Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 493-505.doi: 10.3724/SP.J.1006.2024.24273

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed

NIE Xiao-Yu1(), LI Zhen1, WANG Tian-Yao2, ZHOU Yuan-Wei3, XU Zheng-Hua1, WANG Jing1, WANG Bo1, KUAI Jie1,*(), ZHOU Guang-Sheng1   

  1. 1College of Plant Science and Technology, Huazhong Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
    2Jingzhou Academy of Agricultural Sciences, Jingzhou 434000, Hubei, China
    3Yichang Academy of Agricultural Sciences, Yichang 420500, Hubei, China
  • Received:2022-12-10 Accepted:2023-09-13 Online:2024-02-12 Published:2023-09-28
  • Contact: *E-mail: kuaijie@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31871565);China Agriculture Research System of MOF and MARA(CARS-12)

Abstract:

The seed oil content of rapeseed is affected by insufficient light at pod-filling stage, while more seeds can be harvested with the increasing planting density. The interaction of pod shading and planting density on the mechanism that affecting seed oil content has not been reported. The objective of this study is to study the effect of density on seed carbon and lipid metabolism of shaded rapeseed at pod-filling stage. In this experiment, two varieties (Huayouza 62, H, and Fengyou 520, F) were selected, and three levels of densities (15×104, 30×104, and 45×104 plants hm-2) and two light intensities (100% light transmission, LT100%, and 70% light transmission from 10-35 d after terminating flowering, LT70%) were conducted in a field trial. The results showed that pod shading caused a decrease in seed chlorophyll content, the activity of ribulose 1,5-bisphosphate carboxylase (Rubisco) at 25 days and 35 days after flowering (DAF) of both varieties, leading to 0.4%-27.9% decrease in glucose content. Meanwhile, the decrease in the activities of sucrose synthase-cleavage (SuSy) and sucrose phosphate synthase (SPS) under shading inhibited sucrose conversion and resulted in a decrease by 4.8%-24.5% in fructose content. The activities of seed phosphatidate phosphatase (PPase) and glucose-6-phosphate dehydrogenase (G6PDH) were also reduced, resulting in 2.1%-11.8% decline in seed oil content and 27.0%-35.3% decline in oil production. Compared with the shading under lower density, the reduction in content of seed chlorophyll, fructose, glucose, and activities of rubisco and SuSy became lower, while the decrease of seed G6PDH and PPase activities became higher at 35DAF, which aggravated the decrease of seed oil content under shading. However, the decline in oil yield was alleviated due to the increase in population yield with denser planting.

Key words: planting density, shade, carbon metabolism, seed oil content, oil yield

Table 1

Effects of planting density and shading on 1000-seed weight and yield of directly seeding rapeseed"

品种
Variety
种植密度Density 透光率
Light transmittance (%)
2018-2019 2019-2020
千粒重
1000-seed weight (g)
单株产量Yield per plant (g) 产量
Yield
(kg hm-2)
千粒重1000-seed weight (g) 单株产量Yield per plant (g) 产量
Yield
(kg hm-2)
华油杂62
Huayouza 62
D1 100 3.82 a 20.93 a 2830.99 c 3.64 a 17.01 a 2351.18 cd
70 3.61 bcd 13.29 c 1858.77 g 3.43 abc 11.65 bc 1607.37 g
D2 100 3.74 ab 11.94 d 3043.79 b 3.58 ab 10.73 c 2738.53 b
70 3.57 bcd 8.78 e 2282.13 ef 3.36 abc 7.46 d 1953.82 f
D3 100 3.65 abc 8.32 e 3127.36 ab 3.46 abc 7.47 d 2818.10 ab
70 3.54 bcde 6.30 f 2385.25 e 3.31 bc 5.56 e 2147.25 e
沣油520
Fengyou 520
D1 100 3.50 cde 19.13 b 2648.42 d 3.42 abc 18.18 a 2516.38 c
70 3.13 f 13.07 c 1836.31 g 3.04 d 12.93 b 1819.22 f
D2 100 3.42 de 11.03 d 2883.23 c 3.36 abc 10.46 c 2822.67 ab
70 3.10 f 8.60 e 2193.83 f 2.99 d 8.07 d 2150.67 e
D3 100 3.35 e 8.49 e 3224.83 a 3.20 cd 7.34 d 2969.94 a
70 3.09 f 6.69 f 2540.54 d 2.97 d 5.78 e 2284.93 de
方差分析 ANOVA
品种Variety (V) ** * NS ** * **
密度Density (D) NS ** ** NS ** **
透光率 Light transmittance (T) ** ** ** ** ** **
V×D NS * ** NS NS NS
V×T NS * NS NS NS NS
D×T NS ** * NS ** NS
V×D×T NS NS NS NS NS NS

Fig. 1

Effect of planting density and pod shading on seed chlorophyll content and chlorophyll a/b ratio of directly seeding rapeseed H means Huayouza 62, F means Fengyou 520; D1, D2, and D3 stand for planting density of 150,000, 300,000, and 450,000 plants hm-2; respectively. LT-100% means light transmittance is 100%, LT-70% means light transmittance is 70%. V, D, T, V×D, V×T, D×T, and V×D×T represent varieties, planting density, light transmittance, and their interactions in variance analysis, respectively. Different letters indicate significant difference at the 0.05 probability level. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively, while NS means the difference is not significant."

Fig. 2

Effect of planting density and pod shading on seed Rubisco activity of directly seeding rapeseed H means Huayouza 62, F means Fengyou 520; D1, D2, and D3 stand for planting density of 150,000, 300,000, and 450,000 plants hm-2; respectively. LT-100% means light transmittance is 100%, LT-70% means light transmittance is 70%. V, D, T, V×D, V×T, D×T, and V×D×T represent varieties, planting density, light transmittance and their interactions in variance analysis, respectively. Different letters indicate significant difference at the 0.05 probability level. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively, while NS means the difference is not significant."

Fig. 3

Effect of planting density and pod shading on seed carbohydrates content of directly seeding rapeseed H means Huayouza 62, F means Fengyou 520; D1, D2 and D3 stand for planting density of 150,000, 300,000, and 450,000 plants hm-2; respectively. LT-100% means light transmittance is 100%, LT-70% means light transmittance is 70%. V, D, T, V×D, V×T, D×T, and V×D×T represent varieties, planting density, light transmittance and their interactions in variance analysis, respectively. Different letters indicate significant difference at the 0.05 probability level. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively, while NS means the difference is not significant."

Fig. 4

Effect of planting density and pod shading on seed oil and oil yield of directly seeding rapeseed H means Huayouza 62, F means Fengyou 520; D1, D2 and D3 stand for planting density of 150,000, 300,000, and 450,000 plants hm-2; respectively. LT-100% means light transmittance is 100%, LT-70% means light transmittance is 70%. V, D, T, V×D, V×T, D×T, and V×D×T represent varieties, planting density, light transmittance and their interactions in variance analysis, respectively. Different letters indicate significant difference at the 0.05 probability level. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively, while NS means the difference is not significant."

Fig. 5

Effect of planting density and pod shading on seed G6PDH and PPase activity of directly seeding rapeseed H means Huayouza 62, F means Fengyou 520; D1, D2 and D3 stand for planting density of 150,000, 300,000, and 450,000 plants hm-2; respectively. LT-100% means light transmittance is 100%, LT-70% means light transmittance is 70%. V, D, T, V×D, V×T, D×T, and V×D×T represent varieties, planting density, light transmittance and their interactions in variance analysis, respectively. Different letters indicate significant difference at the 0.05 probability level. * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively, while NS means the difference is not significant."

[1] Amiri-Oghan H, Fotokian M H, Javidfar F, Alizadeh B. Genetic analysis of grain yield, days to flowering and maturity in oilseed rape (Brassica napus L.) using diallel crosses. Int J Plant Prod, 2009, 3: 19-26.
[2] Friedt W, Tu J X, Fu T D. The Brassica napus Genome. Switzerland: Springer Cham, 2018. pp 1-20.
[3] Li X Y, Zuo Q S, Chang H B, Bai G P, Kuai J, Zhou G S. Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crops Res, 2018, 218: 97-105.
doi: 10.1016/j.fcr.2018.01.013
[4] Liu J D, Linderholm H, Chen D L, Zhou X J, Flerchinger G N, Yu Q, Du J, Wu D R, Shen Y B, Yang Z B. Changes in the relationship between solar radiation and sunshine duration in large cities of China. Energy, 2015, 82: 589-600.
doi: 10.1016/j.energy.2015.01.068
[5] Procko C, Crenshaw C M, Ljung K, Noel J P, Chory J. Cotyledon-generated auxin is required for shade-induced hypocotyl growth in Brassica rapa. Plant Physiol, 2014, 165: 1285-1301.
[6] Fortescue J A, Turner D W. Changes in seed size and oil accumulation in Brassica napus L. by manipulating the source-sink ratio and excluding light from the developing siliques. Aust J Agric Res, 2007, 58: 413-424.
doi: 10.1071/AR06249
[7] Verdejo J, Calderini D F. Plasticity of seed weight in winter and spring rapeseed is higher in a narrow but different window after flowering. Field Crops Res, 2020, 250: 107777.
doi: 10.1016/j.fcr.2020.107777
[8] Labra M H, Struik P C, Evers J B, Calderini D F. Plasticity of seed weight compensates reductions in seed number of oilseed rape in response to shading at flowering. Eur J Agron, 2017, 84: 113-124.
doi: 10.1016/j.eja.2016.12.011
[9] Tanaka W, Maddonni G. Maize kernel oil and episodes of shading during the grain-filling period. Crop Sci, 2009, 49: 2187-2197.
doi: 10.2135/cropsci2009.05.0238
[10] Artru S, Garré S, Dupraz C, Hiel M P, Blitz-Frayret C, Lassois L. Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. Eur J Agron, 2017, 82: 60-70.
doi: 10.1016/j.eja.2016.10.004
[11] Wei H Y, Zhu Y, Qiu S, Han C, Hu L, Xu D, Zhou N B, Xing Z P, Hu Y J, Cui P Y, Dai Q G, Zhang H C. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J Integr Agric, 2018, 17: 2405-2417.
doi: 10.1016/S2095-3119(18)62025-8
[12] Proulx R A, Naeve S L. Pod removal, shade, and defoliation effects on soybean yield, protein, and oil. Agron J, 2009, 101: 971-978.
doi: 10.2134/agronj2008.0222x
[13] Zhang Y, Liu A Z. The correlation between soluble carbohydrate metabolism and lipid accumulation in castor seeds. Biotechnol Bull, 2016, 32: 120-129.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.06.017
[14] Han C J, Wang Q, Zhang H B, Wang S H, Song H D, Hao J M, Dong H Z. Light shading improves the yield and quality of seed in oil-seed peony (Paeonia ostii Feng Dan). J Integr Agric, 2018, 17: 1631-1640.
doi: 10.1016/S2095-3119(18)61979-3
[15] Lyu F J, Liu J R, Ma Y N, Chen J, Abudou K, Wang Y H, Chen B L, Meng Y L, Zhou Z G. Effect of shading on cotton yield and quality on different fruiting branches. Crop Sci, 2013, 53: 2670-2678.
doi: 10.2135/cropsci2013.03.0170
[16] Andrade F H, Ferreiro M A. Reproductive growth of maize, sunflower and soybean at different source levels during grain filling. Field Crops Res, 1996, 48: 155-165.
doi: 10.1016/S0378-4290(96)01017-9
[17] Gindaba J, Midgley S. Comparative effects of evaporative cooling, kaolin particle film, and shade net on sunburn and fruit quality in apples. HortScience, 2005, 40: 592-596.
doi: 10.21273/HORTSCI.40.3.592
[18] Slewinski T L, Braun D M. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci, 2010, 178: 341-349.
doi: 10.1016/j.plantsci.2010.01.010
[19] Han C J, Wang Q, Zhang H B, Dong H Z. Seed development and nutrient accumulation as affected by light shading in oilseed peony (Paeonia ostii Feng Dan). Sci Hortic, 2019, 251: 25-31.
doi: 10.1016/j.scienta.2019.02.084
[20] Ishibashi Y, Okamura K, Miyazaki M, Phan T, Yuasa T, Iwaya-Inouea M. Expression of rice sucrose transporter gene OsSUT1 in sink and source organs shaded during grain filling may affect grain yield and quality. Environ Exp Bot, 2014, 97: 49-54.
doi: 10.1016/j.envexpbot.2013.08.005
[21] Zhao D, Oosterhuis D. Cotton responses to shade at different growth stages: nonstructural carbohydrate composition. Crop Sci, 1998, 38: 1196-1203.
doi: 10.2135/cropsci1998.0011183X003800050014x
[22] Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci, 2001, 41: 1108-1108.
doi: 10.2135/cropsci2001.4141108x
[23] Samarajeewa D, Kojima N, Sakagami J, Chandanie W. The effect of different timing of top dressing of nitrogen application under low light intensity on the yield of rice (Oryza sativa L.). J Agron Crop Sci, 2005, 191: 99-105.
doi: 10.1111/jac.2005.191.issue-2
[24] Sims L, Pastor J, Lee T, Dewey B. Nitrogen, phosphorus and light effects on growth and allocation of biomass and nutrients in wild rice. Oecologia, 2012, 170: 65-76.
doi: 10.1007/s00442-012-2296-x pmid: 22407062
[25] Pan S G, Liu H D, Mo Z W, Patterson B, Duan M Y, Tian H, Hu S J, Tang X R. Effects of nitrogen and shading on root morphologies, nutrient accumulation, and photosynthetic parameters in different rice genotypes. Sci Rep, 2016, 6: 32148.
doi: 10.1038/srep32148 pmid: 27557779
[26] 姜丹, 陈雅君, 刘丹, 胡海辉. 光氮互作对草地早熟禾碳氮代谢的影响. 中国草地, 2005, 27(6): 49-53.
Jiang D, Chen Y J, Liu D, Hu H H. Effects of light condition and nitrogen supply on carbon-nitrogen metabolism of Poa pratensis L. Grassland China, 2005, 27(6): 49-53 (in Chinese with English abstract).
[27] 郭振清, 付陈陈, 李婧实, 张敏, 张玉春, 李清瑶, 郭双双, 蔡瑞国. 施氮对花后遮光条件下小麦产量与蛋白质含量的影响. 麦类作物学报, 2021, 7: 883-890.
Guo Z Q, Fu C C, Li J S, Zhang M, Zhang Y C, Li Q Y, Guo S S, Cai R G. Effect of different nitrogen rate on wheat yield and protein content under shading conditions after anthesis. J Triticeae Crop, 2021, 7: 883-890 (in Chinese with English abstract).
[28] 张永强, 方辉, 陈传信, 陈兴武, 赛力汗·赛, 薛丽华, 雷钧杰. 遮阴和种植密度对冬小麦灌浆特性及籽粒品质的影响. 中国农业大学学报, 2019, 24(5): 10-19.
Zhang Y Q, Fang H, Chen C X, Chen X W, Sailihan S, Xue L H, Lei J J. Effects of shading and planting population on grain-filling properties and grain quality of winter wheat. J China Agric Univ, 2019, 24(5): 10-19 (in Chinese with English abstract).
[29] 周培禄. 玉米不同杂交种密植群体冠层结构及其光、氮利用特征研究. 中国农业科学院硕士学位论文, 北京, 2016.
Zhou P L. Study on Canopy Structure Characteristics and Light, Nitrogen Utilization Traits of Maize under high Plant Density. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[30] 蒯婕, 王积军, 左青松, 陈红琳, 高建芹, 汪波, 周广生, 傅廷栋. 长江流域直播油菜密植效应及其机理研究进展. 中国农业科学, 2018, 51: 4625-4632.
doi: 10.3864/j.issn.0578-1752.2018.24.004
Kuai J, Wang J J, Zuo Q S, Chen H L, Gao J Q, Wang B, Zhou G S, Fu T D. Effects and mechanism of higher plant density on directly-sown rapeseed in the Yangtze River Basin of China. Sci Agric Sin, 2018, 51: 4625-4632 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.24.004
[31] Fritschi F B, Ray J D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio. Photosynthetica, 2007, 45: 92-98.
doi: 10.1007/s11099-007-0014-4
[32] Hendrix D L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci, 1993, 33: 1306-1311.
doi: 10.2135/cropsci1993.0011183X003300060037x
[33] Wang B, Ma M, Lu H, Meng Q, Li G, Yang X. Photosynthesis, sucrose metabolism, and starch accumulation in two NILs of winter wheat. Photosynth Res, 2015, 126: 363-373.
doi: 10.1007/s11120-015-0126-9
[34] Hussain S, Mumtaz M, Manzoor S, Li S X, Ahmed I, Skalicky M, Brestic M, Rastogi A, Ulhassan Z, Shafiq I, Allakhverdiev S I, Khurshid H, Yang W, Liu W. Foliar application of silicon improves growth of soybean by enhancing carbon metabolism under shading conditions. Plant Physiol Biochem, 2021, 159: 43-52.
doi: 10.1016/j.plaphy.2020.11.053
[35] Diepenbrock W. Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res, 2000, 67: 35-49.
doi: 10.1016/S0378-4290(00)00082-4
[36] Wagstaff C, Yang T J, Stead A D, Buchanan-Wollaston V, Roberts J A. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J, 2009, 57: 690-705.
doi: 10.1111/tpj.2009.57.issue-4
[37] Eastmond P, Koláčá L, Rawsthorne S. Photosynthesis by developing embryos of oilseed rape (Brassica napus L.). J Exp Bot, 1996, 47: 1763-1769.
doi: 10.1093/jxb/47.11.1763
[38] King S P, Badger M R, Furbank R T. CO2 refixation characteristics of developing canola seeds and silique wall. Aust J Plant Physiol, 1998, 25: 377-386.
[39] Li M, Naeem M S, Ali S, Zhang L, Liu L, Ma N, Zhang C. Root morphology, and seed yield of winter oilseed rape (Brassica napus L.) at varying plant densities. Biomed Res Int, 2017, 2017: 8581072.
[40] 邵玉娇. 不同光强下油菜品质形成的生理基础研究. 华中农业大学硕士学位论文, 湖北武汉, 2005.
Shao Y J. Studies on the Physiological Basis of Quality Formation of Rapeseed under Different Light Intensity. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2005 (in Chinese with English abstract).
[41] Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution. Eur J Agron, 2022, 137: 126520.
doi: 10.1016/j.eja.2022.126520
[42] Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Li J, Guan R, Zhang H, Wang G, Zuo J. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol, 2011, 56: 1577-1588.
[43] Ni F, Liu J H, Zhang J, Khan M N, Luo T, Xu Z H, Hu L Y. Effect of soluble sugar content in silique wall on seed oil accumulation during the seed-filling stage in Brassica napus. Crop Past Sci, 2019, 69: 1251-1263.
[44] Ekman A, Hayden D M, Dehesh K, Bülow L, Stymne S. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds. J Exp Bot, 2008. 59: 4247-4257.
doi: 10.1093/jxb/ern266 pmid: 19036843
[45] Chen M, Mooney B P, Hajduch M, Joshi T, Zhou M, Xu D, Thelen J J. System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. Plant Physiol, 2009, 150: 27-41.
doi: 10.1104/pp.108.134882
[46] Fan J, Yan C, Andre C, Shanklin J, Schwender J, Xu C. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol, 2012, 53: 1380-1390.
[47] Bennett E J, Roberts J A, Wagstaff C. The role of the pod in seed development: strategies for manipulating yield. New Phytol, 2011, 190: 838-853.
doi: 10.1111/j.1469-8137.2011.03714.x pmid: 21507003
[48] Wardlaw I F. Tansley Review No. 27: the control of carbon partitioning in plants. New Phytol, 1990, 116: 341-381.
doi: 10.1111/j.1469-8137.1990.tb00524.x pmid: 33874094
[49] Fallahi H, Scofield G N, Badger M R, Chow W S, Furbank R T, Ruan Y L. Localization of sucrose synthase in developing seed and siliques of Arabidopsis thaliana reveals diverse roles for SUS during development. J Exp Bot, 2008, 59: 3283-3295.
doi: 10.1093/jxb/ern180
[50] Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999, 4: 401-407.
doi: 10.1016/s1360-1385(99)01470-3 pmid: 10498964
[51] Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol, 1999, 120: 1057-1062.
pmid: 10444089
[52] Zhang S J, Liao X, Zhang C L, Xu H J. Influences of plant density on the seed yield and oil content of winter oilseed rape (Brassica napus L.). Ind Crops Prod, 2012, 40: 27-32.
doi: 10.1016/j.indcrop.2012.02.016
[53] 唐湘如, 官春云. 油菜栽培密度与几种酶活性及产量和品质的关系. 湖南农业大学学报(自然科学版), 2001, 27(4): 264-267.
Tang X R, Guan C Y. Effects of culture density on activities of several enzymes in rapeseed and its relationships with yield and quality. J Hunan Agric Univ, 2001, 27(4): 264-267 (in Chinese with English abstract).
[54] 黄秀芳, 孙敬东, 杨阿林, 范正辉, 孙旭明, 吴茂平, 陈俊才, 袁志章, 展旭东, 王书勤. 优质油菜史力丰生育特性及配套栽培技术研究. 中国油料作物学报, 2003, 25(1): 28-33.
Huang X F, Sun J D, Yang A L, Fan Z H, Sun X P, Wu M P, Chen J C, Yuan Z Z, Zhan X D, Wang S Q. Studies on growth and cultivated techniques of high-quality rapeseed Shilifeng. Chin J Oil Crop Sci, 2003, 25(1): 28-33 (in Chinese with English abstract).
[1] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[2] WANG Yan-Nan, CHEN Jin-Jin, BIAN Qian-Qian, HU Lin-Lin, ZHANG Li, YIN Yu-Meng, QIAO Shou-Chen, CAO Guo-Zheng, KANG Zhi-He, ZHAO Guo-Rui, YANG Guo-Hong, YANG Yu-Feng. Integrated analysis of transcriptome and metabolome reveals the metabolic response pathways of sweetpotato under shade stress [J]. Acta Agronomica Sinica, 2023, 49(7): 1785-1798.
[3] WU Xi, WANG Jia-Rui, HAO Miao-Yi, ZHANG Hong-Jun, ZHANG Ren-He. Effects of planting density on solar and heat resource utilization and yield of maize varieties at different growth stages [J]. Acta Agronomica Sinica, 2023, 49(4): 1065-1078.
[4] GONG Ruo-Lin, SONG Bo, YANG Zhi-Ye, LU Li-Jing, DONG Jun-Gang. Effects of sowing date and density on lodging resistance and yield of different rapeseed cultivars [J]. Acta Agronomica Sinica, 2023, 49(10): 2777-2792.
[5] SUN Zhi-Chao, ZHANG Ji-Wang. Physiological mechanism and regulation effect of low light on maize yield formation [J]. Acta Agronomica Sinica, 2023, 49(1): 12-23.
[6] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[7] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[8] YANG Heng-Shan, ZHANG Yu-Shan, GE Xuan-Liang, LI Wei-Min, GUO Zi-He, GUO Nuan. Effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen utilization efficiency of maize after anthesis under shallow buried drip irrigation [J]. Acta Agronomica Sinica, 2022, 48(10): 2614-2624.
[9] WANG Li-Qing, YU Xiao-Fang, GAO Ju-Lin, MA Da-Ling, HU Shu-Ping, GUO Huai-Huai, LIU Ai-Ye. Response of grain yield formation to planting density of maize varieties in different eras [J]. Acta Agronomica Sinica, 2022, 48(10): 2625-2637.
[10] LOU Hong-Xiang, JI Jian-Li, KUAI Jie, WANG Bo, XU Liang, LI Zhen, LIU Fang, HUANG Wei, LIU Shu-Yan, YIN Yu-Feng, WANG Jing, ZHOU Guang-Sheng. Effects of planting density on yield and lodging related characters of reciprocal hybrids in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(9): 1724-1740.
[11] SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752.
[12] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[13] ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751.
[14] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[15] ZHANG Jin-Dan, FAN Hong, DU Jin-Yong, YIN Wen, FAN Zhi-Long, HU Fa-Long, CHAI Qiang. Synchronously higher planting density can increase yield via optimizing interspecific interaction of intercropped wheat and maize [J]. Acta Agronomica Sinica, 2021, 47(12): 2481-2489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .