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas R J, Drechsel P, Noble A D. Economics of salt-induced land degradation and restoration. Nat Resour Forum, 2014, 38: 282-295.
doi: 10.1111/narf.2014.38.issue-4 |
[3] |
Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant. Mol Cells, 2016, 39: 447-459.
doi: 10.14348/molcells.2016.0083 pmid: 27239814 |
[4] |
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239-250.
doi: 10.1046/j.0016-8025.2001.00808.x |
[5] |
Tyerman S D, Munns R, Fricke W, Arsova B, Barkla B J, Bose J, Bramley H, Byrt C, Chen Z, Colmer T D, Cuin T, Day D A, Foster K J, Gilliham M, Henderson S W, Horie T, Jenkins C L D, Kaiser B N, Katsuhara M, Plett D, Miklavcic S J, Roy S J, Rubio F, Shabala S, Shelden M, Soole K, Taylor N L, Tester M, Watt M, Wege S, Wegner L H, Wen Z. Energy costs of salinity tolerance in crop plants. New Phytol, 2019, 221: 25-29.
doi: 10.1111/nph.15555 pmid: 30488600 |
[6] | 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望. 土壤学报, 2022, 59: 10-27. |
Yang J S, Yao R J, Wang X P, Xie W P, Zhang X, Zhu W, Zhang L, Sun R J. Research on salt-affected soils in China: history, status quo and prospect. Acta Pedol Sin, 2022, 59: 10-27. (in Chinese with English abstract) | |
[7] |
刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001 |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract)
doi: 10.7505/j.issn.1007-9084.2019.04.001 |
|
[8] | 何微, 李俊, 王晓梅, 林巧, 杨小薇. 全球油菜产业现状与我国油菜产业问题、对策. 中国油脂, 2022, 47(2): 1-7. |
He W, Li J, Wang X M, Lin Q, Yang X W. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China. Chin Oils Fats, 2022, 47(2): 1-7. (in Chinese with English abstract) | |
[9] |
Kumar K, Kumar M, Kim S R, Ryu H, Cho Y G. Insights into genomics of salt stress response in rice. Rice, 2013, 6: 27-39.
doi: 10.1186/1939-8433-6-27 pmid: 24280112 |
[10] |
Zhang H, Jiang C, Lei J, Dong J, Ren J, Shi X, Zhong C, Wang X, Zhao X, Yu H. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance. Genomics, 2022, 114: 110285.
doi: 10.1016/j.ygeno.2022.110285 |
[11] | Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson D M, Swift G B, He Y, Siedow J N, Pei Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514: 367-371. |
[12] |
Hamilton E S, Jensen G S, Maksaev G, Katims A, Sherp A M, Haswell E S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350: 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758 |
[13] |
Jiang Z, Zhou X, Tao M, Yuan F, Liu L, Wu F, Wu X, Xiang Y, Niu Y, Liu F, Li C, Ye R, Byeon B, Xue Y, Zhao H, Wang H N, Crawford B M, Johnson D M, Hu C, Pei C, Zhou W, Swift G B, Zhang H, Vo-Dinh T, Hu Z, Siedow J N, Pei Z M. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572: 341-346.
doi: 10.1038/s41586-019-1449-z |
[14] |
Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/arplant.2002.53.issue-1 |
[15] | Barragán V, Leidi E O, Andrés Z, Rubio L, De Luca A, Fernández J A, Cubero B, Pardo J M.Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell, 2012, 24: 1127-1142. |
[16] |
Kim J, Kim H Y. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett, 2006, 580: 5251-5256.
pmid: 16962584 |
[17] |
Bo C, Chen H, Luo G, Li W, Zhang X, Ma Q, Cheng B, Cai R. Maize WRKY114 gene negatively regulates salt-stress tolerance in transgenic rice. Plant Cell Rep, 2020, 39: 135-148.
doi: 10.1007/s00299-019-02481-3 pmid: 31659429 |
[18] |
Qin H, Wang J, Chen X, Wang F, Peng P, Zhou Y, Miao Y, Zhang Y, Gao Y, Qi Y, Zhou J, Huang R. Rice OsDOF15 contributes to ethylene-inhibited primary root elongation under salt stress. New Phytol, 2019, 223: 798-813.
doi: 10.1111/nph.15824 pmid: 30924949 |
[19] |
Zhang H, Mao L, Xin M, Xing H, Zhang Y, Wu J, Xu D, Wang Y, Shang Y, Wei L, Cui M, Zhuang T, Sun X, Song X. Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biol, 2022, 22: 313.
doi: 10.1186/s12870-022-03705-7 |
[20] |
Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol, 2021, 105: 333-345.
doi: 10.1007/s11103-020-01091-y pmid: 33155154 |
[21] |
Chowdhury H A, Bhattacharyya D K, Kalita J K. (Differential) co-expression analysis of gene expression: a survey of best practices. IEEE/ACM Trans Comput Biol Bioinform, 2020, 17: 1154-1173.
doi: 10.1109/TCBB.2019.2893170 pmid: 30668502 |
[22] |
Zheng J, He C, Qin Y, Lin G, Park W D, Sun M, Li J, Lu X, Zhang C, Yeh C T, Gunasekara C J, Zeng E, Wei H, Schnable P S, Wang G, Liu S. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant J, 2019, 97: 530-543.
doi: 10.1111/tpj.14140 |
[23] |
李旭凯, 李任建, 张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络. 作物学报, 2019, 45: 1349-1364.
doi: 10.3724/SP.J.1006.2019.82061 |
Li X K, Li R J, Zhang B J. Identification of rice stress-related gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45: 1349-1364. (in Chinese with English abstract) | |
[24] |
Ye W, Wang T, Wei W, Lou S, Lan F, Zhu S, Li Q, Ji G, Lin C, Wu X, Ma L. The full-length transcriptome of Spartina alterniflora reveals the complexity of high salt tolerance in monocotyledonous halophyte. Plant Cell Physiol, 2020, 61: 882-896.
doi: 10.1093/pcp/pcaa013 |
[25] |
Zhao N, Cui S, Li X, Liu B, Deng H, Liu Y, Hou M, Yang X, Mu G, Liu L. Transcriptome and co-expression network analyses reveal differential gene expression and pathways in response to severe drought stress in peanut (Arachis hypogaea L.). Front Genet, 2021, 12: 672884.
doi: 10.3389/fgene.2021.672884 |
[26] |
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. Front Plant Sci, 2022, 13: 1009998.
doi: 10.3389/fpls.2022.1009998 |
[27] | Yang Z, Wang S, Wei L, Huang Y, Liu D, Jia Y, Luo C, Lin Y, Liang C, Hu Y, Dai C, Guo L, Zhou Y, Yang Q Y. BnIR: a multi-omics database with various tools for Brassica napus research and breeding. Mol Plant, 2023, 16: 775-789. |
[28] | Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016, 32: 3047-3048. |
[29] |
Kim D, Paggi J M, Park C, Bennett C, Salzberg S L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 2019, 37: 907-915.
doi: 10.1038/s41587-019-0201-4 pmid: 31375807 |
[30] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25: 2078-2079.
doi: 10.1093/bioinformatics/btp352 pmid: 19505943 |
[31] |
Liao Y, Smyth G K, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677 |
[32] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[33] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[34] |
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf, 2008, 9: 559.
doi: 10.1186/1471-2105-9-559 |
[35] |
Yu G, Wang L G, Han Y, He Q Y. ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICS, 2012, 16: 284-287.
doi: 10.1089/omi.2011.0118 pmid: 22455463 |
[36] |
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13: 2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[37] |
Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol, 2009, 69: 91-105.
doi: 10.1007/s11103-008-9408-3 |
[38] |
Ji H, Pardo J M, Batelli G, Van Oosten M J, Bressan R A, Li X. The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant, 2013, 6: 275-286.
doi: 10.1093/mp/sst017 pmid: 23355543 |
[39] |
Ali A, Maggio A, Bressan R A, Yun D J. Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci, 2019, 20: 1059.
doi: 10.3390/ijms20051059 |
[40] |
Luo X, Li C, He X, Zhang X, Zhu L. ABA signaling is negatively regulated by GbWRKY1 through JAZ1 and ABI1 to affect salt and drought tolerance. Plant Cell Rep, 2020, 39: 181-194.
doi: 10.1007/s00299-019-02480-4 pmid: 31713664 |
[41] |
Wolny E, Skalska A, Braszewska A, Mur L A J, Hasterok R. Defining the cell wall, cell cycle and chromatin landmarks in the responses of brachypodium distachyon to salinity. Int J Mol Sci, 2021, 22: 949.
doi: 10.3390/ijms22020949 |
[42] | Cai C, Wang W, Ye S, Zhang Z, Ding W, Xiang M, Wu C, Zhu Q. Overexpression of a novel Arabidopsis gene SUPA leads to various morphological and abiotic stress tolerance alternations in Arabidopsis and Poplar. Front Plant Sci, 2020, 11: 560985. |
[43] | Oh G G K, O'Leary B M, Signorelli S, Millar A H.Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiol, 2022, 188: 1521-1536. |
[44] |
Amsbury S, Hunt L, Elhaddad N, Baillie A, Lundgren M, Verhertbruggen Y, Scheller H V, Knox J P, Fleming A J, Gray J E. Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr Biol, 2016, 26: 2899-2906.
doi: S0960-9822(16)30933-2 pmid: 27720618 |
[45] |
Kang H G, Kim J, Kim B, Jeong H, Choi S H, Kim E K, Lee H Y, Lim P O. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci, 2011, 180: 634-641.
doi: 10.1016/j.plantsci.2011.01.002 |
[46] |
Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis Cys2/His2- type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol, 2004, 136: 2734-2746.
doi: 10.1104/pp.104.046599 pmid: 15333755 |
[47] | Yan Z, Wang J, Wang F, Xie C, Lyu B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z.MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep, 2021, 22: e52457. |
[48] | Tran L S, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K.Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J, 2007, 49: 46-63. |
[49] | 张国方.甘蓝型油菜耐盐性遗传解析及候选基因功能验证. 华中农业大学博士学位论文, 湖北武汉, 2021. |
Zhang G F. Genetic Analysis of Salt Tolerance andFunctional Verification of Candidate Genes in Brassica napus. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2021. (in Chinese with English abstract) | |
[50] |
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg B E, Kudla J, Harter K. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J, 2007, 50: 347-363.
doi: 10.1111/j.1365-313X.2007.03052.x pmid: 17376166 |
[51] |
Zhang H, Zhu J, Gong Z, Zhu J K. Abiotic stress responses in plants. Nat Rev Genet, 2022, 23: 104-119.
doi: 10.1038/s41576-021-00413-0 |
[52] | Luo L, Zhang P, Zhu R, Fu J, Su J, Zheng J, Wang Z, Wang D, Gong Q. Autophagy is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front Plant Sci, 2017, 8: 1459. |
[53] |
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G. How plant hormones mediate salt stress responses. Trends Plant Sci, 2020, 25: 1117-1130.
doi: 10.1016/j.tplants.2020.06.008 pmid: 32675014 |
[54] |
Glawischnig E. Camalexin. Phytochemistry, 2007, 68: 401-406.
doi: 10.1016/j.phytochem.2006.12.005 pmid: 17217970 |
[55] |
Mukherjee R, Mukherjee A, Bandyopadhyay S, Mukherjee S, Sengupta S, Ray S, Majumder A L. Selective manipulation of the inositol metabolic pathway for induction of salt-tolerance in indica rice variety. Sci Rep, 2019, 9: 5358.
doi: 10.1038/s41598-019-41809-7 pmid: 30926863 |
[56] |
Le Gall H, Philippe F, Domon J M, Gillet F, Pelloux J, Rayon C. Cell wall metabolism in response to abiotic stress. Plants (Basel), 2015, 4: 112-166.
doi: 10.3390/plants4010112 |
[57] |
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 2019, 24: 2452.
doi: 10.3390/molecules24132452 |
[58] |
Krishnamurthy P, Vishal B, Ho W J, Lok F C J, Lee F S M, Kumar P P. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 Transcription Factor controls apo plastic barrier formation in roots to confer salt tolerance. Plant Physiol, 2020, 184: 2199-2215.
doi: 10.1104/pp.20.01054 pmid: 32928900 |
[59] |
Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. Mol Plant Pathol, 2014, 15: 677-689.
doi: 10.1111/mpp.12123 pmid: 24521393 |
[60] |
Cao F Y, DeFalco T A, Moeder W, Li B, Gong Y, Liu X M, Taniguchi M, Lumba S, Toh S, Shan L, Ellis B, Desveaux D, Yoshioka K. Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biol, 2018, 18: 211.
doi: 10.1186/s12870-018-1402-6 |
[1] | LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309. |
[2] | XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137. |
[3] | GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236. |
[4] | HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432. |
[5] | XU Yang, ZHANG Dai, KANG Tao, WEN Sai-Qun, ZHANG Guan-Chu, DING Hong, GUO Qing, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of salt stress on ion dynamics and the relative expression level of salt tolerance genes in peanut seedlings [J]. Acta Agronomica Sinica, 2023, 49(9): 2373-2384. |
[6] | DAI Shu-Tao, ZHU Can-Can, MA Xiao-Qian, QIN Na, SONG Ying-Hui, WEI Xin, WANG Chun-Yi, LI Jun-Xia. Genome-wide identification of the HAK/KUP/KT potassium transporter family in foxtail millet and its response to K+ deficiency and high salt stress [J]. Acta Agronomica Sinica, 2023, 49(8): 2105-2121. |
[7] | SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011. |
[8] | ZHANG Xiao-Hong, PENG Qiong, YAN Zheng. Transcriptome sequencing analysis of different sweet potato varieties under salt stress [J]. Acta Agronomica Sinica, 2023, 49(5): 1432-1444. |
[9] | ZHANG Ying-Chuan, WU Xiao-Ming-Yu, TAO Bao-Long, CHEN Li, LU Hai-Qin, ZHAO Lun, WEN Jing, YI Bin, TU Jing-Xing, FU Ting-Dong, SHEN Jin-Xiong. Functional analysis of Bna-miR43-FBXL regulatory module involved in aluminum stress in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(5): 1211-1221. |
[10] | DENG Zhao, JIANG Huan-Qi, CHENG Li-Sha, LIU Rui, HUANG Min, LI Man-Fei, DU He-Wei. Identification of abiotic stress-related gene co-expression networks in maize by WGCNA [J]. Acta Agronomica Sinica, 2023, 49(3): 672-686. |
[11] | ZHANG Wen-Xuan, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome editing of BnaMPK6 gene by CRISPR/Cas9 for loss of salt tolerance in Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(2): 321-331. |
[12] | LI Ji-Jun, CHEN Ya-Hui, WANG Yi-Jin, ZHOU Zhi-Hua, GUO Zi-Yue, ZHANG Jian, TU Jin-Xing, YAO Xuan, GUO Liang. Evaluation of field waterlogging tolerance and selection of waterlogging-resistant germplasm resources of Brassica napus L. [J]. Acta Agronomica Sinica, 2023, 49(12): 3162-3175. |
[13] | ZHAO Dong-Lan, ZHAO Ling-Xiao, LIU Yang, ZHANG An, DAI Xi-Bin, ZHOU Zhi-Lin, CAO Qing-He. Relative expression profile of the related genes with carotenoids metabolism in sweetpotato (Ipomoea batatas) based on RNA-seq data [J]. Acta Agronomica Sinica, 2023, 49(12): 3239-3249. |
[14] | QIAN Fu, ZHANG Zhan-Qin, CHEN Shu-Bin, DING Yong-Fu, SANG Zhi-Qin, LI Wei-Hua. Mining maize flowering traits related candidate genes based on GWAS and WGCNA data [J]. Acta Agronomica Sinica, 2023, 49(12): 3261-3276. |
[15] | ZHU Ji-Jie, WANG Shi-Jie, ZHAO Hong-Xia, JIA Xiao-Yun, LI Miao, WANG Guo-Yin. Transcriptome analysis of different cotton varieties' leaves in response to chemical defoliant agent thidiazuron under field conditions [J]. Acta Agronomica Sinica, 2023, 49(10): 2705-2716. |
|