Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 478-492.doi: 10.3724/SP.J.1006.2024.32011

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of cultivation optimization on root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River

WU Hao(), ZHANG Ying, WANG Chen, GU Han-Zhu, ZHOU Tian-Yang, ZHANG Wei-Yang, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang, ZHANG Hao*()   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2023-03-27 Accepted:2023-08-01 Online:2024-02-12 Published:2023-08-07
  • Contact: *E-mail: haozhang@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071944);National Natural Science Foundation of China(32272197);National Key Research and Development Program of China(2022YFD2300304);Six Talent Peaks Project in Jiangsu Province(SWYY-151);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

Abstract:

In order to investigate the relationship between root characteristics and starch properties of rice at grain filling stage in the lower reaches of the Yangtze River under different integrative cultivation practices techniques, field experiments were carried out with Yongyou 2640, Wuyunjing 24, Yangdao 6, and Jinxiangyu 1 as the experimental materials. Five cultivation techniques were set up, including nitrogen blank area (0N), local farmers’ practice (control), densification and nitrogen reduction, alternate wetting and drying irrigation and increasing application of rapeseed cake fertilizer. The results showed that compared with the local farmers’ practice (control), the yield of Yongyou 2640 under the treatment of densification and nitrogen reduction, alternate wetting and drying irrigation and increasing application of rapeseed cake fertilizer increased by 6.49%, 11.06%, and 12.72%, respectively. The yield of Wuyunjing 24 increased by 1.92%, 11.10%, and 17.05%, respectively. The yield of Yangdao 6 increased by 9.30%, 18.50%, and 22.89%, respectively, and the yield of Jinxiangyu1 increased by 6.92%, 14.72%, and 17.89%, respectively. At the same time, we also observed that with the integration and optimization of cultivation practices, root morphological and physiological characteristics (root dry weight, root length, root diameter, root oxidation activity, root bleeding intensity, zeatin and zeatin riboside contents in root and root bleeding sap and total organic acid content in exudates), the activity of key enzymes for starch synthesis in grains (soluble starch synthase, granule-bound starch synthase), peak viscosity, hot viscosity, breakdown, final viscosity, solubility and swelling degree gradually increased. Correlation analysis showed that the morphological and physiological characteristics of roots at grain filling stage were closely related to grain yield and starch properties. It indicated that the integration and optimization of cultivation practices might improve rice quality through regulating the growth of underground roots, and finally achieve the goals of high yield, good quality and high efficiency.

Key words: rice, cultivation strategy, yield, grain quality, root characteristics

Table 1

Effects of cultivation optimization in rice yield and its components"

品种
Variety
处理
Treatment
穗数
Number of panicles
(× 104 hm-2)
每穗粒数
Spikelets per
panicle
总颖花数
Total spikelets
(× 108 hm-2)
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield
(t hm-2)
甬优2640
Yongyou 2640
0N 125.35 d 254.02 b 3.24 d 90.83 a 24.31 a 7.01 d
LFP 191.70 c 315.84 a 6.10 c 84.80 b 23.35 a 12.02 c
ICP1 206.73 b 311.42 a 6.43 b 86.01 b 23.10 a 12.80 b
ICP2 210.72 ab 308.01 a 6.50 ab 87.61 b 23.52 a 13.35 ab
ICP3 216.61 a 307.32 a 6.70 a 86.80 b 23.61 a 13.55 a
武运粳24
Wuyunjing 24
0N 164.80 e 135.50 c 2.22 c 91.91 a 28.82 a 5.93 b
LFP 257.71 d 167.20 ab 4.31 b 86.52 a 26.50 b 9.91 ab
ICP1 269.24 c 166.62 ab 4.51 ab 85.20 a 26.51 b 10.10 ab
ICP2 285.13 b 167.81 a 4.82 ab 86.83 a 26.52 b 11.01 ab
ICP3 306.61 a 164.53 b 5.04 a 87.11 a 26.52 b 11.60 a
扬稻6号
Yangdao 6
0N 138.33 e 176.30 d 2.44 d 91.63 a 30.33 a 6.78 d
LFP 184.17 d 197.83 a 3.65 c 87.27 ab 29.44 bc 9.35 c
ICP1 203.49 c 193.52 b 3.94 b 88.72 ab 29.68 bc 10.37 b
ICP2 213.99 b 191.80 bc 4.10 ab 90.71 a 29.76 b 11.08 a
ICP3 225.21 a 189.70 c 4.27 a 90.20 a 29.84 b 11.49 a
金香玉1号
Jinxiangyu 1
0N 181.67 d 181.97 e 3.31 d 85.43 a 26.45 a 7.47 d
LFP 242.50 c 205.47 a 4.98 c 79.52 b 25.56 c 10.12 c
ICP1 262.20 b 203.00 b 5.32 b 79.75 b 25.49 c 10.82 b
ICP2 278.08 a 201.98 c 5.62 a 80.70 ab 25.62 bc 11.61 a
ICP3 283.07 a 199.00 d 5.63 a 81.50 ab 25.98 b 11.93 a
方差分析 Analysis of variance
处理 Treatment (T) ** ** ** NS NS **
品种 Variety (V) ** ** ** * ** **
处理 × 品种 T × V NS NS * NS NS NS

Fig. 1

Effects of cultivation optimization on soluble starch synthase (SSS) and granule-bound starch synthase (GBSS) activity at grain filling stage in rice DAH1: the first day after heading; DAH14: 14 days after heading; DHA26: 26 days after heading; DAH39: 39 days after heading. Y2640: Yongyou 2640; W24: Wuyunjing 24; YD6: Yangdao 6; JXY1: Jinxiangyu 1. Treatments are the same as those given in Table 1."

Table 2

Effects of cultivation optimization on RVA characteristics of rice starch"

品种
Variety
处理
Treatment
峰值黏度
Peak viscosity
(cP)
热浆黏度
Hot viscosity
(cP)
崩解值Breakdown
(cP)
最终黏度
Final viscosity
(cP)
消减值
Setback
(cP)
峰值时间
Peak time
(min)
糊化温度
Pasting temperature
(℃)
甬优2640
Yongyou 2640
0N 2696 a 2095 a 600.67 a 2897 a 200.67 c 6.61 e 72.87 d
LFP 2126 e 1710 d 416.00 d 2399 e 273.00 a 6.79 a 75.89 a
ICP1 2202 d 1733 cd 469.00 c 2457 cd 255.33 b 6.73 b 74.87 b
ICP2 2238 c 1752 c 486.33 bc 2484 c 246.00 bc 6.71 c 74.60 b
ICP3 2293 b 1796 c 497.00 b 2536 b 243.67 bc 6.68 d 74.22 c
武运粳24号
Wuyunjing 24
0N 2970 a 2174 a 796.67 a 3106 a 135.67 d 6.57 e 71.42 e
LFP 2149 e 1695 d 453.33 c 2447 e 298.33 a 6.74 a 74.26 a
ICP1 2331 d 1706 d 625.00 bc 2580 d 249.33 b 6.69 b 73.26 b
ICP2 2418 c 1785 c 633.67 bc 2656 c 237.67 bc 6.66 c 72.88 c
ICP3 2542 b 1896 b 646.00 b 2766 b 224.33 c 6.64 d 72.67 d
扬稻6号
Yangdao 6
0N 2527 a 1884 a 457.65 a 2655 a 187.45 d 6.37 d 71.63 d
LFP 2152 d 1421 d 385.30 c 2229 d 275.00 a 6.64 a 73.52 a
ICP1 2224 c 1464 c 427.55 b 2356 c 242.00 b 6.60 b 72.88 b
ICP2 2239 c 1494 c 428.35 b 2361 c 230.00 b 6.55 b 72.25 c
ICP3 2287 b 1523 b 419.20 a 2540 b 216.20 c 6.46 c 72.18 c
金香玉1号
Jinxiangyu 1
0N 2849 a 2332 a 656.30 a 2886 a 296.70 d 6.12 d 70.25 d
LFP 2207 d 1651 d 564.30 d 2465 d 367.00 a 6.44 a 72.65 a
ICP1 2255 c 1688 c 572.25 cd 2558 c 343.70 b 6.37 b 72.32 b
ICP2 2310 c 1725 c 587.60 c 2570 c 336.40 c 6.31 b 72.26 c
ICP3 2421 b 1825 b 618.00 b 2638 b 332.35 c 6.26 c 72.18 c

Fig. 2

Effects of cultivation optimization on XRD patterns of rice starch Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Table 3

Effects of cultivation optimization on relative crystallinity and IR ratio of rice starch"

品种
Variety
处理
Treatment
相对结晶度
Relative crystallinity (%)
IR ratio
1045/1022 cm-1 1022/995 cm-1
扬稻6号
Yangdao 6
0N 23.8 c 0.58 e 1.30 a
LFP 27.9 a 0.65 a 1.08 e
ICP1 26.3 b 0.63 b 1.15 d
ICP2 25.7 b 0.61 c 1.20 c
ICP3 25.14 b 0.59 d 1.24 b
金香玉1号
Jinxiangyu 1
0N 21.8 c 0.52 e 1.28 a
LFP 29.4 a 0.62 a 1.04 e
ICP1 25.8 b 0.59 b 1.12 d
ICP2 25.6 b 0.56 c 1.16 c
ICP3 25.6 a 0.54 d 1.22 b

Fig. 3

Effects of cultivation optimization on FTIR spectra of rice starch Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 4

Effects of cultivation optimization on starch solubility and swelling capacity Different letters on the column indicate significant difference between different treatments in the same stage at the 0.05 probability level by LSD test. Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 5

Effects of cultivation optimization on root-shoot ratio and root dry weight of rice at grain filling stage DAH1: the first day after heading; DAH14: 14 days after heading; DHA26: 26 days after heading; DAH39: 39 days after heading. Different letters on the column indicate significant difference between different treatments in the same stage at the 0.05 probability level by LSD test. Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 6

Effects of cultivation optimization on root length and root diameter of rice at grain filling stage DAH1: the first day after heading; DAH14: 14 days after heading; DHA26: 26 days after heading; DAH39: 39 days after heading. Different letters on the column indicate significant difference between different treatments in the same stage at the 0.05 probability level by LSD test. Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 7

Effects of cultivation optimization on root oxidation activity and root bleeding intensity of rice at grain filling stage DAH1: the first day after heading; DAH14: 14 days after heading; DHA26: 26 days after heading; DAH39: 39 days after heading. Different letters on the column indicate significant difference between different treatments in the same stage at the 0.05 probability level by LSD test. Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 8

Effects of cultivation optimization on Z + ZR contents in roots and root bleeding sap of rice at grain filling stage DAH1: the first day after heading; DAH14: 14 days after heading; DHA26: 26 days after heading; DAH39: 39 days after heading. Different letters on the column indicate significant difference between different treatments in the same stage at the 0.05 probability level by LSD test. Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 9

Effects of cultivation optimization on total organic acids in root exudates of rice at grain filling stage DAH1: the first day after heading; DAH14: 14 days after heading; DHA26: 26 days after heading; DAH39: 39 days after heading. Different letters on the column indicate significant difference between different treatments in the same stage at the 0.05 probability level by LSD test. Treatments are the same as those given in Table 1. Abbreviations for the varieties are the same as those given in Fig. 1."

Fig. 10

Correlation of root characteristics with yield and grain quality SSS: soluble starch synthase; GBSS: granule-bound starch synthase. *, **, and *** indicate significant differences at the 0.05, 0.01, and 0.001 probability levels, respectively."

[1] Fu Y Y, Gu Q Q, Dong Q, Zhang Z H, Lin C, Hu W M, Pan R H, Guan Y J, Hu J. Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism. Molecules, 2019, 24: 1395.
doi: 10.3390/molecules24071395
[2] 陈海飞, 冯洋, 蔡红梅, 徐芳森, 周卫, 刘芳, 庞再明, 李登荣. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20: 1319-1328.
Chen H F, Feng Y, Cai H M, Xu F S, Zhou W, Liu F, Pang Z M, Li D R. Effect of the interaction of nitrogen and transplanting density on the rice population structure and grain yield in low-yield paddy fields. J Plant Nutr Fert, 2014, 20: 1319-1328 (in Chinese with English abstract).
[3] Carrijo D R, Lundy M E, Linquist B A. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002
[4] 董明辉, 陈培峰, 顾俊荣, 乔中英, 黄萌, 朱赟德, 赵步洪. 麦秸还田和氮肥运筹对超级杂交稻茎鞘物质运转与籽粒灌浆特性的影响. 作物学报, 2013, 39: 673-681.
doi: 10.3724/SP.J.1006.2013.00673
Dong M H, Chen P F, Gu J R, Qiao Z Y, Huang M, Zhu Y D, Zhao B H. Effects of wheat straw-residue applied to field and nitrogen management on photosynthate transportation of stem and sheath and grain-filling characteristics in super hybrid rice. Acta Agron Sin, 2013, 39: 673-681 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00673
[5] Zhu C H, Ou-yang Y Y, Diao Y, Yu J Q, Luo X, Zheng J G, Li X Y. Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China. J Integr Agric, 2021, 20: 581-592.
doi: 10.1016/S2095-3119(20)63456-6
[6] Raquel S A, Buyung A F, Sholih N H, Hayat U, Avishek D. Nitrogen fertilizer and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation. Annu Appl Biol, 2020, 176: 314-327.
doi: 10.1111/aab.v176.3
[7] Chong H T, Jiang Z Y, Shang L Y, Shang C, Deng J, Zhang Y B, Huang L Y. Dense planting with reduced nitrogen input improves grain yield, protein quality, and resource use efficiency in hybrid rice. J Plant Growth Regul, 2022, 42: 960-972.
doi: 10.1007/s00344-022-10606-4
[8] Fu Y Q, Zhong X H, Zeng J H, Liang K M, Pan J F, Xin Y F, Liu Y Z, Hu X Y, Peng B L, Chen R B, Hu R, Huang N R. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J Integr Agric, 2021, 20: 565-580.
doi: 10.1016/S2095-3119(20)63380-9
[9] Zhao G, Miao Y, Wang H, Su M, Fan M, Zhang F, Jiang R, Zhang Z, Liu C, Liu P, Ma D. A preliminary precision rice management system for increasing both grain yield and nitrogen use efficiency. Field Crops Res, 2013, 154: 23-30.
doi: 10.1016/j.fcr.2013.07.019
[10] Mao T, Li X, Jiang S K, Tang L, Wang J Y, Xu H, Xu Z J. Discussion on strategy of grain quality improvement for super high yielding japonica rice in Northeast China. J Integr Agric, 2017, 16: 1075-1083.
doi: 10.1016/S2095-3119(16)61563-0
[11] Dou Z, Tang S, Li G H, Liu Z H, Ding C Q, Chen L, Wang S H, Ding Y F. Application of nitrogen fertilizer at heading stage improves rice quality under elevated temperature during grain-filling stage. Crop Sci, 2017, 57: 2183-2192.
doi: 10.2135/cropsci2016.05.0350
[12] 严凯, 蒋玉兰, 唐纪元, 戴其根. 盐碱地条件下施氮量和栽插密度对水稻产量和品质的影响. 中国土壤与肥料, 2018, (2): 67-74.
Yan K, Jiang Y L, Tang J Y, Dai Q G. Effects of nitrogen fertilizer rate and transplanting density on yield and grain quality of rice on saline-alkaline land. Soil Fert Sci China, 2018, (2): 67-74 (in Chinese with English abstract).
[13] Zhao Y F, Ran X, Yin T Y, Guo H, Zhang X Y, Shen Y Y, Liu W Z, Ding Y F, Tang S. Nitrogen alleviated the deterioration of rice quality by affecting the accumulation of grain storage protein under elevated temperature. J Plant Growth Regul, 2022, 42: 3388-3404.
doi: 10.1007/s00344-022-10798-9
[14] Burrell M M. Starch: the need for improved quality or quantity-an overview. J Exp Bot, 2003, 54: 451-456.
pmid: 12508055
[15] Perez Herrera M, Vasanthan T, Hoover R. Characterization of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chem, 2016, 93: 323-330.
doi: 10.1094/CCHEM-08-15-0175-R
[16] Xie X B, Quintana M R, Sandhu N, Subedi S R, Zou Y B, Rutkoski J E, Henry A. Establishment method affects rice root plasticity in response to drought and its relationship with grain yield stability. J Exp Bot, 2021, 72: 5208-5220.
doi: 10.1093/jxb/erab214
[17] Zhang Y J, Xu J N, Cheng Y D, Wang C, Liu G S, Yang J C. The effects of water and nitrogen on the roots and yield of upland and paddy rice. J Integr Agric, 2020, 19: 1363-1374.
doi: 10.1016/S2095-3119(19)62811-X
[18] Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice. J Integr Agric, 2012, 11: 920-926.
doi: 10.1016/S2095-3119(12)60082-3
[19] Yan F J, Sun Y J, Xu H, Yin Y Z, Wang H Y, Wang C Y, Guo C C, Yang Z Y, Sun Y Y, Ma J. Effects of wheat straw mulch application and nitrogen management on rice root growth, dry matter accumulation and rice quality in soils of different fertility. Paddy Water Environ, 2018, 16: 507-518.
doi: 10.1007/s10333-018-0643-1
[20] 钟旭华, 黄农荣. 水稻结实期根系活性与稻米垩白形成的相关性初步研究. 中国水稻科学, 2005, 19: 471-474.
Zhong X H, Huang N R. Preliminary study on the relationship between rice grain chalkiness and root activity at grain-filling stage. Chin J Rice Sci, 2005, 19: 471-474 (in Chinese with English abstract).
[21] Yang J C, Chang E H, Zhang W J, Wang Z Q, Liu L J. Relationship between root chemical signals and grain quality of rice. Agric Sci China, 2007, 6: 47-57.
doi: 10.1016/S1671-2927(07)60016-9
[22] 张耗, 黄钻华, 王静超, 王志琴, 杨建昌. 江苏中籼水稻品种演进过程中根系形态生理性状的变化及其与产量的关系. 作物学报, 2011, 37: 1020-1030.
doi: 10.3724/SP.J.1006.2011.01020
Zhang H, Huang Z H, Wang J C, Wang Z Q, Yang J C. Changes in morphological and physiological traits of roots and their relationships with grain yield during the evolution of mid-season indica rice cultivars in Jiangsu province. Acta Agron Sin, 2011, 37: 1020-1030 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2011.01020
[23] Chu G, Chen T T, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with water productivity in water-saving and drought-resistant rice. Field Crops Res, 2014, 165: 36-48.
doi: 10.1016/j.fcr.2014.06.026
[24] Zhang H, Chen T T, Wang Z Q, Yang J C, Zhang J H. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J Exp Bot, 2010, 61: 3719-3733.
doi: 10.1093/jxb/erq198 pmid: 20584789
[25] 徐国伟, 李帅, 赵永芳, 陈明灿, 李友军. 秸秆还田与施氮对水稻根系分泌物及氮素利用的影响研究. 草业学报, 2014, 23(2): 140-146.
doi: 10.11686/cyxb20140217
Xu G W, Li S, Zhao Y F, Chen M C, Li Y J. Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice. Acta Pratac Sin, 2014, 23(2): 140-146 (in Chinese with English abstract).
[26] 陈翠兰, 张本山, 陈福泉. 淀粉结晶度计算的新方法. 食品科学, 2011, 32(9): 68-71.
doi: 10.7506/spkx1002-6630-201109015
Chen C L, Zhang B S, Chen F Q. A novel method for calculating starch crystallinity. Food Sci, 2011, 32(9): 68-71 (in Chinese with English abstract).
[27] 周天阳. 栽培措施对超级稻产量和品质的影响. 扬州大学硕士学位论文, 江苏扬州, 2020.
Zhou T Y. Effects of Cultivation Treatments on Yield and Quality of Super Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2020 (in Chinese with English abstract).
[28] 吴培, 陈天晔, 袁嘉琦, 黄恒, 邢志鹏, 胡雅杰, 朱明, 李德剑, 刘国林, 张洪程. 施氮量和直播密度互作对水稻产量形成特征的影响. 中国水稻科学, 2019, 33: 269-281.
doi: 10.16819/j.1001-7216.2019.8112
Wu P, Chen T Y, Yuan J Q, Huang H, Xing Z P, Hu Y J, Zhu M, Li D J, Liu G L, Zhang H C. Effects of interaction between nitrogen application rate and direct-sowing density on yield formation characteristics of rice. Chin J Rice Sci, 2019, 33: 269-281 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2019.8112
[29] 徐国伟, 赵喜辉, 江孟孟, 陆大克, 陈明灿. 轻度干湿交替灌溉协调水稻根冠生长、提高产量及氮肥利用效率. 植物营养与肥料学报, 2021, 27: 1388-1396.
Xu G W, Zhao X H, Jiang M M, Lu D K, Chen M C. Alternate wetting and moderate drying irrigation harmonize rice root and shoot growth, improves grain yield and nitrogen use efficiency. J Plant Nutr Fert, 2021, 27: 1388-1396 (in Chinese with English abstract).
[30] 谢桂先, 荣湘民, 刘强, 彭建伟, 朱红梅, 于方明. 肥料不同配比对水稻产量与蛋白质含量的影响. 湖南农业大学学报(自然科学版), 2004, 30: 405-410.
Xie G X, Rong X M, Liu Q, Peng J W, Zhu H M, Yu F M. Effects of different combined fertilization on yield and protein contents of rice grain. J Hunan Agric Univ (Nat Sci Edn), 2004, 30: 405-410 (in Chinese with English abstract).
[31] Zhang H, Hou D P, Peng X L, Ma B J, Shao S M, Jing W J, Gu J F, Liu L J, Wang Z Q, Liu Y Y, Yang J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. J Integr Agric, 2019, 18: 2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[32] Zhou T Y, Li Z K, Li E P, Wang W L, Yuan L M, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. Optimization of nitrogen fertilization improves rice quality by affecting the structure and physicochemical properties of starch at high yield levels. J Integr Agric, 2022, 21: 1576-1592
doi: 10.1016/S2095-3119(21)63678-X
[33] 韩丽君. 增施秸秆快腐剂和硝化抑制剂对水稻氮肥利用效率的影响. 扬州大学硕士学位论文, 江苏扬州, 2022.
Han L J. Effects of Increased Application of Straw Preservative and Nitrification Inhibitor on Nitrogen Use Efficiency of Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2022 (in Chinese with English abstract).
[34] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016, 42: 1026-1036.
doi: 10.3724/SP.J.1006.2016.01026
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016, 42: 1026-1036 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2016.01026
[35] 秦华东, 江立庚, 肖巧珍, 徐世宏. 水分管理对免耕抛秧水稻根系生长及产量的影响. 中国水稻科学, 2013, 27: 209-212.
Qin H D, Jiang L G, Xiao Q Z, Xu S H. Effect of moisture management on rice root growth and rice grain yield at different growth stages under no tillage. Chin J Rice Sci, 2013, 27: 209-212 (in Chinese with English abstract).
doi: 10.3969/j.issn.10017216.2013.02.015
[36] 郁燕, 彭显龙, 刘元英, 张慧, 陈丽楠. 前氮后移对寒地水稻根系吸收能力的影响. 土壤, 2011, 43: 548-553.
Yu Y, Peng X L, Liu Y Y, Zhang H, Chen L N. Effects of N application at later stage on absorbability of rice root in cold area. Soils, 2011, 43: 548-553 (in Chinese with English abstract).
[37] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应. 作物学报, 2020, 46: 1430-1447.
doi: 10.3724/SP.J.1006.2020.02017
Li M, Luo D Q, Jiang X H, Jiang M J, Ji G M, Li L J, Zhou W J. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions. Acta Agron Sin, 2020, 46: 1430-1447 (in Chinese with English abstract).
[38] Zhang H M, Xu M G, Shi X J, Li Z Z, Huang Q H, Wang X J. Rice yield, potassium uptake and apparent balance under long-term fertilization in rice-based cropping systems in southern China. Nutr Cycl Agroecosys, 2010, 88: 341-349.
doi: 10.1007/s10705-010-9359-3
[39] 杨胜玲, 黄兴成, 刘彦伶, 李渝, 张艳, 张雅蓉, 张文安. 长期有机肥无机肥配施对水稻氮素吸收、转运及产量的影响. 中国稻米, 2021, 27(6): 63-68.
doi: 10.3969/j.issn.1006-8082.2021.06.013
Yang S L, Huang X C, Liu Y L, Li Y, Zhang Y, Zhang Y R, Zhang W A. Effects of long-term combined application of organic and inorganic fertilizers on nitrogen uptake and utilization in rice. China Rice, 2021, 27(6): 63-68 (in Chinese with English abstract).
doi: 10.3969/j.issn.1006-8082.2021.06.013
[40] 李文涛, 于春晓, 张丽莉, 张伟明, 杨立杰, 杨恒哲, 武开阔, 李东坡, 武志杰. 有机无机配施对水稻产量及氮肥残效的影响. 中国土壤与肥料, 2022, 297(1): 63-72.
Li W T, Yu C X, Zhang L L, Zhang W M, Yang L J, Yang H Z, Wu K K, Li D P, Wu Z J. Effect of organic and inorganic fertilizer on rice yield and nitrogen residual effect. Soil Fert Sci China, 2022, 297(1): 63-72 (in Chinese with English abstract).
[41] Zhang W Y, Xu Y J, Wang Z Q, Liu L J, Zhang H, Gu J F, Zhang J H, Yang J C. Alternate wetting and drying irrigation combined with the proportion of polymer-coated urea and conventional urea rates increases grain yield, water and nitrogen use efficiencies in rice. Field Crops Res, 2021, 268: 108165.
doi: 10.1016/j.fcr.2021.108165
[42] Guan X J, Chen J, Chen X M, Xie J, Deng G Q, Hu L Z, Li Y, Qian Y F, Qiu C F, Peng C R. Root characteristics and yield of rice as affected by the cultivation pattern of strong seedlings with increased planting density and reduced nitrogen application. J Integr Agric, 2022, 21: 1278-1289.
doi: 10.1016/S2095-3119(20)63595-X
[43] Peng D L, Cai T, Yin Y P, Yang W B, Ni Y L, Yang D Q, Wang Z L. Exogenous application of abscisic acid or gibberellin acid has different effects on starch granule size distribution in grains of wheat. J Integr Agric, 2013, 12: 1551-1559.
doi: 10.1016/S2095-3119(13)60557-2
[44] 孔祥胜. 不同栽培方式对水稻产量和氮肥利用效率的影响. 扬州大学硕士学位论文, 江苏扬州, 2017.
Kong X S. Effect of Different Cultivation Patterns on Rice Yield and Nitrogen Use Efficiency. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[45] 金正勋, 同拉嘎, 李丹, 李明月, 潘冬, 张玉磊, 王海微, 韩云飞, 张忠臣. 灌浆成熟期氮素营养对水稻增产及淀粉品质的影响. 东北农业大学学报, 2017, 48(4): 1-6.
Jin Z X, Tonglaga, Li D, Li M Y, Pan D, Zhang Y L, Wang H W, Han Y F, Zhang Z C. Effect of grain-filling nitrogen on yield increasing and starch quality in rice. J Northeast Agric Univ, 2017, 48(4): 1-6 (in Chinese with English abstract).
[46] 刘萍, 邵彩虹, 张红林, 刘光荣. 基于季节性降雨的双季稻生育后期干湿交替灌溉对稻谷产量及品质的影响. 作物杂志, 2021, (2): 153-159.
Liu P, Shao C H, Zhang H L, Liu G R. Effects of dry-wet alternate irrigation on double cropping rice yield and quality during late development stage under seasonal rain condition. Crops, 2021, (2): 153-159 (in Chinese with English abstract).
[47] 刘立军, 李鸿伟, 赵步洪, 王志琴, 杨建昌. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26: 77-84.
Liu L J, Li H W, Zhao B H, Wang Z Q, Yang J C. Effects of alternate drying-wetting irrigation during grain filling on grain quality and its physiological mechanisms in rice. Chin J Rice Sci, 2012, 26: 77-84 (in Chinese with English abstract).
[48] 胡香玉, 郭九信, 田广丽, 高丽敏, 沈其荣, 郭世伟. 不同供氮模式对水稻根系形态及生理特征的影响. 中国水稻科学, 2017, 31: 72-80.
doi: 10.16819/j.1001-7216.2017.6050
Hu X Y, Guo J X, Tian G L, Gao L M, Shen Q R, Guo S W. Effects of different nitrogen supply patterns on root morphological and physiological characteristics of rice. Chin J Rice Sci, 2017, 31: 72-80 (in Chinese with English abstract).
doi: 10.16819/j.1001-7216.2017.6050
[49] 周群, 袁锐, 朱宽宇, 王志琴, 杨建昌. 不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点. 作物学报, 2022, 48: 2285-2299.
doi: 10.3724/SP.J.1006.2022.12070
Zhou Q, Yuan R, Zhu K Y, Wang Z Q, Yang J C. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates. Acta Agron Sin, 2022, 48: 2285-2299 (in Chinese with English abstract).
[50] 朱宽宇. 氮敏感性不同粳稻品种的特征与机制. 扬州大学博士学位论文, 江苏扬州, 2021.
Zhu K Y. Characteristics and Mechanism of the Japonica Rice Varieties Differing in Responses to Nitrogen Rates. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[51] 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响. 中国农业科学, 2021, 54: 1525-1536.
doi: 10.3864/j.issn.0578-1752.2021.07.016
Hu J J, Zhong C, Hu Z H, Zhang J H, Cao X C. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice. Sci Agric Sin, 2021, 54: 1525-1536 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.07.016
[52] 杨建昌, 常二华, 张文杰, 王志琴, 刘立军. 根系化学讯号与稻米品质的关系. 中国农业科学, 2006, 39: 38-47.
Yang J C, Chang E H, Zhang W J, Wang Z Q, Liu L J. Relationship between root chemical signals and grain quality of rice. Sci Agric Sin, 2006, 39: 38-47 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.at-2005-6137
[53] 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响. 作物学报, 2023, 49: 808-820.
doi: 10.3724/SP.J.1006.2023.22032
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice. Acta Agron Sin, 2023, 49: 808-820 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22032
[54] Yang X Y, Bi J G, Gilbert R G, Li G H, Liu Z H, Wang S H, Ding Y F. Amylopectin chain length distribution in grains of japonica rice as affected by nitrogen fertilizer and genotype. J Cereal Sci, 2016, 71: 230-238.
doi: 10.1016/j.jcs.2016.09.003
[55] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36-46 (in Chinese with English abstract).
[56] Zhao C, Chen M Y, Li X F, Dai Q G, Xu K, Guo B W, Hu Y J, Wang W L, Huo Z Y. Effects of soil types and irrigation modes on rice root morphophysiological traits and grain quality. Agronomy, 2021, 11: 120.
doi: 10.3390/agronomy11010120
[1] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[2] ZHANG Li-Jie, ZHOU Hai-Yu, MUHAMMAD Zeshan, MUNSIF Ali Shad, YANG Ming-Chong, LI Bo, HAN Shi-Jian, ZHANG Cui-Cui, HU Li-Hua, WANG Ling-Qiang. Functional analysis of OsFLZ13, the gene encoding a small peptide zinc finger protein in rice [J]. Acta Agronomica Sinica, 2024, 50(3): 543-555.
[3] HE Jia-Qi, BAI Yi-Xiong, YAO Xiao-Hua, YAO You-Hua, AN Li-Kun, WANG Yu-Qin, WANG Xiao-Ping, LI Xin, CUI Yong-Mei, WU Kun-Lun. Effects of cutting on the recovery characteristics, grain and straw yield, and quality traits of Qingke [J]. Acta Agronomica Sinica, 2024, 50(3): 747-755.
[4] LI Bo-Yang, YE Yin, CHU Rui-Wen, JING Miao, ZHANG Sui-Qi, YAN Jia-Kun. Effects of biochar application on dry matter accumulation, transport, and distribution of foxtail millet and soil physicochemical properties [J]. Acta Agronomica Sinica, 2024, 50(3): 695-708.
[5] SHANG Yong-Pan, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, LI Yue, CHAI Jian, LYU Han-Qiang, YANG Xue-Hui, WANG Feng. Effects of green manure application methods on dry matter accumulation, distribution, and yield of maize in oasis irrigation area [J]. Acta Agronomica Sinica, 2024, 50(3): 686-694.
[6] WEI Huan-He, ZHANG Xiang, ZHU Wang, GENG Xiao-Yu, MA Wei-Yi, ZUO Bo-Yuan, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen. Effects of salinity stress on grain-filling characteristics and yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 734-746.
[7] XIAO Zheng-Wu, HU Li-Qin, LI Xing, XIE Jia-Xin, LIAO Cheng-Jing, KANG Yu-Ling, Hu Yu-Ping, ZHANG Ke-Qian, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Quality differences between noodle rice grown in early and late seasons [J]. Acta Agronomica Sinica, 2024, 50(2): 451-463.
[8] NIE Xiao-Yu, LI Zhen, WANG Tian-Yao, ZHOU Yuan-Wei, XU Zheng-Hua, WANG Jing, WANG Bo, KUAI Jie, ZHOU Guang-Sheng. Effect of planting density and weak light stress at pod-filling stage on seed oil accumulation in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(2): 493-505.
[9] XIE Wei, HE Peng, MA Hong-Liang, LEI Fang, HUANG Xiu-Lan, FAN Gao-Qiong, YANG Hong-Kun. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat [J]. Acta Agronomica Sinica, 2024, 50(2): 440-450.
[10] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[11] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[12] WU Yu, LIU Lei, CUI Ke-Hui, QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing. Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage [J]. Acta Agronomica Sinica, 2024, 50(2): 414-424.
[13] XU Ran, YANG Wen-Ye, ZHU Jun-Lin, CHEN Song, XU Chun-Mei, LIU Yuan-Hui, ZHANG Xiu-Fu, WANG Dan-Ying, CHU Guang. Effects of different irrigation regimes on grain yield and water use efficiency in japonica-indica hybrid rice cultivar Yongyou 1540 [J]. Acta Agronomica Sinica, 2024, 50(2): 425-439.
[14] SHAO Yang, GUO Yan-Ping, ZHOU Bing-Yue, ZHANG Feng, ZHANG Xin-Ming, WANG Yu-Ping. Analysis of genotype × environment interaction and stability of yield components in faba bean lines [J]. Acta Agronomica Sinica, 2024, 50(1): 149-160.
[15] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .