Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 414-424.doi: 10.3724/SP.J.1006.2024.32015


Changes of root characteristics of super hybrid rice variety contributing to high nitrogen accumulation under low nitrogen application at seedling stage

WU Yu**(), LIU Lei**(), CUI Ke-Hui*(), QI Xiao-Li, HUANG Jian-Liang, PENG Shao-Bing   

  1. National Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agricultural and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-04-24 Accepted:2023-09-13 Online:2024-02-12 Published:2023-10-07
  • Contact: *E-mail: cuikehui@mail.hzau.edu.cn, Tel: 027-87288380
  • About author:**Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(31671598)


Crop root system plays an important role in nitrogen uptake. In this study, two rice varieties, conventional rice variety Huanghuazhan (HHZ) and super hybrid rice variety Yangliangyou 6 (YLY6), were grew hydroponically under high nitrogen (HN) and low nitrogen (LN) treatments to investigate the changes of root characteristics and their relationships with nitrogen accumulation at seedling stage. Compared to HN, LN significantly decreased the total N accumulation in HHZ by 19.7% and had no substantial effect in YLY6. Under LN, root dry weight, the total root length, root surface area, and root tips in YLY6 significantly increased by 41.3%, 57.1%, 74.9%, and 20.6%, respectively. However, these four morphological parameters had no significant change in HHZ. Under LN, root diameter and root cortical area in YLY6 significantly increased by 12.4% and 24.2%, respectively. However, the two parameters and root stele diameter in HHZ significantly reduced by 12.0%, 21.9%, and 11.4%, respectively. In YLY6, LN significantly up-regulated the relative expression level of root ammonium transporter genes (AMT2;1, AMT2;3, AMT3;1, and AMT3;2) by 195.6%, 29.3%, 314.9%, and 388.9%, respectively, and increased the relative expression level of glutamine synthetase gene GS1;1 by 158.2%. However, LN had no effect on the relative expression level of the five genes in HHZ. Total nitrogen accumulation was significantly and positively correlated with the root characteristics (but thickness of root cortical sclerenchyma) and expression of above-mentioned genes under LN. These results indicated that the enhanced positive responses of above-mentioned root characteristics contributed to high nitrogen accumulation in YLY6 seedlings under LN. Developing varieties with root positive responses to nitrogen reduction should be a considerable target for green rice production.

Key words: rice (Oryza sativa L.), low nitrogen application, changes of root characteristics, nitrogen accumulation, ammonium transporter, glutamine synthetase

Table 1

The qRT-PCR primers for AMT, GS, GOGAT, and Actin genes"

Gene name
Forward sequences (5'-3')
Reverse sequences (5'-3')

Table 2

Effects of low nitrogen application on biomass and nitrogen accumulation in rice"

Root dry weight
(g plant-1)
Shoot dry weight
(g plant-1)
Root N content
(mg g-1)
Shoot N content
(mg g-1)
Total N accumulation
(mg plant-1)
HHZ HN 0.192±0.019 a 0.683±0.070 a 29.47±1.42 a 43.63±1.93 a 35.36±2.71 a
LN 0.230±0.026 a 0.672±0.052 a 21.63±2.25 b 34.92±1.06 b 28.40±1.59 b
YLY6 HN 0.208±0.017 b 1.017±0.030 b* 30.98±0.83 a 47.42±1.89 a 54.70±3.73 a*
LN 0.415±0.027 a* 1.388±0.158 a* 19.38±0.48 b 32.24±1.33 b 52.64±3.82 a*
ANOVA 氮Nitrogen (N) +++ ++ ++ +++ +
品种Variety (V) +++ +++ ns ns +++
氮×品种N×V ++ ++ + + ns

Table 3

Effects of low nitrogen application on root morphological characteristics in rice"

Total root length
(cm plant-1)
Root surface area
(cm2 plant-1)
Root volume
(cm3 plant-1)
Root tips
(No. plant-1)
HHZ HN 1822±269 a 181±20 a 1.42±0.11 b 26,678±5793 a
LN 1809±159 a 216±16 a 2.09±0.21 a 22,397±2879 a
YLY6 HN 2321±221 b 228±19 b 1.79±0.16 b 34,354±4079 b
LN 3280±256 a* 358±29 a* 3.12±0.28 a* 41,429±3964 a*
ANOVA 氮Nitrogen (N) + ++ ++ ns
品种Variety (V) +++ +++ +++ ++
氮×品种N×V ++ ++ ++ +

Table 4

Effects of low nitrogen application on root anatomical characteristics in rice"

Root diameter
Proportion of root cortical aerenchyma area (%)
Root cortical area
Thickness of root
cortical sclerenchyma (mm)
Root stele diameter (mm)
HHZ HN 989±33 a 0.62±0.53 b 0.64±0.04 a 6.50±0.26 a 228±8 a
LN 870±41 b 5.86±3.13 a 0.50±0.05 b 6.01±0.42 b 202±4 b
YLY6 HN 883±78 b 6.08±5.11 b* 0.52±0.09 b 8.26±0.38 a* 215±6 a
LN 993±25 a* 27.69±2.49 a* 0.64±0.04 a* 6.18±0.28 b 221±4 a*
ANOVA 氮Nitrogen (N) ns ++ ns ++ +
品种Variety (V) ns +++ ns ++ ns
氮×品种N×V ++ ++ + ++ ++

Fig. 1

Effects of low nitrogen application on the relative expression of root ammonium transporter genes in rice HHZ and YLY6 represent rice variety Huanghuazhan and Yangliangyou 6, respectively. HN and LN represent high and low nitrogen application rates, respectively. The values are averages ± standard deviations (STDEV); different letters placed on top of histograms denote significant difference between two nitrogen levels at P < 0.05 (LSD test) for the same variety; * indicates significant difference between HHZ and YLY6 at the 0.05 probability level (LSD test) in the same nitrogen level."

Fig. 2

Effects of low nitrogen application on the relative expression of root glutamate synthase (GOGAT) and glutamine synthetase (GS) genes in rice HHZ and YLY6 represent rice variety Huanghuazhan and Yangliangyou 6, respectively. HN and LN represent high and low nitrogen application rates, respectively. The values are averages ± standard deviations (STDEV); different letters placed on top of histograms denote significant difference between two nitrogen levels at P < 0.05 (LSD test) for the same variety; * indicates significant difference between HHZ and YLY6 at the probability 0.05 level (LSD test) in the same nitrogen level."

Table 5

Correlation of total nitrogen accumulation with root characteristics"

高氮处理HN 0.61 0.68 0.70 0.71* 0.57 -0.70 0.65 -0.70 0.94*** -0.70
低氮处理LN 0.99*** 0.96*** 0.95*** 0.92** 0.94*** 0.92** 0.96*** 0.91** 0.37 0.97***

Table 6

Correlation of total nitrogen accumulation with the relative expression level of root ammonium transporter genes"

氮处理Nitrogen treatment AMT1;1 AMT1;2 AMT1;3 AMT2;1 AMT2;2 AMT2;3 AMT3;1 AMT3;2 AMT3;3 AMT4
高氮处理HN 0.75* 0.11 -0.48 -0.31 -0.82* 0.31 0.26 0.05 0.63 0.44
低氮处理LN 0.89** 0.27 0.71 0.68 -0.79* 0.79* 0.86** 0.85** 0.39 0.48

Table 7

Correlation of the total nitrogen accumulation with the relative expression level of root nitrogen assimilation related genes"

Nitrogen treatment
高氮处理HN -0.17 0.08 -0.42 -0.93*** -0.05 -0.84** 0.54
低氮处理LN 0.77* 0.50 0.73* -0.76* 0.61 -0.55 0.92**
[1] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract).
[2] Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA, 2007, 104: 16402-16409.
doi: 10.1073/pnas.0708013104 pmid: 17923667
[3] Zhu Z L, Chen D L. Nitrogen fertilizer use in China- contributions to food production, impacts on the environment and best management strategies. Nutr Cycl Agroecosys, 2002, 63: 117-127.
doi: 10.1023/A:1021107026067
[4] 颜晓元, 夏龙龙, 遆超普. 面向作物产量和环境双赢的氮肥施用策略. 中国科学院院刊, 2018, 33(2): 177-183.
Yan X Y, Xia L L, Ti C P. Win-win nitrogen management practices for improving crop yield and environmental sustainability. Bull Chin Acad Sci, 2018, 33(2): 177-183 (in Chinese with English abstract).
[5] Cui Z L, Zhang H Y, Chen X P, Zhang C C, Ma W Q, Huang C D, Zhang W F, Mi G H, Miao Y H, Li X L, Gao Q, Yang J C, Wang Z H, Ye Y L, Guo S W, Lu J W, Huang J L, Lyu S H, Sun Y X, Liu Y Y, Peng X L, Ren J, Li S Q, Deng X P, Shi X J, Zhang Q, Yang Z P, Tang L, Wei C Z, Jia L L, Zhang J W, He M R, Tong Y N, Tang Q Y, Zhong X H, Liu Z H, Cao N, Kou C L, Ying H, Yin Y L, Jiao X Q, Zhang Q S, Fan M S, Jiang R F, Zhang F S. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[6] Peng S B, Buresh R J, Huang J L, Yang J C, Zou Y B, Zhong X H, Wang G H, Zhang F S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res, 2006, 96: 37-47.
doi: 10.1016/j.fcr.2005.05.004
[7] Peng S B, Buresh R J, Huang J L, Zhong X H, Zou Y B, Yang J C, Wang G H, Liu Y Y, Hu R F, Tang Q Y, Cui K H, Zhang F S, Dobermann A. Improving nitrogen fertilization in rice by site-specific N management: a review. Agron Sustain Dev, 2010, 30: 649-656.
doi: 10.1051/agro/2010002
[8] Shi X R, Hu K L, Batchelor W D, Liang H, Wu Y L, Wang Q H, Fu J, Cui X Q, Zhou F. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River. Agric Water Manag, 2020, 228: 105877.
doi: 10.1016/j.agwat.2019.105877
[9] Chen M, Chen G, Di D W, Kronzucker H J, Shi W M. Higher nitrogen use efficiency (NUE) in hybrid “super rice” links to improved morphological and physiological traits in seedling roots. J Plant Physiol, 2020, 251: 153191.
doi: 10.1016/j.jplph.2020.153191
[10] Lynch J P. Root phenotypes for improved nutrient capture: an under-exploited opportunity for global agriculture. New Phytol, 2019, 223: 548-564.
doi: 10.1111/nph.2019.223.issue-2
[11] Wang J, Song K, Sun L J, Qin Q, Sun Y F, Pan J J, Xue Y. Morphological and transcriptome analysis of wheat seedlings response to low nitrogen stress. Plants, 2019, 8: 98.
doi: 10.3390/plants8040098
[12] Wu Z M, Luo J S, Han Y L, Hua Y P, Guan C Y, Zhang Z H. Low nitrogen enhances nitrogen use efficiency by triggering NO3- uptake and its long-distance translocation. J Agric Food Chem, 2019, 67: 6736-6747.
doi: 10.1021/acs.jafc.9b02491
[13] 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23: 333-341.
Chen C, Gong H Q, Zhang J Z, Gao H J. Correlation between root morphology and nitrogen uptake of rice. J Plant Nutr Fert, 2017, 23: 333-341 (in Chinese with English abstract).
[14] Liu L J, Zhang H, Ju C X, Xiong Y W, Bian J L, Zhao B H, Yang J C. Changes in grain yield and root morphology and physiology of mid-season rice in the Yangtze river basin of China during the last 60 years. J Agric Sci, 2014, 6: 1-15.
[15] York L M, Galindo-Castañeda T, Schussler J R, Lynch J P. Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot, 2015, 66: 2347-2358.
[16] Yang J T, Schneider H M, Brown K M, Lynch J P. Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. J Exp Bot, 2019, 70: 5311-5325.
doi: 10.1093/jxb/erz293 pmid: 31231768
[17] 魏海燕, 张洪程, 张胜飞, 杭杰, 戴其根, 霍中洋, 许轲, 马群, 张庆, 刘艳阳. 不同氮利用效率水稻基因型的根系形态与生理指标的研究. 作物学报, 2008, 34: 429-436.
doi: 10.3724/SP.J.1006.2008.00429
Wei H Y, Zhang H C, Zhang S F, Hang J, Dai Q G, Huo Z Y, Xu K, Ma Q, Zhang Q, Liu Y Y. Root morphological and physiological characteristics in rice genotypes with different N use efficiencies. Acta Agron Sin, 2008, 34: 429-436 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00429
[18] 陈琛, 羊彬, 朱正康, 曹文雅, 罗刚, 周娟, 王祥菊, 于小凤, 袁秋梅, 仲军, 王熠, 黄建晔, 王余龙, 董桂春. 影响水稻遗传群体株系氮素高效吸收的主要根系性状. 中国水稻科学, 2015, 29: 390-398.
doi: 10.3969/j.issn.1001G7216.2015.04.08
Chen C, Yang B, Zhu Z K, Cao W Y, Luo G, Zhou J, Wang X J, Yu X F, Yuan Q M, Zhong J, Wang Y, Huang J Y, Wang Y L, Dong G C. Root traits affecting nitrogen efficient absorption in rice genetic populations. Chin J Rice Sci, 2015, 29: 390-398 (in Chinese with English abstract).
doi: 10.3969/j.issn.1001G7216.2015.04.08
[19] Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot, 2013, 112: 347-357.
doi: 10.1093/aob/mcs293
[20] Gao K, Chen F J, Yuan L X, Zhang F S, Mi G H. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress. Plant Cell Environ, 2015, 38: 740-750.
doi: 10.1111/pce.2015.38.issue-4
[21] Schneider H M, Yang J T, Brown K M, Lynch J P. Nodal root diameter and node number in maize (Zea mays L.) interact to influence plant growth under nitrogen stress. Plant Direct, 2021, 5: e00310.
doi: 10.1002/pld3.v5.3
[22] Zhang L, Du Y L, Li X G. Modern wheat cultivars have greater root nitrogen uptake efficiency than old cultivars. J Plant Nutr Soil Sci, 2020, 183: 192-199.
doi: 10.1002/jpln.v183.2
[23] 戢林, 李廷轩, 张锡洲, 余海英. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012, 45: 4770-4781.
doi: 10.3864/j.issn.0578-1752.2012.23.003
Ji L, Li T X, Zhang X Z, Yu H Y. Root morphological and activity characteristics of rice genotype with high nitrogen utilization efficiency. Sci Agric Sin, 2012, 45: 4770-4781 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2012.23.003
[24] Jiao X M, Wang H C, Yan J J, Kong X Y, Liu Y W, Chu J F, Chen X Y, Fang R X, Yan Y S. Promotion of BR biosynthesis by miR444 is required for ammonium-triggered inhibition of root growth. Plant Physiol, 2020, 182: 1454-1466.
doi: 10.1104/pp.19.00190 pmid: 31871071
[25] Gaur V S, Singh U S, Gupta A K, Kumar A. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. Mol Biol Rep, 2012, 39: 2233-2241.
doi: 10.1007/s11033-011-0972-2 pmid: 21678052
[26] Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol, 2003, 44: 1396-1402.
pmid: 14701935
[27] Sun H W, Li J, Song W J, Tao J Y, Huang S J, Chen S, Hou M M, Xu G H, Zhang Y L. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. J Exp Bot, 2015, 66: 2449-2459.
doi: 10.1093/jxb/erv030 pmid: 25784715
[28] Ranathunge K, El-Kereamy A, Gidda S, Bi Y M, Rothstein S J. AMT1;1 transgenic rice plants with enhanced NH4+ permeability show superior growth and higher yield under optimal and suboptimal NH4+ conditions. J Exp Bot, 2014, 65: 965-979.
doi: 10.1093/jxb/ert458 pmid: 24420570
[29] Ferreira LM, de Souza V M, Tavares O C H, Zonta E, Santa-Catarina C, de Souza S R, Fernandes M S, Santos L A. OsAMT1.3 expression alters rice ammonium uptake kinetics and root morphology. Plant Biotechnol Rep, 2015, 9: 221-229.
doi: 10.1007/s11816-015-0359-2
[30] Liu X, Hu B, Chu C. Nitrogen assimilation in plants: current status and future prospects. J Genet Genomics, 2022, 49: 394-404.
doi: 10.1016/j.jgg.2021.12.006
[31] Hu M Y, Zhao X Q, Liu Q, Hong X, Zhang W, Zhang Y J, Sun L J, Li H, Tong Y P. Transgenic expression of plastics glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnol J, 2018, 16: 1858-1867.
doi: 10.1111/pbi.2018.16.issue-11
[32] Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J, 2005, 42: 641-651.
doi: 10.1111/j.1365-313X.2005.02406.x pmid: 15918879
[33] Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi-Kobayashi M, Hayakawa T, Yamaya T. Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci, 2011, 2: 57.
[34] Funayama K, Kojima S, Tabuchi-Kobayashi M, Sawa Y, Nakayama Y, Hayakawa T, Yamaya T. Cytosolic glutamine synthetase1; 2 is responsible for the primary assimilation of ammonium in rice roots. Plant Cell Physiol, 2013, 54: 934-943.
doi: 10.1093/pcp/pct046
[35] Lee S, Marmagne A, Park J, Fabien C, Yim Y, Kim S, Kim T, Lim P O, Masclaux-Daubresse C, Nam H G. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. Plant J, 2020, 103: 7-20.
doi: 10.1111/tpj.v103.1
[36] Shi W M, Xu W F, Li S M, Zhao X Q, Dong G Q. Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil, 2010, 326: 291-302.
doi: 10.1007/s11104-009-0007-0
[37] Peng S, Khush G S, Virk P, Tang Q Y, Zou Y B. Progress in ideotype breeding to increase rice yield potential. Field Crops Res, 2008, 108: 32-38.
doi: 10.1016/j.fcr.2008.04.001
[38] Zhu G L, Peng S B, Huang J L, Cui K H, Wang F. Genetic improvements in rice yield and concomitant increases in radiation- and nitrogen-use efficiency in middle reaches of Yangtze river. Sci Rep, 2016, 6: 21049.
doi: 10.1038/srep21049 pmid: 26876641
[39] Yoshida S, Forno D A, Cook J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 2nd edn. Manila: The International Rice Research Institute Philippines Press, 1972. pp 57-63
[40] Zhu J W, Liang J, Xu Z H, Fan X R, Zhou Q S, Shen Q R, Xu G H. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen. AoB Plants, 2015, 7: 131.
[41] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[42] Yuan S, Nie L, Wang F, Huang L Y, Peng S B. Agronomic performance of inbred and hybrid rice cultivars under simplified and reduced-input practices. Field Crops Res, 2017, 210: 129-135.
doi: 10.1016/j.fcr.2017.05.024
[43] Ju C X, Buresh R J, Wang Z Q, Zhang H, Liu L J, Yang J C, Zhang J H. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application. Field Crops Res, 2015, 175: 47-55.
doi: 10.1016/j.fcr.2015.02.007
[44] Wei H Y, Hu L, Zhu Y, Xu D, Zheng L M, Chen Z F, Hu, Y J, Cui P Y, Guo B W, Dai Q G, Zhang H C. Different characteristics of nutrient absorption and utilization between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res, 2018, 218: 88-96.
doi: 10.1016/j.fcr.2018.01.012
[45] Abiko T, Obara M. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Plant Sci, 2014, 215: 76-83.
[46] Jia X, Wu G, Strock C, Li L, Dong S T, Zhang J W, Zhao B, Lynch J P, Liu P. Root anatomical phenotypes related to growth under low nitrogen availability in maize (Zea mays L.) hybrids. Plant Soil, 2022, 474: 265-276.
doi: 10.1007/s11104-022-05331-6
[47] Saengwilai P, Nord E A, Chimungu J G, Brown K M, Lynch J P. Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize. Plant Physiol, 2014, 166: 726-735.
doi: 10.1104/pp.114.241711 pmid: 24891611
[48] Ren B B, Wang M, Chen Y P, Sun G M, Li Y, Shen Q R, Guo S W. Water absorption is affected by the nitrogen supply to rice plants. Plant Soil, 2015, 396: 397-410.
doi: 10.1007/s11104-015-2603-5
[49] Huang L, Li W C, Tam N F Y, Ye Z H. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza sativa L.). J Environ Sci, 2019, 75: 296-306.
doi: 10.1016/j.jes.2018.04.005
[50] Kováčik J, Klejdus B, Štork F, Hedbavny J. Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants. J Agric Food Chem, 2011, 59: 5139-5149.
doi: 10.1021/jf104793b
[51] Yang D Q, Zhao J H, Bi C, Li L Y, Wang Z L. Transcriptome and proteomics analysis of wheat root reveals increasing NH4+/ NO3-ratio induced root lignification decreasing nitrogen utilization at seedling stage. Front Plant Sci, 2022, 12: 3251.
[52] Theerawitaya C, Supaibulwatana K, Tisarum R, Samphumphuang T, Chungloo D, Singh H P, Cha-um S. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. Protoplasma, 2022, 215: 1-15.
doi: 10.1007/BF01280298
[53] 张晨晖, 章岩, 李国辉, 杨子君, 查莹莹, 周驰燕, 许轲, 霍中洋, 戴其根, 郭保卫. 侧深施肥下水稻高产形成的根系形态及其生理变化特征. 作物学报, 2023, 49: 1039-1051.
doi: 10.3724/SP.J.1006.2023.22023
Zhang C H, Zhang Y, Li G H, Yang Z J, Zha Y Y, Zhou C Y, Xu K, Huo Z Y, Dai Q G, Guo B W. Root morphology and physiological characteristics for high yield formation under side-deep fertilization in rice. Acta Agron Sin, 2023, 49: 1039-1051 (in Chinese with English abstract).
[54] Huang L Y, Sun F, Yuan S, Peng S B, Wang F. Different mechanism underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Res, 2018, 216: 150-157.
doi: 10.1016/j.fcr.2017.11.019
[55] Yao F X, Huang J L, Cui K H, Nie L X, Xiang J, Liu X J, Wu W, Chen M X, Peng S B. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res, 2012, 126: 16-22.
doi: 10.1016/j.fcr.2011.09.018
[1] WANG Lyu, WU Yu-Hong, QIN Yu-Hang, DAN Ya-Bin, CHEN Hao, HAO Xing-Shun, TIAN Xiao-Hong. Effects of rice straw mulching combined with green manure retention and nitrogen reduction applications on dry matter quality accumulation, nitrogen transport and grain yield of rice [J]. Acta Agronomica Sinica, 2024, 50(3): 756-770.
[2] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[3] LIU Qiu-Xia, DONG Er-Wei, HAUNG Xiao-Lei, WANG Jin-Song, WANG Yuan, JIAO Xiao-Yan. Response of sorghum grain yield and quality to nitrogen application in different ecozones [J]. Acta Agronomica Sinica, 2023, 49(10): 2766-2776.
[4] ZHAO Ling, LIANG Wen-Hua, ZHAO Chun-Fang, WEI Xiao-Dong, ZHOU Li-Hui, YAO Shu, WANG Cai-Lin, ZHANG Ya-Dong. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agronomica Sinica, 2023, 49(1): 119-128.
[5] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[8] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[9] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[10] YAO Jia-Yu, YU Ji-Xiang, WANG Zhi-Qin, LIU Li-Jun, ZHOU Juan, ZHANG Wei-Yang, YANG Jian-Chang. Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice [J]. Acta Agronomica Sinica, 2021, 47(5): 894-903.
[11] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[12] Tian-Yao MENG,Jia-Lin GE,Xu-Bin ZHANG,Huan-He WEI,Yu LU,Xin-Yue LI,Yuan TAO,En-Hao DING,Gui-Sheng ZHOU,Qi-Gen DAI. A dynamic model and its characteristics for nitrogen accumulation after transplanting in medium-maturity types of Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2020, 46(5): 798-806.
[13] HAN Kang, YU Jing, SHI Xiao-Hua, CUI Shi-Xin, FAN Ming-Shou. Inversion of nitrogen accumulation in potato leaf with different spectral indices [J]. Acta Agronomica Sinica, 2020, 46(12): 1979-1990.
[14] XIE Yuan-Hua,LI Feng-Fei,MA Xiao-Hui,TAN Jia,XIA Sai-Sai,SANG Xian-Chun,YANG Zheng-Lin,LING Ying-Hua. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 204-213.
[15] ZHANG Shuang-Shuang,WANG Li-Wei,YAO Nan,GUO Guang-Yan,XIA Yu-Feng,BI Cai-Li. Expression of OsUBA and its function in promoting seed germination and flowering [J]. Acta Agronomica Sinica, 2019, 45(9): 1327-1337.
Full text



[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .