Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (1): 251-264.doi: 10.3724/SP.J.1006.2024.33018

• RESEARCH NOTES • Previous Articles    

Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping

YANG Li-Da(), REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen*(), YANG Wen-Yu   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs / Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130, Sichuan, China
  • Received:2023-03-23 Accepted:2023-09-13 Online:2024-01-12 Published:2023-09-20
  • Contact: *E-mail: yongtaiwen@sicau.edu.cn
  • Supported by:
    National Key Research and Development Program(2021YFF1000500);National Natural Science Foundation of China(31872856);China Agriculture Research System of MOF and MARA(大豆, CARS-04-PS20)

Abstract:

The objective of this study is to clarify relay intercropping crop growth characteristics and its effects on yield formation under nitrogen application and interspecific distance. In this study, the soybean/maize strip relay intercropping system was used as the main body, to explore the crop growth rate, dry mater accumulation, and distribution, and yield differences under different nitrogen levels (nitrogen application and no nitrogen application) and interspecific distance (the spacing of soybean 30, 45, 60, 75, and 100 cm mono-cropping), to fit the process of crop dry mater accumulation, and comprehensively analyze the crop growth law and yield benefit. The results showed that the maximum growth rate of maize was reached from male stage to milking stage, and the maximum growth rate was 30 cm (MS30) without nitrogen application, which was 34.99% higher than that of monoculture maize (MM100). The growth rate of relay intercropping was significantly lower than that of monoculture soybean (SS100) before the first flowering stage, but higher than that of SS100 after the first flowering stage, with the highest spacing of 60 cm (MS60), and 78.91% higher than that of SS100 from full flowering stage to full pod stage without nitrogen application. The logistic equation could fit well the matter accumulation process of maize and soybean, and the R2 were all above 0.95. Compared with no nitrogen application, nitrogen application delayed the accumulation peak and increased the biomass of maize. The matter accumulation of intercropping soybean was slower than monoculture at the early growth stage, but MS45 and MS60 were gradually equal to or even exceeded monoculture soybean at later growth stage. Nitrogen application increased the dry matter allocation rate to the grain, and maize yield increased by 10.05% and 40.90% in two years, respectively. With the increase of interspecific distance, soybean yield increased first and then decreased, with the highest value in MS60 and the lowest value in MS30. In the two years, soybean yield in MS60 was 23.88% and 31.77% higher than MS30 under no nitrogen application and nitrogen application, respectively. The land equivalent ratio under relay intercropping was all above 1.35, among which MS60 under nitrogen application was the largest (1.89). The suitable interspecific distance (interspecific distance 60 cm) under relay intercropping can realize the cooperative growth of maize and soybean, increase crop growth rate, promote the accumulation and distribution of matter, and improve the system yield and land equivalent ratio.

Key words: soybean/maize strip relay intercropping, interspecific distance, crop growth characteristics, dry matter accumulation and distribution, yield

Fig. 1

Sunshine duration and mean temperature of the test site from 2020 to 2021"

Fig. 2

Planting pattern of soybean/maize relay strip intercropping and monoculture MS30, MS45, MS60, and MS75 represent interspecific distance 30, 45, 60, and 75 cm of intercropping maize and soybean, respectively. MM100 and SS100 represent row spacing 100 cm of monoculture maize and soybean, respectively."

Table 1

Detailed table of nitrogen application levels and nitrogen application modes (kg hm-2)"

种植模式
Planting pattern
施氮处理
Nitrogen application
施氮水平
Nitrogen level
底肥
Base fertilizer
追肥
Top dressing
玉米单作
Monoculture maize
不施氮NN 0 0 0
常量施氮CN 180 72 108
大豆单作
Monoculture soybean
不施氮NN 0 0 0
常量施氮CN 60 60 0
大豆/玉米带状套作
Soybean/maize strip intercropping
不施氮NN 0 0 0
常量施氮CN 240 132 108

Fig. 3

Changes of maize group growth rate under nitrogen application rates and interspecific distances in 2021 Nitrogen application treatments are the same as those given in Table 1, And the interspecific distance treatments the same as those given in Fig. 2."

Fig. 4

Changes of soybean group growth rate under nitrogen application rates and interspecific distances Nitrogen application treatments are the same as those given in Table 1, And the interspecific distance treatments are the same as those given in Fig. 2."

Fig. 5

Changes of maize growth rate under nitrogen application rates and interspecific distance in 2021 Nitrogen application treatments are the same as those given in Table 1, And the interspecific distance treatments are the same as those given in Fig. 2. V6: 6 leaf stage; VT: tasseling stage; R1: spinnery stage; R3: milk-ripe stage; R4: dough stage; R6: maturity stage. Different lowercase letters mean significant difference among treatments at the 0.05 probability level."

Fig. 6

Changes of soybean growth rate under nitrogen application rates and interspecific distances Nitrogen application treatments are the same as those given in Table 1, And the interspecific distance treatments are the same as those given in Fig. 2. V5: branching stage; R1: initial flowering stage; R2: full-bloom stage; R4: full pod stage; R5: primordial stage; R8: full ripe stage. Different lowercase letters mean significant difference among treatments at the 0.05 probability level."

Fig. 7

Changes of maize matter accumulation under nitrogen application rates and interspecific distances in 2021 Nitrogen application treatments are the same as those given in Table 1, And the interspecific distance treatments are the same as those given in Fig. 2."

Fig. 8

Changes of soybean matter accumulation under nitrogen application rates and interspecific distances Nitrogen application treatments are the same as those given in Table 1, And the interspecific distance treatments are the same as those given in Fig. 2."

Table 2

Characteristic parameters of matter accumulation in maize under nitrogen application rates and interspecific distances in 2021"

处理
Treatment
最大干物质
积累速率时间
Tmax (d)
干物质积累速率
最大时生长量
Wmax (g)
最大干物质
积累速率
Vmax (g plant-1 d-1)
平均干物质
积累速率
Vmean (g plant-1 d-1)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
MS30 66.78 a 76.69 a 75.69 ab 144.27 b 4.09 b 5.72 b 1.37 c 2.12 b
MS45 62.36 a 76.71 a 66.80 b 156.01 b 4.30 b 6.44 a 1.41 bc 2.33 a
MS60 69.53 a 76.34 a 91.11 a 161.65 ab 4.61 ab 6.54 a 1.57 ab 2.40 a
MS75 64.80 a 78.31 a 85.57 ab 161.84 ab 4.85 a 6.63 a 1.61 a 2.38 a
MM100 64.49 a 80.81 a 79.55 ab 173.12 a 4.55 ab 6.48 a 1.50 abc 2.41 a
施氮量N application (N) 2.09 ns 71.93** 180.46** 314.67**
种间距离Interspecific distance (I) 0.47 ns 1.86 ns 7.30** 8.08**
种间距离×施氮量N×I 1.03 ns 0.52 ns 1.55 ns 0.60 ns

Table 3

Characteristic parameters of dry matter accumulation in soybean under nitrogen application rates and interspecific distances"

年份
Year
处理
Treatment
最大干物质
积累速率时间
Tmax (d)
干物质积累速率
最大时生长量
Wmax (g)
最大干物质
积累速率
Vmax (g plant-1 d-1)
平均干物质
积累速率
Vmean (g plant-1 d-1)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 91.08 ab 85.28 a 33.19 c 25.43 c 1.26 b 1.05 b 0.43 a 0.36 b
MS45 94.24 a 80.63 a 41.99 ab 34.01 bc 1.25 b 1.32 ab 0.49 a 0.48 a
MS60 85.99 ab 84.90 a 43.57 a 42.59 a 1.52 a 1.46 a 0.57 a 0.55 a
MS75 81.21 ab 83.17 a 35.53 bc 35.17 b 1.52 a 1.18 b 0.52 a 0.46 a
SS100 76.27 b 75.95 a 38.22 ab 35.21 ab 1.40 a 1.34 ab 0.55 a 0.51 a
施氮量N application (N) 1.72 ns 6.31* 1.02 ns 0.04 ns
种间距离Interspecific distance (I) 2.17 ns 10.21** 6.28* 3.24*
种间距离×施氮量N×I 1.37 ns 0.78 ns 1.02 ns 1.24 ns
2021 MS30 107.05 a 102.71 ab 34.21 b 23.98 b 1.01 a 0.69 b 0.37 a 0.26 b
MS45 99.24 b 110.82 a 32.51 b 40.28 a 1.05 a 1.11 a 0.38 a 0.41 a
MS60 108.16 a 100.56 ab 42.05 a 38.37 a 1.19 a 1.17 a 0.44 a 0.43 a
MS75 92.32 b 78.77 b 29.32 b 17.44 c 1.00 a 0.69 b 0.36 a 0.25 b
SS100 73.12 c 76.06 b 27.49 b 26.81 b 1.14 a 0.91 ab 0.42 a 0.37 ab
施氮量N application (N) 0.30 ns 0.11 ns 0.06 ns 0.03 ns
种间距离Interspecific distance (I) 9.58** 8.45** 5.45* 1.63 ns
种间距离×施氮量N×I 0.81 ns 1.98 ns 1.53 ns 1.75 ns

Table 4

Effects of nitrogen application rates and interspecific distance on dry matter allocation rate of maize organs (%)"

年份
Year
处理
Treatment
茎 Stem 叶 Leaf 籽粒 Grain 穗轴 Spike-stalk
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 19.99 b 20.51 b 9.95 a 10.97 a 62.75 ab 60.67 a 7.31 a 7.85 a
MS45 21.04 a 20.52 b 9.93 a 10.45 b 61.34 c 61.62 a 7.69 a 7.41 a
MS60 20.02 b 20.40 b 9.75 a 10.32 b 62.84 ab 61.88 a 7.39 a 7.41 a
MS75 20.61 ab 20.39 b 9.20 b 10.90 a 63.13 a 61.11 a 7.06 a 7.6 a
SS100 21.00 a 21.68 a 9.92 a 10.94 a 61.65 bc 59.25 b 7.42 a 8.13 a
施氮量N application (N) 0.77 ns 122.19** 25.69** 2.47 ns
种间距离Interspecific distance (I) 4.71* 4.45* 5.43* 0.62 ns
施氮量×种间距离N×I 1.41 ns 5.83* 2.99 ns 0.93 ns
2021 MS30 28.97 b 25.55 a 15.13 a 13.11 a 46.34 cd 52.46 b 9.57 ab 8.88 a
MS45 30.91 a 25.34 a 14.03 b 12.32 ab 45.08 d 53.28 b 9.98 ab 9.06 a
MS60 26.86 c 24.04 b 12.76 c 12.23 ab 50.67 a 55.06 a 9.71 ab 8.66 a
MS75 29.14 b 25.09 a 13.56 bc 12.78 a 47.82 b 53.57 b 9.47 b 8.56 a
SS100 28.54 b 24.14 b 13.74 bc 11.66 b 47.50 bc 55.30 a 10.22 a 8.91 a
施氮量Nitrogen application (N) 446.16** 29.50** 554.30** 39.63**
种间距离Interspecific distance (I) 22.15** 6.13* 24.47** 1.80 ns
施氮量×种间距离N×I 5.94* 2.04 ns 6.49* 0.44 ns

Table 5

Effects of nitrogen application rates and interspecific distance on dry matter allocation rate of soybean organs (%)"

年份
Year
处理
Treatment
茎 Stem 叶 Leaf 籽粒 Grain 荚 Pod
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 33.75 bc 34.84 a 21.58 a 22.68 a 25.58 b 23.35 c 19.08 a 19.12 ab
MS45 31.31 c 35.66 a 21.14 a 22.18 ab 26.72 b 24.40 bc 20.83 a 17.76 bc
MS60 34.91 b 34.11 a 16.28 b 14.21 c 30.17 a 31.20 a 18.64 a 20.47 a
MS75 35.00 b 37.28 a 17.68 b 19.35 b 28.08 ab 26.69 b 19.24 a 16.68 c
SS100 39.08 a 35.22 a 16.91 b 20.61 ab 28.27 ab 25.81 bc 15.74 b 16.68 c
施氮量Nitrogen application (N) 0.64 ns 3.15 ns 4.39* 1.38 ns
种间距离Interspecific distance (I) 3.07* 16.26** 8.97** 6.66*
施氮量×种间距离N×I 3.36* 2.25 ns 0.86 ns 4.08*
2021 MS30 26.08 b 27.16 c 20.18 a 19.16 a 31.68 c 30.82 b 22.06 a 22.86 ab
MS45 25.18 b 25.63 cd 15.30 bc 19.26 a 37.32 ab 31.37 b 22.20 a 23.74 a
MS60 22.59 c 23.62 d 15.91 bc 16.34 ab 39.35 a 37.29 a 22.16 a 22.75 ab
MS75 25.66 b 30.40 b 19.17 ab 16.81 ab 34.17 bc 30.49 b 21.01 ab 22.30 ab
SS100 33.85 a 34.97 a 14.03 c 13.45 b 32.88 bc 31.45 b 19.23 b 20.13 b
施氮量Nitrogen application (N) 9.53** 0.01 ns 7.80* 3.02 ns
种间距离Interspecific distance (I) 48.83** 5.09* 6.37* 3.86*
施氮量×种间距离N×I 2.01 ns 1.48 ns 0.84 ns 0.08 ns

Table 6

Effects of nitrogen application rates and interspecific distance on yield components of maize"

年份
Year
处理
Treatment
有效株数
Effective plants
(Ten thousand plants hm-2)
单穗粒数
Number of grains per panicle
千粒重
1000-seed weight (g)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 5.52 a 5.37 a 388.20 b 401.22 b 323.41 b 342.21 a
MS45 5.50 ab 5.27 a 363.80 bc 384.84 bc 322.44 b 361.96 a
MS60 5.37 ab 5.33 a 359.76 bc 388.98 bc 337.57 ab 351.86 a
MS75 5.20 b 5.40 a 348.09 c 360.42 c 328.81 b 355.34 a
MM100 5.40 ab 5.60 a 445.61 a 467.31 a 349.47 a 357.63 a
施氮量Nitrogen application (N) 0.20 ns 8.48** 23.84**
种间距离Interspecific distance (I) 1.26 ns 27.78** 2.27 ns
施氮量×种间距离N×I 1.93 ns 1.05 ns 1.52 ns
2021 MS30 5.39 a 5.40 a 378.85 a 527.31 a 279.23 b 316.78 a
MS45 5.07 c 5.27 a 376.71 a 546.11 a 281.22 b 309.81 a
MS60 5.46 ab 5.37 a 292.2 a 541.49 a 299.63 a 323.60 a
MS75 5.17 bc 5.37 a 353.59 ab 506.28 a 282.78 a 317.69 a
MM100 5.43 abc 5.30 a 355.69 ab 520.47 a 286.79 ab 313.74 a
施氮量Nitrogen application (N) 1.80 ns 166.47** 101.63**
种间距离Interspecific distance (I) 0.32 ns 1.35 ns 3.36*
施氮量×种间距离N×I 1.07 ns 1.82 ns 0.70 ns

Table 7

Effects of nitrogen application rates and interspecific distance on yield components of soybean"

年份
Year
处理
Treatment
有效株数
Effective plants
(Ten thousand plants hm-2)
单株粒数
Number of plants per panicle
百粒重
100-seed weight
(g)
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
不施氮
NN
施氮
CN
2020 MS30 8.87 ab 9.03 a 104.57 c 83.27 c 16.30 b 14.64 c
MS45 9.33 a 8.53 a 108.10 c 102.90 b 15.87 b 16.21 b
MS60 8.47 b 8.30 ab 131.03 b 128.93 ab 16.50 b 15.72 bc
MS75 8.53 b 8.53 a 118.63 bc 128.47 ab 15.61 b 15.20 bc
SS100 7.00 c 7.57 b 159.10 a 142.86 a 18.89 a 18.06 a
施氮量N application (N) 0.60 ns 3.07 ns 7.06*
种间距离Interspecific distance (I) 12.88** 24.53** 20.17**
施氮量×种间距离N×I 2.40 ns 1.88 ns 1.67 ns
2021 MS30 8.13 b 7.13 b 101.20 b 104.63 bc 17.21 b 18.34 a
MS45 8.93 a 8.27 a 105.56 b 107.53 bc 17.68 b 19.28 a
MS60 8.40 ab 8.50 a 134.33 a 121.70 ab 18.15 ab 18.67 a
MS75 9.10 a 8.10 a 111.18 b 95.40 c 17.94 ab 18.58 a
SS100 8.20 b 7.93 a 148.03 a 140.30 a 19.05 a 18.95 a
施氮量N application (N) 4.20 ns 2.23 ns 8.53**
种间距离Interspecific distance (I) 6.16* 15.95** 2.28 ns
施氮量×种间距离N×I 2.03 ns 0.87 ns 1.24 ns

Table 8

Effects of nitrogen application rates and interspecific distances on the yield (t hm-2) and LER of maize and soybean"

年份
Year
处理
Treatment
玉米 Maize 大豆 Soybean 土地当量比 LER
不施氮NN 施氮CN 不施氮NN 施氮CN 不施氮NN 施氮CN
2020 MS30 7.10 b 7.37 b 1.51 c 1.10 d 1.56 1.35
MS45 6.45 bc 7.34 b 1.60 bc 1.42 c 1.53 1.51
MS60 6.52 bc 7.29 b 1.82 b 1.68 b 1.64 1.64
MS75 5.95 c 6.93 b 1.58 bc 1.66 bc 1.46 1.59
MM/SS100 8.43 a 9.37 a 2.10 a 1.95 a
施氮量N application (N) 13.06** 8.88**
种间距离Interspecific distance (I) 15.92** 19.68**
施氮量×种间距离N×I 1.02 ns 2.08 ns
2021 MS30 5.99 a 9.03 a 1.42 d 1.37 d 1.69 1.58
MS45 5.37 ab 8.91 a 1.66 cd 1.71 bc 1.68 1.73
MS60 4.89 b 9.42 a 2.05 ab 1.93 ab 1.77 1.89
MS75 5.17 ab 8.63 a 1.81 bc 1.42 cd 1.71 1.57
MM/SS100 5.56 ab 9.66 a 2.31 a 2.11 a
施氮量Nitrogen application (N) 274.22** 4.75*
种间距离Interspecific distance (I) 1.32 ns 19.69**
施氮量×种间距离N×I 1.33 ns 1.30 ns
[1] 卞靖. 玉米产业发展现状及供需趋势分析. 中国物价, 2022, (8): 117-120.
Bian J. Corn industry development status and supply and demand trend analysis. China Price, 2022, (8): 117-120. (in Chinese)
[2] 孔明忠, 王溧彬. 支持大豆和油料产能提升的思考. 农业发展与金融, 2022, (11): 68-74.
Kong M Z, Wang L B. Support the thinking of increasing soybean and oil production capacity. Agric Dev Financ, 2022, (11): 68-74. (in Chinese)
[3] 杨文钰, 杨峰. 发展玉豆带状复合种植,保障国家粮食安全. 中国农业科学, 2019, 52: 3748-3750.
doi: 10.3864/j.issn.0578-1752.2019.21.003
Yang W Y, Yang F. Developing maize-soybean strip intercropping for demand security of national food. Sci Agric Sin, 2019, 52: 3748-3750. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.003
[4] Chen P, Song C, Liu X M, Zhou L, Yang H, Zhang X N, Zhou Y, Du Q, Pang T, Fu Z D, Wang X C, Liu W G, Yang F, Shu K, Du J B, Liu J, Yang W Y, Yong T W. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system. Sci Total Environ, 2019, 657: 987-999.
doi: 10.1016/j.scitotenv.2018.11.376
[5] Aamed S, Raza M A, Zhou T, Hussain S, Khailid M H B, Feng L Y, Wasaya A, Iqbal N, Hamed A, Liu W G, Yang W Y. Responses of soybean dry matter production, phosphorus accumulation, and seed yield to sowing time under relay intercropping with maize. Agron J, 2018, 8: 282.
[6] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2022, 48: 1476-1487.
doi: 10.3724/SP.J.1006.2022.13017
Yang H, Zhou Y, Chen P, Du Q, Zheng B C, Pu T, Wen J, Yang W Y, Yong T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agron Sin, 2022, 48: 1476-1487. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.13017
[7] 王贝贝, 廖敦平, 范元芳, 王仲林, 张佳伟, 雍太文, 王小春, 刘卫国, 杨文钰, 杨峰. 玉米大豆套作窄行距对作物竞争效应及物质分配的影响. 中国油料作物学报, 2020, 42: 734-742.
Wang B B, Liao D P, Fan Y F, Wang Z L, Zhang J W, Yong T W, Wang X C, Liu W G, Yang W Y, Yang F. Effects of narrow row spacing on crop competition and substance distribution under maize-soybean relay strip intercropping. Chin J Oil Crop Sci, 2020, 42: 734-742. (in Chinese with English abstract)
doi: 10.19802/j.issn.1007-9084.2019203
[8] Wu Y S, Gong W Z, Yang W Y. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci Rep, 2017, 7: 9259.
doi: 10.1038/s41598-017-10026-5 pmid: 28835715
[9] Xiao Y B, Li L, Zhang F S. Effect of root contact on interspecific competition and N transfer between wheat and faba bean using direct and indirect 15N techniques. Plant Soil, 2004, 262: 45-54.
doi: 10.1023/B:PLSO.0000037019.34719.0d
[10] 杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰. 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响. 作物学报, 2015, 41: 642-650.
doi: 10.3724/SP.J.1006.2015.00642
Yang F, Lou Y, Liao D P, Gao R C, Yong T W, Wang X C, Liu W G, Yang W Y. Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system. Acta Agron Sin, 2015, 41: 642-650. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00642
[11] 刘姗姗, 庞婷, 袁晓婷, 罗凯, 陈平, 付智丹, 王小春, 杨峰, 雍太文, 杨文钰. 种间距对不同结瘤特性套作大豆根瘤生长及固氮潜力的影响. 作物学报, 2023, 49: 833-844.
doi: 10.3724/SP.J.1006.2023.24027
Liu S S, Pang T, Yuan X T, Luo K, Chen P, Fu Z D, Wang X C, Yang F, Yong T W, Yang W Y. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping. Acta Agron Sin, 2023, 49: 833-844. (in Chinese with English abstract)
[12] 陈平, 杜青, 庞婷, 付智丹, 杨燕竹, 刘佳, 帅鹏, 孙丽霞, 张瑞娣, 杨文钰, 雍太文. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36: 28-37.
Chen P, Du Q, Pang T, Fu Z D, Yang Y Z, Liu J, Shuai P, Sun L X, Zhang R D, Yang W Y, Yong T W. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. J Sichuan Agric Univ, 2018, 36: 28-37. (in Chinese with English abstract)
[13] 庞婷, 陈平, 袁晓婷, 雷鹿, 杜青, 付智丹, 张晓娜, 周颖, 任建锐, 王甜, 汪锦, 杨文钰, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、鼓粒及产量形成的影响. 中国农业科学, 2019, 52: 3751-3762.
doi: 10.3864/j.issn.0578-1752.2019.21.004
Pang T, Chen P, Yuan X T, Lei L, Du Q, Fu Z D, Zhang X N, Zhou Y, Ren J R, Wang T, Wang J, Yang W Y, Yong T W. Effects of row spacing on dry matter accumulation, grain filling and yield formation of different nodulation characteristic soybeans in intercropping. Sci Agric Sin, 2019, 52: 3751-3762. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2019.21.004
[14] 吴雨珊, 龚万灼, 杨文钰, 雍太文, 杨峰, 刘卫国, 武晓玲. 带状套作复光后不同大豆品种干物质积累模型与特征分析. 中国生态农业学报, 2017, 25: 572-580.
Wu Y S, Gong W Z, Yang W Y, Yong T W, Yang F, Liu W G, Wu X L. Dynamic model and characteristics analysis of dry matter production after light recovery of different soybean varieties in relay strip intercropping systems. Chin J Eco-Agric, 2017, 25: 572-580. (in Chinese with English abstract)
[15] 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36: 593-601.
doi: 10.7505/j.issn.1007-9084.2014.05.006
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay intercropping system. Chin J Oil Crop Sci, 2014, 36: 593-601. (in Chinese with English abstract)
[16] Liu Y X, Sun J H, Zhang F F, Li L. The plasticity of root distribution and nitrogen uptake contributes to recovery of maize growth at late growth stages in wheat/maize intercropping. Plant Soil, 2020, 447: 39-53.
doi: 10.1007/s11104-019-04034-9
[17] Li L, Sun J H, Zhang F S, Li X L, Rengel Z, Yang S C. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Res, 2001, 71: 173-181.
doi: 10.1016/S0378-4290(01)00157-5
[18] 尹晓童, 杨浩, 于瑞鹏, 李隆. 根系分泌物在作物多样性体系中对种间地下部互作的介导作用. 中国生态农业学报, 2022, 30: 1215-1227.
Yin H T, Yang H, Yu P R, Li L. Interspecific below-ground interactions driven by root exudates in agroecosystems with diverse crops. Chin J Eco-Agric, 2022, 30: 1215-1227. (in Chinese with English abstract)
[19] Fan F L, Zhang F S, Song Y N, Sun J H, Bao Y G, Guo T W, Li L. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant Soil, 2006, 283: 275-286.
doi: 10.1007/s11104-006-0019-y
[20] Zhou H L, Yao X D, Zhao Q, Zhang W, Zhang B, Xie F T. Rapid effect of nitrogen supply for soybean at the beginning flowering stage on biomass and sucrose metabolism. Sci Rep, 2019, 9: 15530.
doi: 10.1038/s41598-019-52043-6 pmid: 31664126
[21] Mu X H, Chen Q W, Wu X Y, Chen F J, Yuan L X, Mi G H. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ Exp Bot, 2018, 150: 198-208.
doi: 10.1016/j.envexpbot.2018.03.012
[22] 崔亮, 杨文钰, 黄妮, 刘江, 王艳玲, 王晓慧, 刘洋, 颜寿. 玉米-大豆带状套作下玉米株型对大豆干物质积累和产量形成的影响. 应用生态学报, 2015, 26: 2414-2420.
Cui L, Yang W Y, Huang N, Liu J, Wang Y L, Wang X H, Liu Y, Yan S. Effects of maize plant types on dry matter accumulation characteristics and yield of soybean in maize-soybean intercropping systems. Chin J Appl Ecol, 2015, 26: 2414-2420. (in Chinese with English abstract)
[23] 吴雨珊, 龚万灼, 廖敦平, 武晓玲, 杨峰, 刘卫国, 雍太文, 杨文钰. 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响. 作物学报, 2015, 41: 1740-1747.
doi: 10.3724/SP.J.1006.2015.01740
Wu Y S, Gong W Z, Liao D P, Wu X L, Yang F, Liu W G, Yong T W, Yang W Y. Effects of shade and light recovery on soybean cultivars (lines) and its relationship with yield in relay strip intercropping system. Acta Agron Sin, 2015, 41: 1740-1747. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01740
[24] Zhu J Q, Van D W W, Anten N P R, Vos J, Evers J B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol, 2015, 207: 1213-1222.
doi: 10.1111/nph.13416 pmid: 25898768
[25] 李易玲, 彭西红, 陈平, 杜青, 任俊波, 杨雪丽, 雷鹿, 雍太文, 杨文钰. 减量施氮对套作玉米大豆叶片持绿、光合特性和系统产量的影响. 中国农业科学, 2022, 55: 1749-1762.
doi: 10.3864/j.issn.0578-1752.2022.09.005
Li Y L, Peng X H, Chen P, Du Q, Ren J B, Yang X L, Lei L, Yong T W, Yang W Y. Effects of reducing nitrogen application on leaf stay-green, photosynthetic characteristics and system yield in maize-soybean relay strip intercropping. Sci Agric Sin, 2022, 55: 1749-1762. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2022.09.005
[26] 殷文, 冯福学, 赵财, 于爱忠, 柴强, 胡发龙, 郭瑶. 小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响. 作物学报, 2016, 42: 751-757.
doi: 10.3724/SP.J.1006.2016.00751
Yin W, Feng F X, Zhao C, Yu A Z, Chai Q, Hu F L, Guo Y. Effects of wheat straw returning patterns on characteristics of dry matter accumulation, distribution and yield of rotation maize. Acta Agron Sin, 2016, 42: 751-757 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.00751
[27] 王小春, 杨文钰, 邓小燕, 张群, 雍太文, 刘卫国, 杨峰, 毛树明. 玉米/大豆和玉米/甘薯模式下玉米干物质积累与分配差异及氮肥的调控效应. 植物营养与肥料学报, 2015, 21: 46-57.
Wang X C, Yang W Y, Deng X Y, Zhang Q, Yong T W, Liu W G, Yang F, Mao S M. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping systems. Plant Nutr Fert Sci, 2015, 21: 46-57. (in Chinese with English abstract)
[28] He J N, Shi Y, Zhao J Y, Yu Z W. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling. Crop J, 2019, 8: 327-340.
doi: 10.1016/j.cj.2019.08.007
[29] Yu Y, Qian C R, Gu W R, Li C F. Responses of root characteristic parameters and plant dry matter accumulation, distribution and transportation to nitrogen levels for spring maize in Northeast China. Agriculture, 2021, 11: 308.
doi: 10.3390/agriculture11040308
[30] Luo K, Yuan X T, Xie C, Liu S S, Chen P, Du Q, Zheng B C, Wu Y S, Wang X C, Yong T W, Yang W Y. Diethyl aminoethyl hexanoate increase relay strip intercropping soybean grain by optimizing photosynthesis aera and delaying leaf senescence. Front Plant Sci, 2021, 12: 818327.
doi: 10.3389/fpls.2021.818327
[31] 高阳, 傅积海, 章建新, 王聪, 马天乐, 周芳芝. 施氮量对滴灌高产春大豆干物质积累及转运特性的影响. 中国农业大学学报, 2018, 23(12): 21-30.
Gao Y, Fu J H, Zhang J X, Wang C, Ma T L, Zhou F Z. Effect of nitrogen application on the dry matter accumulation and transport characteristics of high yield spring soybean under drip irrigation. J China Agric Univ, 2018, 23(12): 21-30. (in Chinese with English abstract)
[32] Fageria N K, Baligar V C. Enhancing nitrogen use efficiency in crop plants. Adv Agron, 2005, 88: 97-185.
[33] Xu H Y, Li Y J, Zhang K F, Li M J, Fu S Y, Tian Y Z, Qin T F, Li X X, Zhang Y J, Liao H. miR169c-NFYA-C-ENOD40 modulates nitrogen inhibitory effects in soybean nodulation. New Phytol, 2021, 229: 3377-3392.
doi: 10.1111/nph.17115 pmid: 33245793
[34] 张含彬, 伍晓燕, 杨文钰. 氮肥对套作大豆干物质积累与分配的影响. 大豆科学, 2006, 25: 404-409.
Zhang H B, Wu X Y, Yang W Y. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in relay-planting soybean. Soybean Sci, 2006, 25: 404-409. (in Chinese with English abstract)
[35] Yang F, Wang X C, Liao D P, Lu F Z, Gao R C, Liu W G, Yong T W, Wu X L, Du J B, Liu J, Yang W Y. Yield response to different planting geometries in maize-soybean relay strip intercropping systems. Agron J, 2015, 107: 296-304.
doi: 10.2134/agronj14.0263
[1] WU Hao, ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao. Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2024, 50(2): 478-492.
[2] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[3] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[4] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[5] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
[6] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[7] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[8] SHAO Yang, GUO Yan-Ping, ZHOU Bing-Yue, ZHANG Feng, ZHANG Xin-Ming, WANG Yu-Ping. Analysis of genotype × environment interaction and stability of yield components in faba bean lines [J]. Acta Agronomica Sinica, 2024, 50(1): 149-160.
[9] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[10] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[11] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[12] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[13] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[14] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[15] CAO Yu-Jun, LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun. Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province [J]. Acta Agronomica Sinica, 2023, 49(8): 2183-2195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .